Аксиома что это простыми словами

Что такое аксиома

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Мало кто может сформулировать точный ответ на этот вопрос.

Зевая за партой на уроке геометрии, мы краем уха слушали о пифагоровых штанах и параллельных прямых, которым не суждено встретиться.

Аксиома что это простыми словами. Смотреть фото Аксиома что это простыми словами. Смотреть картинку Аксиома что это простыми словами. Картинка про Аксиома что это простыми словами. Фото Аксиома что это простыми словами

С тех пор утекло много воды. Пришло время освежить знания. Обещаю, скучно не будет.

Аксиома — что это

Термин образовался от греческого слова axioma – утверждение, положение. Википедия сообщает, что:

аксиома – это исходное положение теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами.

Толковый словарь Даля дает более простое определение:

аксиома — это «основная истина, очевидность, ясная сама по себе».

Такая трактовка термина отражает отношение древних греков к аксиомам.

В рамках современного научного подхода, аксиома рассматривается как некое фундаментальное положение, с которого начинается логическое доказательство. Она необязательно должна быть простой и понятной.

Аксиомы используют для доказательства теорем. В фундаменте каждой теории должно лежать исходное положение, которое считается истинным. Это основа, с нее начинается доказательство. Если бы аксиом не существовало, то цепочка логических обоснований уходила бы в бесконечность.

Например, мы утверждаем, что рыбы умеют плавать благодаря плавникам. Дальше будем задавать вопрос «почему», каждый раз требуя обоснования начального утверждения. Почему плавники помогают плавать? И так далее, пока не дойдем до того, что «вода — жидкость». Если не остановимся на этом, скатимся в обсуждения устройства вселенной, времени и материи. Цепочка бесконечна.

Аксиома позволяет разорвать цепочку обязательных доказательств путем принятия неких утверждений в качестве исходных и бесспорных (пляшем от печки).

Научное сообщество собралось, посовещалось и решило принимать выражение «А=B» как истинное, а тех, кто не согласен – предать анафеме и лечить в психиатрических больницах.

Аксиома что это простыми словами. Смотреть фото Аксиома что это простыми словами. Смотреть картинку Аксиома что это простыми словами. Картинка про Аксиома что это простыми словами. Фото Аксиома что это простыми словами

Легче всего понять социальные аксиомы. Вот вы покупаете бублики в магазине и отдаете за них деньги. Что такое деньги, по своей сути? Кусочки бумаги с напечатанными картинками и цифрами. Но весь мир условился считать, что такая бумага имеет ценность.

Это аксиома. Никто не требует доказательств. Каждый человек принимают этот факт как очевидный. В это верит покупатель бубликов, продавец, хозяин булочной, поставщики муки, иначе сделка бы не состоялась.

Аксиома действует в границах некоторой сферы, а за пределами – нет.

Вы взяли кошелек, набитый купюрами, и поехали в гости к приятелю из дикого племени Тумба-Юмба. Но никто не берет ваши деньги. Для туземцев – это просто бумажки, пригодные лишь для разжигания костра. Там в ходу бусы или зубы тигра, которые уже для вас не представляют интереса.

Аксиомы — это наследие далекого прошлого

Впервые термин использовал греческий философ Аристотель. Он называл аксиомой исходную предпосылку, фундамент, на котором держится доказательство.

Аристотель выделял 2 основные аксиомы:

Все эти положения очевидны и не нуждаются в доказательствах. Это правда, потому что правда.

Древнегреческий математик Евклид в работе «Начала» выделил утверждения, которые принимаются на веру без доказательств. Он разделял их на аксиомы и постулаты, но так и не объяснил, чем один термин отличается от другого.

В целом можно признать: аксиома и постулат – это синонимы.

В качестве примера приведу пятый постулат Евклида. Звучит довольно жутко: «если при пересечении двух прямых третьей сумма внутренних односторонних углов меньше 180°, то эти прямые при достаточном продолжении пересекаются, и притом с той стороны, с которой эта сумма меньше 180°».

Не пугайтесь, значение этого постулата знакомо любому школьнику: «параллельные прямые не пересекаются». Нарисуем на бумаге две прямые линии параллельно друг другу. Если их продолжить, то они не сблизятся и не удалятся, и уж тем более не пересекутся.

Аксиома что это простыми словами. Смотреть фото Аксиома что это простыми словами. Смотреть картинку Аксиома что это простыми словами. Картинка про Аксиома что это простыми словами. Фото Аксиома что это простыми словами

Ученые предпринимали немало попыток представить это утверждение в виде теоремы, чтобы доказать или опровергнуть. Венгерский математик Янош Бойаи начал изучать пятый постулат и сошел с ума. Опровержение аксиом – опасная затея!

Мыслители выдвигали разные требования к аксиомам. Аристотель считал, что такое выражение должно быть общепринятым. Если половина людей считает, что А=В, а другая половина с ними не согласны, то речь идет скорее о гипотезе.

Рене Декарт полагал, что главные критерии аксиомы – это ясность и очевидность.

Выражение должно быть настолько понятным и бесспорным, что никому и в голову не придет сомневаться. Блез Паскаль говорил о недоказуемости.

Если утверждение в принципе возможно доказать — это не аксиома.

Аксиоматический метод

Это способ построения научной теории, когда в основу кладутся исходные положения, принимаемые без доказательств. Все дальнейшие умозаключения выводятся из них логическим путем.

Три этапа построения знания аксиоматическим способом:

Аксиома что это простыми словами. Смотреть фото Аксиома что это простыми словами. Смотреть картинку Аксиома что это простыми словами. Картинка про Аксиома что это простыми словами. Фото Аксиома что это простыми словами

Чтобы было понятнее, создадим безумную систему аксиом на вымышленном языке. Исходные понятия: «сванс», «курм», равать (отношение между свансами и курмами).

Дальше на основании этих выражений формируем и доказываем теорию.

Выбранный набор аксиом обязан соответствовать требованиям:

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (1)

Если два утверждения противоречат друг другу, то не факт, что одно из них истинное, здесь точно не может быть двух истинных утверждений, но зато могут быть два ложных.

Источник

Значение слова «аксиома»

Аксиома что это простыми словами. Смотреть фото Аксиома что это простыми словами. Смотреть картинку Аксиома что это простыми словами. Картинка про Аксиома что это простыми словами. Фото Аксиома что это простыми словами

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами.

В современной науке вопрос об истинности аксиом, лежащих в основе какой-либо теории, решается либо в рамках других научных теорий, либо посредством интерпретации данной теории.

Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно на этих аксиомах и не опираться на обычное конкретное значение этих объектов и их отношений.

Выбор аксиом, которые составляют основу конкретной теории, не является единственным. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и евклидовой геометрии.

Набор аксиом называется непротиворечивым, если исходя из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание.

Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система), начиная с определённого уровня сложности, либо внутренне противоречива, либо неполна (то есть в достаточно сложных системах найдётся хотя бы одно высказывание, ни истинность, ни ложность которого не может быть доказана средствами самой этой системы).

АКСИО’МА, ы, ж. [греч. axiōma]. Положение, принимаемое без доказательств (мат.). || Очевидная истина, утверждение, принимаемое на веру (книжн.).

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

аксио́ма

1. матем. книжн. заведомо истинное утверждение, принимаемое без доказательств

Источник

Что такое аксиома простыми словами: определение и значение слова

Аксиома: определение кратко

В нашем родном языке существует огромное число сложных, непонятных, узкоспециализированных слов.

В данной статье вы сможете понять и узнать значение такого интересного слова, как аксиома. Это слово дает свои плоды из Греции, греческого языка, имеет перевод на русский язык: “утверждение”, “положение”.

Аксиома – это то, что было доказано кем-то очень давно и не нуждается в этом снова.

Это истина, которая очевидна всем, ей нужно поверить не требуя доказательств. Бывает аксиома в геометрии и философии.

Значение слова аксиома

Люди считают, что понятие вышеуказанного слова ввел в общее использование Аристотель – древнегреческий философ, ученик Платона с 343 года до н. э. С древнейших веков определение “аксиома” считается вечной, неприкосновенной и априорной.

Т. е. его истина устанавливается независимо от опыта, также не противоречит уже существующим фактам, потому что никто до данного не додумывался, не доказывал.

Аксиома возникает благодаря многовековой познавательной деятельности. Аристотель считал: данное утверждение принимается от природы или космоса. Но в современном мире это понятие сократилось до следующего определения: аксиома – это понятие, которое принимается на веру.

Тысячи лет назад и в современном мире постулат принимается за первоначальное, основывающее положение, исходя из которого строятся другие доказательства, свойства и теоремы. Отталкиваясь от постулата (аксиомы) есть возможно рассуждать на совершенно различные тему, развивать мысли по существующим логическим законам.

“Принимать на веру” можно не все понятия: если дело связано с техническими науками или вещью, то данное должно исходить из проведения многочисленных опытов, анализов, фактов, гипотез. Верить, не проверяя, возможно нематериальные вещи: религия.

Аксиома что это простыми словами. Смотреть фото Аксиома что это простыми словами. Смотреть картинку Аксиома что это простыми словами. Картинка про Аксиома что это простыми словами. Фото Аксиома что это простыми словами

Примеры аксиом

Аксиома в философии

Для точного и правильного построения философии следует уметь “философствовать”. Для достижения данного стоит найти важную и необходимую аксиому, являющуюся понятной, разумеющейся и неоспоримой. Надо найти такой постулат, на который возможно опереться, ка на твердую землю и из него выводить другие философские понятия.

Аристотель, в отличие от других мыслителей и философов, смог предоставить свои суждения и изложения о философии в отчетливой форме, он самым первым на основе аксиом построил единую систему философии. Данный метод применим в философии современного мира. Очевиден и разумеющийся до сих пор.

Первая аксиома Аристотеля – закон непротиворечия. Он гласит о сущности и смысле жизни, когда человек проводит тонкую грань между реальностью и мышлением, а также ищет ответы на разные философские вопросы. Закон гласит о том, что две противоположные, противоборствующие стороны не могут находиться на одной черте, существовать вместе одновременно.

Поэтому два разных суждения не могут быть одновременно правильными. Ученый Аристотель не был согласен с другими философами: Гераклитом и Протагором.

Геометрическая аксиома

Геометрия является особым видом познавательной деятельности, изучающая трехмерные фигуры, типы, свойства различных предметов, плоскостей.

Многие важнейшие геометрические понятия формулируются, исходя из подтверждающих положений и утверждений. Остальные – на основе положений, являющиеся правильными без учета доказательств – аксиоматические понятия.

Геометрия рассматривается в двух планах: фигуры и величины на плоскости (планиметрия), пространственные фигуры (стереометрия).

Самыми главными и элементарными планиметрическими понятиями считаются точка и прямая, в стереометрическом разделе геометрии – точка, прямая, плоскость.

Примеры важнейших аксиом геометрии

Все геометрические постулаты разделяют на множество категорий, приведем некоторые из них:

Аксиомы принадлежности

Источник

Значение слова аксиома

Словарь Ушакова

акси о ма, аксиомы, жен. (греч. axioma). Положение, принимаемое без доказательств (мат.).

| Очевидная истина, утверждение, принимаемое на веру (книж.).

Этимологический Словарь Русского Языка

Греческое – axioma (бесспорное, общепринятое).

В русском языке слово «аксиома» известно с начала XVIII в. (1717 г.).

По мнению многих исследователей, слово было заимствовано непосредственно из латинского, хотя некоторые указывают на возможность происхождения из западноевропейских языков (немецкого или французского).

В латинском axioma восходит к греческому глаголу axioun – «признавать что-либо как достоверное». Первоисточником считается греческое существительное со значением «ценность, достоинство», «утверждение».

В современном русском языке аксиома – «неоспоримая истина, положение, которое по очевидности или общепринятости не требует доказательств».

Начала Современного Естествознания. Тезаурус

(от греч. axioma — значимость, требование)

1) (в математике) — предложение, принимаемое без доказательства, рассматриваемое как исходное при построении той или иной математической теории. Система аксиом, являющаяся логическим фундаментом обоснования математической теории, не является раз и навсегда законченной и совершенной и, как и сами аксиомы, изменяется и совершенствуется. К системе аксиом предъявляются требования: непротиворечивости, независимости и полноты. Аксиома также называется постулатом;

2) (в логике) — отправное, исходное положение, которое не может быть доказано, но в то же время и не нуждается в доказательстве, т. к. является совершенно очевидным и поэтому может служить исходным для др. положений. Логическими аксиомами являются: закон тождества, закон противоречия, закон исключенного третьего (сформулированы Аристотелем) и закон достаточного основания (сформулирован Г. Лейбницем).

3) (в переносном смысле) — бесспорная, не требующая доказательств истина.

Культурология. Словарь-справочник

(греч. axioma – принятое положение) – положение, принимаемое без логических доказательств.

Педагогический терминологический словарь

бесспорная истина, не требующая доказательств. В педагогике наиболее известны А. апперцепции и А. двойственности. А. апперцепции (см. Апперцепция) констатирует зависимость всех последующих восприятий от содержания и структуры предшествующего опыта. В этой А. отражено то фундаментальное положение, что одно и то же воздействие производит несходное впечатление на разных людей из-за заведомых различий в их индивидуальном опыте. А. апперцепции объясняет сложность, мучительность внутренней работы, содержанием которой становится переоценка ценностей.

А. двойственности позволяет рассматривать и интерпретировать личность как единство психического и физического, материального и идеального в их историческом развитии и внутренней противоречивости. Человеческая природа одновременно духовна и материальна. В человеческой психике обнаруживается наличие и взаимодействие обоих начал. А. орудийно-знакового опосредования процесса усвоения культуры в ходе воспитания фиксирует тот факт, что обучать и воспитывать можно только посредством знаковых систем и через предметы, созданные человеком для человека.

(Бим-Бад Б.М. Педагогический энциклопедический словарь. — М., 2002. С. 14)

Термины Киносемиотики

(греч. axioma — принятое положение) — исходное утверждение (предложение) какой-либо научной теории, которое берется в качестве недоказуемого в данной теории и из которого (или совокупности которых) выводятся все остальные предложения теории по принятым в ней правилам вывода.

Философский словарь (Конт-Спонвиль)

Недоказуемое положение, служащее для доказательства других положений. Являются ли аксиомы истинными? Долгое время считалось, что являются. По мнению Спинозы или Канта, аксиома – это истина, очевидность которой ясна без доказательств, а потому и не нуждается в них. Современные математики и логики склонны рассматривать аксиомы как чистые конвенции или гипотезы, которые не могут быть очевидными истинами. Отныне истина заключается не в самих положениях (если аксиома не есть истина, ни одна теорема не может быть истинной), а в объединяющих их отношениях импликации или дедукции. Следовательно, аксиом в традиционном понимании термина не существует, есть лишь постулаты (Постулат). Но и это заявление – постулат, а не аксиома.

Толковый словарь русского языка (Алабугина)

1. Исходное положение какой-л. теории, принимаемое без доказательств.

2. перен. Неоспоримое утверждение.

* Это для меня аксиома. *

Вестминстерский словарь теологических терминов

♦ ( ENG axiom)

утверждение, к-рое не требует доказательства и, следовательно, служит предпосылкой и основой аргументации. В христианском учении такой аксиомой может быть утверждение: «Бог существует».

Тезаурус русской деловой лексики

Энциклопедический словарь

(греч. axioma), положение, принимаемое без логического доказательства в силу непосредственной убедительности; истинное исходное положение теории.

Словарь Ожегова

АКСИОМА, ы, ж.

1. Исходное положение, принимаемое без доказательств и лежащее в основе доказательств истинности других положений (спец.).

2. Положение, принимаемое без доказательств (книжн.).

| прил. аксиоматический, ая, ое.

Источник

АКСИОМА — что это такое

Слово «Аксиома» происходит от греческого axioma и обозначает в буквальном переводе на русский «значимое», «принятое» положение. То есть аксиома предполагает исходное понимание сути предмета или явления без необходимости доказывать это окружающим. Термин часто используется в математике, философии, логике.

Пожалуй, что такое аксиома, все мы знаем ещё со школьной скамьи. Но попроси любого человека привести пример таковой, наверняка каждый второй задумается и ответит не сразу, если вообще ответит.

Аксиома – это очевидное утверждение, не требующее доказательства.

Почему аксиома не нуждается в доказательстве? Ответ прост: потому что она очевидна – так считал учёный Аристотель, с точки зрения которого аксиома всегда ясна и проста. Например, «солнце светит днём».

Определение, что такое аксиома дал и древнегреческий учёный-математик Евклид, который ввёл несколько геометрических аксиом как самоочевидных истины. Например, «параллельные прямые не пересекаются». И, опираясь на них, он выводил иные теории в геометрии.

С точки зрения философии и риторики, аксиому можно трактовать как непреложную и вечную истину, познать которую можно без эмпирического опыта – например, «любить не значит обладать».

Понимание нового времени

Спустя какое-то время возникла необходимость переосмыслить термин. Возникновение желания обосновать существующие аксиомы привело к изменению содержания этого понятия:

Удивительно, но от теории к теории аксиомы меняются до неузнаваемости! Чаще всего они по-прежнему, как и до нашей эры, принимаются за отправное положение, на основе которого выстраиваются все остальные доказательства.

Синонимия

Синонимом термина «аксиома» можно назвать слово «постулат», поскольку он обозначает нечто незыблемое и не требующее доказательств.

Отталкиваясь от известного или нового постулата, можно рассуждать на любую тему, развивая мысль по определенным законам логики.

Мы помним, что любая аксиома должна приниматься на веру, но таковое положение дел возможно только в нематериальных субстанциях, например, когда речь идёт о религии. Если же разговор касается вполне материальных, проверяемых и анализируемых вещей/событий/фактов, то любой оратор должен тщательно анализировать ту базу, от которой он отталкивается, чтобы не основываться на ложных тезисах, которые слушатель не может проверить здесь и сейчас.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *