Докажите что среди степеней двойки есть две разность которых делится на 1987

Докажите что среди степеней двойки есть две разность которых делится на 1987

Олимпиадные задачи по математике по теме «Принцип Дирихле». Решения.

В лесу растет миллион елок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся две елки с одинаковым числом иголок.

Перед нами миллион «кроликов»-елок и, увы, всего лишь 600001 клетка с номерами от 0 до 600000. Каждый «кролик»-елка сажается нами в клетку с номером, равным количеству иголок на этой елке. Так как «кроликов» гораздо больше, чем клеток, то в какой-то клетке сидит по крайней мере два «кролика» – если бы в каждой сидело не более одного, то всего «кроликов»-елок было бы не более 600001 штук. Но ведь, если два «кролика»-елки сидят в одной клетке, то количество иголок у них одинаково.

Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

Остатки по модулю 11 – «клетки», числа – «кролики».

В городе Ленинграде живет более 5 миллионов человек. Докажите, что у каких-то двух из них одинаковое число волос на голове, если известно, что у любого человека на голове менее миллиона волос.

Постройте миллион клеток с номерами от 0 до 999999 и рассадите там людей, поместив каждого ленинградца в клетку, номер которой равен количеству волос на его голове.

В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.

25 ящиков-«кроликов» рассадим по 3 клеткам-сортам. Так как 25 = 3 • 8 + 1, то применим «обобщенный принцип Дирихле» для N = 3, k = 8 и получим, что в какой-то клетке-сорте не менее 9 ящиков.

В стране Курляндии m футбольных команд (по 11 футболистов в каждой). Все футболисты собрались в аэропорту для поездки в другую страну на ответственный матч. Самолет сделал 10 рейсов, перевозя каждый раз по m пассажиров. Еще один футболист прилетел к месту предстоящего матча на вертолете. Докажите, что хотя бы одна команда была целиком доставлена в другую страну.

Так как перевезено всего 10m + 1 футболистов, то, рассадив их по клеткам-командам, получаем, что в какой-то клетке сидит 11 футболистов.

Дано 8 различных натуральных чисел, не больших 15. Докажите, что среди их положительных попарных разностей есть три одинаковых.

Различных разностей может быть 14 – от 1 до 14 – это те 14 клеток, в которые мы будем сажать кроликов. Кто же будет нашими кроликами? Ими, конечно, должны быть разности между парами данных нам натуральных чисел. Однако имеется 28 пар и их можно рассадить по 14 клеткам так, что в каждой клетке будет сидеть ровно два «кролика» (и значит, в каждой меньше трех). Здесь надо использовать дополнительное соображение: в клетке с номером 14 может сидеть не более одного кролика, ведь число 14 можно записать как разность двух натуральных чисел, не превосходящих 15, лишь одним способом: 14 = 15 – 1. Значит, в оставшихся 13 клетках сидят не менее 27 кроликов, и применение обобщенного принципа Дирихле дает нам желаемый результат.

Докажите, что в любой компании из 5 человек есть двое, имеющие одинаковое число знакомых в этой компании.

Вариантов числа знакомых всего 5: от 0 до 4. Осталось заметить, что если у кого-то 4 знакомых, то ни у кого не может быть 0 знакомых.

Несколько футбольных команд проводят турнир в один круг. Докажите, что в любой момент турнира найдутся две команды, сыгравшие к этому моменту одинаковое число матчей.

Пусть всего команд n. Тогда вариантов числа команд, с которыми сыграла данная команда n: от 0 до n – 1. Осталось заметить, что если одна команда сыграла со всеми n – 1-й, то никакая другая команда не могла ни с кем не сыграть.

10 школьников на олимпиаде решили 35 задач, причем известно, что среди них есть школьники, решившие ровно одну задачу, школьники, решившие ровно две задачи и школьники, решившие ровно три задачи. Докажите, что есть школьник, решивший не менее пяти задач.

Из условий следует, что найдутся 7 школьников, решивших 35 – 6 = 29 задач. Так как 29 = 4 • 7 + 1, то найдется школьник, решивший не менее пяти задач.

Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?

Ответ: 16 королей. Разобьём доску на 16 квадратиков, в каждом может быть не более одного короля.

Докажите, что равносторонний треугольник нельзя покрыть двумя меньшими равносторонними треугольниками.

Каждый из меньших треугольников не может накрывать более одной вершины большого треугольника.

В квадрат со стороной 1 метр бросили 51 точку. Докажите, что какие-то три из них можно накрыть квадратом со стороной 20 см.

Разобьем наш квадрат на 25 квадратов со стороной 20 см. По обобщенному принципу Дирихле, в какой-то из них попадет по крайней мере три точки из 51 брошенной.

Пятеро молодых рабочих получили на всех зарплату – 1500 рублей. Каждый из них хочет купить себе магнитофон ценой 320 рублей. Докажите, что кому-то из них придется подождать с покупкой до следующей зарплаты.

Если бы каждый из рабочих мог купить магнитофон, то у них в сумме было бы не менее 5 • 320 = 1600 рублей.

В бригаде 7 человек и их суммарный возраст – 332 года. Докажите, что из них можно выбрать трех человек, сумма возрастов которых не меньше 142 лет.

Покрасим всю сушу в синий цвет, а все точки, диаметрально противоположные суше – в красный. Тогда обязательно есть точка, которая покрашена в оба цвета. В ней и надо рыть туннель.

Докажите, что среди степеней двойки есть две, разность которых делится на 1987.

Рассмотрите 1988 степеней и их остатки по модулю 1987.

Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100.

Квадраты при делении на 100 могут давать лишь 51 остаток, так как остатки x и 100 – x при возведении в квадрат дают один и тот же остаток.

Докажите, что среди чисел, записываемых только единицами, есть число, которое делится на 1987.

Рассмотрим 1988 чисел-«кроликов» 1, 11, 111, …, 111 … 11 (1988 единиц) и посадим их в 1987 клеток с номерами 0, 1, 2, …, 1986 – каждое число попадает в клетку с номером, равным остатку от деления этого числа на 1987. Тогда (по принципу Дирихле) найдутся два числа, которые имеют одинаковые остатки при делении на 1987. Пусть это числа 11 … 11 (m единиц) и 11 … 11 (n единиц), причем m > n. Но их разность, которая делится на 1987, равна 11 … 1100 … 00 (m – n единиц и n нулей). Сократим все нули – ведь они не имеют никакого отношения к делимости на 1987 – и получим число из одних единиц, которое делится на 1987.

Докажите, что существует степень тройки, оканчивающаяся на 001.

Если 3m и 3n – степени тройки, дающие один и тот же остаток при делении на 1000, то 3m – 3n = 3n(3m – n – 1) делится на 1000 (мы считаем для определенности, что m > n).

Эти суммы могут принимать лишь 7 разных значений: от – 3 до 3.

Сто человек сидят за круглым столом, причем более половины из них – мужчины. Докажите, что какие-то два мужчины сидят друг напротив друга.

Разобьем всех людей на 50 пар так, что в каждой паре – два человека, сидящих друг напротив друга. Ясно, что в одной из этих пар-«клеток» оба человека – мужчины.

15 мальчиков собрали 100 орехов. Докажите, что какие-то два из них собрали одинаковое число орехов.

Если это не так, то, очевидно, что мальчики собрали не менее, чем 0 + 1 + 2 + … + 14 = 105 орехов – противоречие.

Цифры 1, 2, …, 9 разбили на три группы. Докажите, что произведение чисел в одной из групп не меньше 72.

Произведение чисел во всех группах равно 9! = 362880, а 71? = 357911.

Поскольку от любой клетки до любой другой можно добраться, не более 19 раз сдвинувшись в соседнюю клетку, то все числа находятся между числами a и a + 95, где a – минимальное из всех расставленных чисел. Значит, среди этих чисел не более 96 различных.

Докажите, что среди любых 6 человек есть либо трое попарно знакомых, либо трое попарно незнакомых.

У данного человека среди остальных пяти есть либо не менее трех знакомых, либо не менее трех незнакомых ему. Разберем, например, первый случай. Среди этих трех людей есть либо двое знакомых – тогда они вместе с выбранным нами исходно человеком образуют нужную тройку, либо они все трое попарно незнакомы.

На клетчатой плоскости дано 5 произвольных узлов сетки. Докажите, что середина одного из отрезков, соединяющих какие-то две из этих точек, также является узлом сетки.

Рассмотрите координаты этих точек и их остатки при делении на 2.

На складе имеется по 200 сапог 41, 42 и 43 размеров, причем среди этих 600 сапог 300 левых и 300 правых. Докажите, что из них можно составить не менее 100 годных пар обуви.

В каждом размере каких-то сапог меньше: правых или левых. Выпишем эти типы сапог по размерам. Какой-то тип, например, левый, повторится по крайней мере дважды, например, в 41 и 42 размерах. Но так как количество левых сапог в этих размерах суммарно не меньше 100 (почему?), то мы имеем не менее 100 годных пар обуви в этих размерах.

В алфавите языка племени Ни-Бум-Бум 22 согласных и 11 гласных, причем словом в этом языке называется произвольное буквосочетание, в котором нет двух согласных подряд и ни одна буква не использована дважды. Алфавит разбили на 6 непустых групп. Докажите, что из всех букв одной из групп можно составить слово.

Докажите, что в одной из групп разность между числом согласных и числом гласных не больше 1.

Докажите, что среди любых 10 целых чисел найдется несколько, сумма которых делится на 10.

Рассмотрите 10 сумм: x1, x1 + x2, …, x1 + x2 + … + x10 и их остатки при делении на 10.

Дано 11 различных натуральных чисел, не больших 20. Докажите, что из них можно выбрать два числа, одно из которых делится на другое.

Разбейте числа от 1 до 20 на 10 наборов, в каждом из которых в любой паре чисел одно делится на другое: 11, 13, 15, 17, 19, 1,2,4,8,16, 3,6,12, 5,10,20, 7,14, 9,18.

Источник

Докажите что среди степеней двойки есть две разность которых делится на 1987

Задача 1:

В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета?

Решение:

Обозначим первое из этих чисел через a. Получим

Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть фото Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть картинку Докажите что среди степеней двойки есть две разность которых делится на 1987. Картинка про Докажите что среди степеней двойки есть две разность которых делится на 1987. Фото Докажите что среди степеней двойки есть две разность которых делится на 1987

Задача 2:

В лесу растет миллион елок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся две елки с одинаковым числом иголок.

Решение:

Перед нами миллион «кроликов»-елок и, увы, всего лишь 600001 клетка с номерами от 0 до 600000. Каждый «кролик»-елка сажается нами в клетку с номером, равным количеству иголок на этой елке. Так как «кроликов» гораздо больше, чем клеток, то в какой-то клетке сидит по крайней мере два «кролика» – если бы в каждой сидело не более одного, то всего «кроликов»-елок было бы не более 600001 штук. Но ведь, если два «кролика»-елки сидят в одной клетке, то количество иголок у них одинаково.

Задача 3:

Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

Решение:

Остатки по модулю 11 – «клетки», числа – «кролики».

Задача 4:

В городе Ленинграде живет более 5 миллионов человек. Докажите, что у каких-то двух из них одинаковое число волос на голове, если известно, что у любого человека на голове менее миллиона волос.

Решение:

Постройте миллион клеток с номерами от 0 до 999999 и рассадите там людей, поместив каждого ленинградца в клетку, номер которой равен количеству волос на его голове.

Задача 5:

В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.

Решение:

25 ящиков-«кроликов» рассадим по 3 клеткам-сортам. Так как 25 = 3 • 8 + 1, то применим «обобщенный принцип Дирихле» для N = 3, k = 8 и получим, что в какой-то клетке-сорте не менее 9 ящиков.

Задача 6:

В стране Курляндии m футбольных команд (по 11 футболистов в каждой). Все футболисты собрались в аэропорту для поездки в другую страну на ответственный матч. Самолет сделал 10 рейсов, перевозя каждый раз по m пассажиров. Еще один футболист прилетел к месту предстоящего матча на вертолете. Докажите, что хотя бы одна команда была целиком доставлена в другую страну.

Решение:

Так как перевезено всего 10m + 1 футболистов, то, рассадив их по клеткам-командам, получаем, что в какой-то клетке сидит 11 футболистов.

Задача 7:

Дано 8 различных натуральных чисел, не больших 15. Докажите, что среди их положительных попарных разностей есть три одинаковых.

Решение:

Различных разностей может быть 14 – от 1 до 14 – это те 14 клеток, в которые мы будем сажать кроликов. Кто же будет нашими кроликами? Ими, конечно, должны быть разности между парами данных нам натуральных чисел. Однако имеется 28 пар и их можно рассадить по 14 клеткам так, что в каждой клетке будет сидеть ровно два «кролика» (и значит, в каждой меньше трех). Здесь надо использовать дополнительное соображение: в клетке с номером 14 может сидеть не более одного кролика, ведь число 14 можно записать как разность двух натуральных чисел, не превосходящих 15, лишь одним способом: 14 = 15 – 1. Значит, в оставшихся 13 клетках сидят не менее 27 кроликов, и применение обобщенного принципа Дирихле дает нам желаемый результат.

Задача 8:

Докажите, что в любой компании из 5 человек есть двое, имеющие одинаковое число знакомых в этой компании.

Решение:

Вариантов числа знакомых всего 5: от 0 до 4. Осталось заметить, что если у кого-то 4 знакомых, то ни у кого не может быть 0 знакомых.

Задача 9:

Несколько футбольных команд проводят турнир в один круг. Докажите, что в любой момент турнира найдутся две команды, сыгравшие к этому моменту одинаковое число матчей.

Решение:

Пусть всего команд n. Тогда вариантов числа команд, с которыми сыграла данная команда n: от 0 до n – 1. Осталось заметить, что если одна команда сыграла со всеми n – 1-й, то никакая другая команда не могла ни с кем не сыграть.

Задача 10:

а) Какое наибольшее число полей на доске 8 × 8 можно закрасить в черный цвет так, чтобы в любом уголке вида из трех полей было по крайней мере одно незакрашенное поле?

б) Какое наименьшее число полей на доске 8 × 8 можно закрасить в черный цвет так, чтобы в каждом уголке вида было по крайней мере одно черное поле?

Решение:

а) Разбейте доску на 16 квадратиков 2 × 2 – это клетки; кроликами, конечно, будут черные поля.

Задача 11:

10 школьников на олимпиаде решили 35 задач, причем известно, что среди них есть школьники, решившие ровно одну задачу, школьники, решившие ровно две задачи и школьники, решившие ровно три задачи. Докажите, что есть школьник, решивший не менее пяти задач.

Решение:

Из условий следует, что найдутся 7 школьников, решивших 35 – 6 = 29 задач. Так как 29 = 4 • 7 + 1, то найдется школьник, решивший не менее пяти задач.

Задача 12:

Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?

Решение:

Ответ: 16 королей. Разобьём доску на 16 квадратиков, в каждом может быть не более одного короля.

Задача 14:

Докажите, что равносторонний треугольник нельзя покрыть двумя меньшими равносторонними треугольниками.

Решение:

Каждый из меньших треугольников не может накрывать более одной вершины большого треугольника.

Задача 15:

В квадрат со стороной 1 метр бросили 51 точку. Докажите, что какие-то три из них можно накрыть квадратом со стороной 20 см.

Решение:

Разобьем наш квадрат на 25 квадратов со стороной 20 см. По обобщенному принципу Дирихле, в какой-то из них попадет по крайней мере три точки из 51 брошенной.

Задача 16:

Пятеро молодых рабочих получили на всех зарплату – 1500 рублей. Каждый из них хочет купить себе магнитофон ценой 320 рублей. Докажите, что кому-то из них придется подождать с покупкой до следующей зарплаты.

Решение:

Если бы каждый из рабочих мог купить магнитофон, то у них в сумме было бы не менее 5 • 320 = 1600 рублей.

Задача 17:

В бригаде 7 человек и их суммарный возраст – 332 года. Докажите, что из них можно выбрать трех человек, сумма возрастов которых не меньше 142 лет.

Решение:

Покрасим всю сушу в синий цвет, а все точки, диаметрально противоположные суше – в красный. Тогда обязательно есть точка, которая покрашена в оба цвета. В ней и надо рыть туннель.

Задача 19:

Докажите, что среди степеней двойки есть две, разность которых делится на 1987.

Решение:

Рассмотрите 1988 степеней и их остатки по модулю 1987.

Задача 20:

Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100.

Решение:

Квадраты при делении на 100 могут давать лишь 51 остаток, так как остатки x и 100 – x при возведении в квадрат дают один и тот же остаток.

Задача 21:

Докажите, что среди чисел, записываемых только единицами, есть число, которое делится на 1987.

Решение:

Рассмотрим 1988 чисел-«кроликов» 1, 11, 111, …, 111 … 11 (1988 единиц) и посадим их в 1987 клеток с номерами 0, 1, 2, …, 1986 – каждое число попадает в клетку с номером, равным остатку от деления этого числа на 1987. Тогда (по принципу Дирихле) найдутся два числа, которые имеют одинаковые остатки при делении на 1987. Пусть это числа 11 … 11 (m единиц) и 11 … 11 (n единиц), причем m > n. Но их разность, которая делится на 1987, равна 11 … 1100 … 00 (m – n единиц и n нулей). Сократим все нули – ведь они не имеют никакого отношения к делимости на 1987 – и получим число из одних единиц, которое делится на 1987.

Задача 22:

Докажите, что существует степень тройки, оканчивающаяся на 001.

Решение:

Если 3 m и 3 n – степени тройки, дающие один и тот же остаток при делении на 1000, то 3 m – 3 n = 3 n (3 m – n – 1) делится на 1000 (мы считаем для определенности, что m > n).

Задача 23:

В клетках таблицы 3 × 3 расставлены числа – 1, 0, 1. Докажите, что какие-то две из 8 сумм по всем строкам, всем столбцам и двум главным диагоналям будут равны.

Решение:

Эти суммы могут принимать лишь 7 разных значений: от – 3 до 3.

Задача 24:

Сто человек сидят за круглым столом, причем более половины из них – мужчины. Докажите, что какие-то два мужчины сидят друг напротив друга.

Решение:

Разобьем всех людей на 50 пар так, что в каждой паре – два человека, сидящих друг напротив друга. Ясно, что в одной из этих пар-«клеток» оба человека – мужчины.

Задача 25:

15 мальчиков собрали 100 орехов. Докажите, что какие-то два из них собрали одинаковое число орехов.

Решение:

Если это не так, то, очевидно, что мальчики собрали не менее, чем 0 + 1 + 2 + … + 14 = 105 орехов – противоречие.

Задача 26:

Цифры 1, 2, …, 9 разбили на три группы. Докажите, что произведение чисел в одной из групп не меньше 72.

Решение:

Произведение чисел во всех группах равно 9! = 362880, а 71³ = 357911.

Задача 27:

В таблице 10 × 10 расставлены целые числа, причем любые два числа в соседних клетках отличаются не более, чем на 5. Докажите, что среди этих чисел есть два равных.

Решение:

Поскольку от любой клетки до любой другой можно добраться, не более 19 раз сдвинувшись в соседнюю клетку, то все числа находятся между числами a и a + 95, где a – минимальное из всех расставленных чисел. Значит, среди этих чисел не более 96 различных.

Задача 28:

Докажите, что среди любых 6 человек есть либо трое попарно знакомых, либо трое попарно незнакомых.

Решение:

У данного человека среди остальных пяти есть либо не менее трех знакомых, либо не менее трех незнакомых ему. Разберем, например, первый случай. Среди этих трех людей есть либо двое знакомых – тогда они вместе с выбранным нами исходно человеком образуют нужную тройку, либо они все трое попарно незнакомы.

Задача 29:

На клетчатой плоскости дано 5 произвольных узлов сетки. Докажите, что середина одного из отрезков, соединяющих какие-то две из этих точек, также является узлом сетки.

Решение:

Рассмотрите координаты этих точек и их остатки при делении на 2.

Задача 30:

На складе имеется по 200 сапог 41, 42 и 43 размеров, причем среди этих 600 сапог 300 левых и 300 правых. Докажите, что из них можно составить не менее 100 годных пар обуви.

Решение:

В каждом размере каких-то сапог меньше: правых или левых. Выпишем эти типы сапог по размерам. Какой-то тип, например, левый, повторится по крайней мере дважды, например, в 41 и 42 размерах. Но так как количество левых сапог в этих размерах суммарно не меньше 100 (почему?), то мы имеем не менее 100 годных пар обуви в этих размерах.

Задача 31:

В алфавите языка племени Ни-Бум-Бум 22 согласных и 11 гласных, причем словом в этом языке называется произвольное буквосочетание, в котором нет двух согласных подряд и ни одна буква не использована дважды. Алфавит разбили на 6 непустых групп. Докажите, что из всех букв одной из групп можно составить слово.

Решение:

Докажите, что в одной из групп разность между числом согласных и числом гласных не больше 1.

Задача 32:

Докажите, что среди любых 10 целых чисел найдется несколько, сумма которых делится на 10.

Решение:

Задача 33:

Дано 11 различных натуральных чисел, не больших 20. Докажите, что из них можно выбрать два числа, одно из которых делится на другое.

Решение:

Разбейте числа от 1 до 20 на 10 наборов, в каждом из которых в любой паре чисел одно делится на другое: 11, 13, 15, 17, 19, 1,2,4,8,16, 3,6,12, 5,10,20, 7,14, 9,18.

Задача 34:

11 пионеров занимаются в пяти кружках дома культуры. Докажите, что найдутся два пионера А и В такие, что все кружки, которые посещает А, посещает и В.

Решение:

Занумеруем кружки числами от 1 до 5 и вместо каждого пионера будем рассматривать тот набор кружков – подмножество множества 1,2,3,4,5 – который состоит из посещаемых им кружков. Осталось разбить 32 подмножества указанного множества на 10 наборов так, чтобы в каждом из наборов из любых двух множеств этого набора одно содержалось в другом. В качестве таких наборов рассмотрим следующие: Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть фото Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть картинку Докажите что среди степеней двойки есть две разность которых делится на 1987. Картинка про Докажите что среди степеней двойки есть две разность которых делится на 1987. Фото Докажите что среди степеней двойки есть две разность которых делится на 1987, Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть фото Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть картинку Докажите что среди степеней двойки есть две разность которых делится на 1987. Картинка про Докажите что среди степеней двойки есть две разность которых делится на 1987. Фото Докажите что среди степеней двойки есть две разность которых делится на 1987, Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть фото Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть картинку Докажите что среди степеней двойки есть две разность которых делится на 1987. Картинка про Докажите что среди степеней двойки есть две разность которых делится на 1987. Фото Докажите что среди степеней двойки есть две разность которых делится на 1987, Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть фото Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть картинку Докажите что среди степеней двойки есть две разность которых делится на 1987. Картинка про Докажите что среди степеней двойки есть две разность которых делится на 1987. Фото Докажите что среди степеней двойки есть две разность которых делится на 1987, Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть фото Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть картинку Докажите что среди степеней двойки есть две разность которых делится на 1987. Картинка про Докажите что среди степеней двойки есть две разность которых делится на 1987. Фото Докажите что среди степеней двойки есть две разность которых делится на 1987, Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть фото Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть картинку Докажите что среди степеней двойки есть две разность которых делится на 1987. Картинка про Докажите что среди степеней двойки есть две разность которых делится на 1987. Фото Докажите что среди степеней двойки есть две разность которых делится на 1987, Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть фото Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть картинку Докажите что среди степеней двойки есть две разность которых делится на 1987. Картинка про Докажите что среди степеней двойки есть две разность которых делится на 1987. Фото Докажите что среди степеней двойки есть две разность которых делится на 1987, Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть фото Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть картинку Докажите что среди степеней двойки есть две разность которых делится на 1987. Картинка про Докажите что среди степеней двойки есть две разность которых делится на 1987. Фото Докажите что среди степеней двойки есть две разность которых делится на 1987, Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть фото Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть картинку Докажите что среди степеней двойки есть две разность которых делится на 1987. Картинка про Докажите что среди степеней двойки есть две разность которых делится на 1987. Фото Докажите что среди степеней двойки есть две разность которых делится на 1987, Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть фото Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть картинку Докажите что среди степеней двойки есть две разность которых делится на 1987. Картинка про Докажите что среди степеней двойки есть две разность которых делится на 1987. Фото Докажите что среди степеней двойки есть две разность которых делится на 1987.

Источник

Докажите что среди степеней двойки есть две разность которых делится на 1987

Логический прием, использованный в приведенном доказательстве, называется принципом Дирихле – по имени Петера Густава Дирихле (1805-1895) немецкого математика, автора описанного метода.

Вот общая форма принципа Дирихле:

Если k∙n+1 предмет разложен в k ящиков, то, по крайней мере, в одном из ящиков лежит не меньше, чем n+1 предмет.

Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть фото Докажите что среди степеней двойки есть две разность которых делится на 1987. Смотреть картинку Докажите что среди степеней двойки есть две разность которых делится на 1987. Картинка про Докажите что среди степеней двойки есть две разность которых делится на 1987. Фото Докажите что среди степеней двойки есть две разность которых делится на 1987

По традиции в популярной литературе принцип Дирихле объясняют на примере “зайцев” и “клеток’:

Если N зайцев сидят в n клетках и N>n, то хотя бы в одной клетке сидит более одного зайца.

Этим принципом в неявном виде пользовался, например, Ферма в XVII веке; но широко применяться в доказательствах он стал лишь с прошлого века! Несмотря на свою простоту, это рассуждение оказалось чрезвычайно плодотворным. Вот только один пример. Если делить одно целое число на другое, например 1 на 7, что мы получим? Будем делить в столбик, получая все новые и новые остатки. Но поскольку остатками от деления на 7 могут быть лишь числа 1, 2, 3, 4, 5, 6 и 0, мы либо должны на каком-то шаге получить 0 и остановиться, либо после шестого деления один из остатков обязан повториться. Дальше делить нет смысла — этот остаток мы уже разделили на 7, и все результаты у нас перед глазами. Ясно, что деление будет продолжаться бесконечно, но мы будем получать снова и снова одну и ту же последовательность цифр — период.

Выходит, при делении целого числа на целое мы получим либо конечную десятичную дробь, либо периодическую — и более ничего!

Как видим – все гениальное просто, и к этому же относится и принцип Дирихле.

В лесу растет миллион елок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся две елки с одинаковым числом иголок.

Перед нами миллион «кроликов»-елок и, увы, всего лишь 600001 клетка с номерами от 0 до 600000. Каждый «кролик»-елка сажается нами в клетку с номером, равным количеству иголок на этой елке. Так как «кроликов» гораздо больше, чем клеток, то в какой-то клетке сидит по крайней мере два «кролика» – если бы в каждой сидело не более одного, то всего «кроликов»-елок было бы не более 600001 штук. Но ведь, если два «кролика»-елки сидят в одной клетке, то количество иголок у них одинаково.

Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

Остатки по модулю 11 – «клетки», числа – «кролики».

В городе Ленинграде живет более 5 миллионов человек. Докажите, что у каких-то двух из них одинаковое число волос на голове, если известно, что у любого человека на голове менее миллиона волос.

Постройте миллион клеток с номерами от 0 до 999999 и рассадите там людей, поместив каждого ленинградца в клетку, номер которой равен количеству волос на его голове.

В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.

25 ящиков-«кроликов» рассадим по 3 клеткам-сортам. Так как 25 = 3 • 8 + 1, то применим «обобщенный принцип Дирихле» для N = 3, k = 8 и получим, что в какой-то клетке-сорте не менее 9 ящиков.

В стране Курляндии m футбольных команд (по 11 футболистов в каждой). Все футболисты собрались в аэропорту для поездки в другую страну на ответственный матч. Самолет сделал 10 рейсов, перевозя каждый раз по m пассажиров. Еще один футболист прилетел к месту предстоящего матча на вертолете. Докажите, что хотя бы одна команда была целиком доставлена в другую страну.

Так как перевезено всего 10m + 1 футболистов, то, рассадив их по клеткам-командам, получаем, что в какой-то клетке сидит 11 футболистов.

Дано 8 различных натуральных чисел, не больших 15. Докажите, что среди их положительных попарных разностей есть три одинаковых.

Различных разностей может быть 14 – от 1 до 14 – это те 14 клеток, в которые мы будем сажать кроликов. Кто же будет нашими кроликами? Ими, конечно, должны быть разности между парами данных нам натуральных чисел. Однако имеется 28 пар и их можно рассадить по 14 клеткам так, что в каждой клетке будет сидеть ровно два «кролика» (и значит, в каждой меньше трех). Здесь надо использовать дополнительное соображение: в клетке с номером 14 может сидеть не более одного кролика, ведь число 14 можно записать как разность двух натуральных чисел, не превосходящих 15, лишь одним способом: 14 = 15 – 1. Значит, в оставшихся 13 клетках сидят не менее 27 кроликов, и применение обобщенного принципа Дирихле дает нам желаемый результат.

Докажите, что в любой компании из 5 человек есть двое, имеющие одинаковое число знакомых в этой компании.

Вариантов числа знакомых всего 5: от 0 до 4. Осталось заметить, что если у кого-то 4 знакомых, то ни у кого не может быть 0 знакомых.

Несколько футбольных команд проводят турнир в один круг. Докажите, что в любой момент турнира найдутся две команды, сыгравшие к этому моменту одинаковое число матчей.

Пусть всего команд n. Тогда вариантов числа команд, с которыми сыграла данная команда n: от 0 до n – 1. Осталось заметить, что если одна команда сыграла со всеми n – 1-й, то никакая другая команда не могла ни с кем не сыграть.

10 школьников на олимпиаде решили 35 задач, причем известно, что среди них есть школьники, решившие ровно одну задачу, школьники, решившие ровно две задачи и школьники, решившие ровно три задачи. Докажите, что есть школьник, решивший не менее пяти задач.

Из условий следует, что найдутся 7 школьников, решивших 35 – 6 = 29 задач. Так как 29 = 4 • 7 + 1, то найдется школьник, решивший не менее пяти задач.

Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?

Ответ: 16 королей. Разобьём доску на 16 квадратиков, в каждом может быть не более одного короля.

Докажите, что равносторонний треугольник нельзя покрыть двумя меньшими равносторонними треугольниками.

Каждый из меньших треугольников не может накрывать более одной вершины большого треугольника.

В квадрат со стороной 1 метр бросили 51 точку. Докажите, что какие-то три из них можно накрыть квадратом со стороной 20 см.

Разобьем наш квадрат на 25 квадратов со стороной 20 см. По обобщенному принципу Дирихле, в какой-то из них попадет по крайней мере три точки из 51 брошенной.

Пятеро молодых рабочих получили на всех зарплату – 1500 рублей. Каждый из них хочет купить себе магнитофон ценой 320 рублей. Докажите, что кому-то из них придется подождать с покупкой до следующей зарплаты.

Если бы каждый из рабочих мог купить магнитофон, то у них в сумме было бы не менее 5 • 320 = 1600 рублей.

В бригаде 7 человек и их суммарный возраст – 332 года. Докажите, что из них можно выбрать трех человек, сумма возрастов которых не меньше 142 лет.

Покрасим всю сушу в синий цвет, а все точки, диаметрально противоположные суше – в красный. Тогда обязательно есть точка, которая покрашена в оба цвета. В ней и надо рыть туннель.

Докажите, что среди степеней двойки есть две, разность которых делится на 1987.

Рассмотрите 1988 степеней и их остатки по модулю 1987.

Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100.

Квадраты при делении на 100 могут давать лишь 51 остаток, так как остатки x и 100 – x при возведении в квадрат дают один и тот же остаток.

Докажите, что среди чисел, записываемых только единицами, есть число, которое делится на 1987.

Рассмотрим 1988 чисел-«кроликов» 1, 11, 111, …, 111 … 11 (1988 единиц) и посадим их в 1987 клеток с номерами 0, 1, 2, …, 1986 – каждое число попадает в клетку с номером, равным остатку от деления этого числа на 1987. Тогда (по принципу Дирихле) найдутся два числа, которые имеют одинаковые остатки при делении на 1987. Пусть это числа 11 … 11 (m единиц) и 11 … 11 (n единиц), причем m > n. Но их разность, которая делится на 1987, равна 11 … 1100 … 00 (m – n единиц и n нулей). Сократим все нули – ведь они не имеют никакого отношения к делимости на 1987 – и получим число из одних единиц, которое делится на 1987.

Докажите, что существует степень тройки, оканчивающаяся на 001.

Если 3m и 3n – степени тройки, дающие один и тот же остаток при делении на 1000, то 3m – 3n = 3n(3m – n – 1) делится на 1000 (мы считаем для определенности, что m > n).

Эти суммы могут принимать лишь 7 разных значений: от – 3 до 3.

Сто человек сидят за круглым столом, причем более половины из них – мужчины. Докажите, что какие-то два мужчины сидят друг напротив друга.

Разобьем всех людей на 50 пар так, что в каждой паре – два человека, сидящих друг напротив друга. Ясно, что в одной из этих пар-«клеток» оба человека – мужчины.

15 мальчиков собрали 100 орехов. Докажите, что какие-то два из них собрали одинаковое число орехов.

Если это не так, то, очевидно, что мальчики собрали не менее, чем 0 + 1 + 2 + … + 14 = 105 орехов – противоречие.

Цифры 1, 2, …, 9 разбили на три группы. Докажите, что произведение чисел в одной из групп не меньше 72.

Произведение чисел во всех группах равно 9! = 362880, а 71? = 357911.

Поскольку от любой клетки до любой другой можно добраться, не более 19 раз сдвинувшись в соседнюю клетку, то все числа находятся между числами a и a + 95, где a – минимальное из всех расставленных чисел. Значит, среди этих чисел не более 96 различных.

Докажите, что среди любых 6 человек есть либо трое попарно знакомых, либо трое попарно незнакомых.

У данного человека среди остальных пяти есть либо не менее трех знакомых, либо не менее трех незнакомых ему. Разберем, например, первый случай. Среди этих трех людей есть либо двое знакомых – тогда они вместе с выбранным нами исходно человеком образуют нужную тройку, либо они все трое попарно незнакомы.

На клетчатой плоскости дано 5 произвольных узлов сетки. Докажите, что середина одного из отрезков, соединяющих какие-то две из этих точек, также является узлом сетки.

Рассмотрите координаты этих точек и их остатки при делении на 2.

На складе имеется по 200 сапог 41, 42 и 43 размеров, причем среди этих 600 сапог 300 левых и 300 правых. Докажите, что из них можно составить не менее 100 годных пар обуви.

В каждом размере каких-то сапог меньше: правых или левых. Выпишем эти типы сапог по размерам. Какой-то тип, например, левый, повторится по крайней мере дважды, например, в 41 и 42 размерах. Но так как количество левых сапог в этих размерах суммарно не меньше 100 (почему?), то мы имеем не менее 100 годных пар обуви в этих размерах.

В алфавите языка племени Ни-Бум-Бум 22 согласных и 11 гласных, причем словом в этом языке называется произвольное буквосочетание, в котором нет двух согласных подряд и ни одна буква не использована дважды. Алфавит разбили на 6 непустых групп. Докажите, что из всех букв одной из групп можно составить слово.

Докажите, что в одной из групп разность между числом согласных и числом гласных не больше 1.

Докажите, что среди любых 10 целых чисел найдется несколько, сумма которых делится на 10.

Рассмотрите 10 сумм: x1, x1 + x2, …, x1 + x2 + … + x10 и их остатки при делении на 10.

Дано 11 различных натуральных чисел, не больших 20. Докажите, что из них можно выбрать два числа, одно из которых делится на другое.

Разбейте числа от 1 до 20 на 10 наборов, в каждом из которых в любой паре чисел одно делится на другое: 11, 13, 15, 17, 19, 1,2,4,8,16, 3,6,12, 5,10,20, 7,14, 9,18.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *