какие файловые системы поддерживает linux

Файловые системы в Linux

ReiserFS (Reiser3) — одна из первых журналируемых файловых систем под Linux, разработана Namesys. Имеет некоторые врождённые головные боли, но в целом неплохая система, ведущая отсчёт дней своих с 2001 года. Оговорюсь, что смысл журналируемых систем заключается в дисковых транзакциях, которые последовательно пишутся в специальную зону диска (журнал, он же лог), перед тем как данные попадают в конечные точки файловой системы. Максимальный объём тома для этой системы равен 16 тебибайт (16*2 40 байт).

JFS (Journaled File System) — файловая система, детище IBM, явившееся миру в далёком 1990 году для ОС AIX (Advanced Interactive eXecutive). В виде первого стабильного релиза, для пользователей Linux, система стала доступна в 2001 году. Из плюсов системы — неплохая масштабируемость. Из минусов — не особо активная поддержка на протяжении всего жизненного цикла. Максимальный рамер тома 32 пэбибайта (32*2 50 байт).

ext (extended filesystem) — появилась в апреле 1992 года, это была первая файловая система, изготовленная специально под нужды Linux ОС. Разработана Remy Card с целью преодолеть ограничения файловой системы Minix.

ext2 (second extended file system) — была разработана Remy Card в 1993 году. Не журналируемая файловая система, это был основной её недостаток, который исправит ext3.

ext3 (third extended filesystem) — по сути расширение исконной для Linux ext2, способное к журналированию. Разработана Стивеном Твиди (Stephen Tweedie) в 1999 году, включена в основное ядро Linux в ноябре 2001 года. На фоне других своих сослуживцев обладает более скромным размером пространства, до 4 тебибайт (4*2 40 байт) для 32-х разрядных систем. На данный момент является наиболее стабильной и поддерживаемой файловой системой в среде Linux.

Reiser4 — первая попытка создать файловую систему нового поколения для Linux. Впервые представленная в 2004 году, система включает в себя такие передовые технологии как транзакции, задержка выделения пространства, а так же встроенная возможность кодирования и сжатия данных. Ханс Рейзер (Hans Reiser), главный разработчик системы, рекламировал использовать своё детище непосредственно как БД с улучшенными метаданными. После того, как Ханс Рейзер был осуждён за убийство в 2008 году, дальнейшая судьба системы стала сомнительной.

ext4 — попытка создать 64-х битную ext3 способную поддерживать больший размер файловой системы (1 эксбибайт). Позже добавились возможности — непрерывные области дискового пространства, задержка выделения пространства, онлайн дефрагментация и прочие. Обеспечивается прямая совместимость с системой ext3 и ограниченная обратная совместимость при недоступной способности к непрерывным областям дискового пространства.

UPD: Btrfs (B-tree FS или Butter FS) — проект изначально начатый компанией Oracle, впоследствии поддержанный большинством Linux систем. Многие считаеют систему эдаким ответом на ZFS. Ключевыми особенностями данной файловой системы являются технологии: copy-on-write, позволяющая сделать снимки областей диска (снапшоты), которые могут пригодится для последующего восстановления; контроль за целостностью данных и метаданных (с повышенной гарантией целостности); сжатие данных; оптимизированный режим для накопителей SSD (задаётся при монтировании) и прочие. Немаловажным фактором является возможность перехода с ext3 на Btrfs. С августа 2008 года данная система выпускается под GNU GPL.

Tux2 — известная, но так и не анонсированная публично файловая система. Создатель Дэниэл Филипс (Daniel Phillips), система базируется на алгоритме «Фазового Дерева», который как и журналирование защищает файловую систему от сбоев. Организована как надстройка на ext2.

Tux3 — наступая на пятки Btrfs, представлена новая файловая система. Система создана на основе FUSE (Filesystem in Userspace), специального модуля для создания файловых систем на *nix платформах. Данный проект ставит перед собой цель избавиться от привычного журналирования, взамен предлагая версионное восстановление (состояние в определённый промежуток времени). Преимуществом используемой в данном случае версионной системы, является способ описания изменений, где для каждого файла создаётся изменённая копия, а не переписывается текущая версия. Такой подход позволяет более гибко управлять версиями.

UPD: Xiafs — задумка и разработка данной файловой системы принадлежат Frank Xia, основана на файловой системе MINIX. В настоящее время считается устаревшей и практически не используется. Наряду с ext2 разрабатывалась, как замена системе ext. В декабре 1993 года система была добавлена в стандартное ядро Linux. И хотя система обладала большей стабильностью и занимала меньше дискового пространства под контрольные структуры — она оказалась слабее ext2, ведущую роль сыграли ограничения максимальных размеров файла и раздела, а так же способность к дальнейшему расширению.

UPD: ZFS (Zettabyte File System) — изначально созданная в Sun Microsystems файловая система, для небезызвестной операционной системы Solaris в 2005 году. Отличительные особенности — отсутствие фрагментации данных как таковой, возможности по управлению снапшотами (snapshots), пулами хранения (storage pools), варьируемый размер блоков, 64-х разрядный механизм контрольных сумм, а так же способность адресовать 128 бит информации! В Linux системах может использоваться посредствам FUSE.

Источник

Какую файловую систему выбрать для Linux

В сегодняшней небольшой статье мы постараемся разобраться какую файловую систему выбрать для Linux, и какие вообще доступны варианты.

Выбор файловой системы для Linux

Все файловые системы можно разделить на два типа: это обычные файловые системы и файловые системы следующего поколения. К обычным файловым системам относится используемая в большинстве дистрибутивов Ext4, она имеет все необходимые для полноценной работы возможности, но не более того.

1. Ext

Про семейство файловых систем Ext я больше не буду говорить в этой статье. Про всё можно подробно прочитать в статье Файловая система Ext4. Там рассказана история развития этой файловой системы, а также её плюсы и минусы. Для установки Linux лучше всего подойдёт файловая система Ext4 из-за её стабильности и огромному количеству руководств по настройке в интернете.

2. XFS

Файловая система XFS разработана в Silicon Graphics в 1994 году для операционной системы SGI IRX. Расшифровывается как eXtended File System. Для Linux она была портирована в 2001 и немного позже её начали использовать в Red Hat Enterprice Linux в качестве файловой системы по умолчанию. Хотя эту файловую можно отнести к обычным, она изначально была рассчитана на работу с большими дисками. Она очень похожа на Ext4, тоже поддерживает журналирование и не подвержена фрагментации, но её можно только увеличить, уменьшить раздел с этой файловой системой нельзя. Ещё XFS показывает хорошую производительность при работе с большими файлами, но медленее работает с большим количеством маленьких файлов по сравнению с другими файловыми системами.

3. JFS

Файловая система JFS или Journaled File System разработана компанией IBM для системы IBM AIX в 1990 году, а чуть позже она была портирована и для Linux. В отличие от Ext3, в которой был добавлен журнал для сохранения целостности файловой системы, JFS была изначально журналируемой. В журнале сохраняются только метаданные. Файловая система одинаково быстро работает с как с большими, так и с маленькими файлами, а ещё её также как и XFS нельзя уменьшить, только увеличить. Несмотря на то, что эта файловая система доступна в большинстве дистрибутивов, её редко используют, а значит и её разработка и выявление багов идет медленнее.

4. BtrFS

Мы добрались к первой файловой системе следующего поколения. Это BTree File System. Её разработал Крис Масон во время своей работы в компании Oracle в 2006 году. Она поддерживает множество интересных возможностей, таких как управление томами, снимки состояния, прозрачное сжатие и дефрагментацию в реальном времени. Файловая система разрабатывалась как качественная и новая альтернатива для файловых систем семейства Ext. Даже основной разработчик Ext4 Теодор Цо считает, что за Btrfs или подобной ей файловой системой будущее, а Ext4 рано или поздно останется в прошлом. Сейчас BtrFS используется по умолчанию в SUSE Linux, как в серверной, так и обычной редакции. Она уже считается стабильной, но многие всё ещё боятся её использовать.

5. ReiserFS

6. ZFS

Выводы

Источник

Типы файловых систем для Linux

Операционная система Windows может быть установлена только на файловую систему NTFS, поэтому обычно у пользователей не возникает вопросов какую ФС лучше использовать. Но Linux очень сильно отличается, здесь в ядро системы встроены и могут использоваться несколько файловых систем, каждая из которых оптимизирована для решения определенных задач и лучше подходит именно для них.

Новые пользователи не всегда понимают что такое раздел жесткого диска и файловая система. В нашей сегодняшней статье мы попытаемся разобраться во всех этих понятиях, рассмотрим что такое файловая система, а также рассмотрим самые распространенные типы файловых систем Linux. Но начнем с самых основ, разделов диска.

Жесткий диск и разделы

Что такое файловая система?

Дальше больше. Чтобы на каждом разделе можно было работать с файлами и каталогами, необходима файловая система. Мы могли бы писать просто содержимое файлов на диск, но нужно еще где-то хранить данные о папках, имена файлов, их размер, адрес на жестком диске, атрибуты доступа. Всем этим занимается файловая система.

От файловой системы зависит очень многое, скорость работы с файлами, скорость записи и даже размер файлов. Также от стабильности файловой системы будет зависеть сохранность ваших файлов.

Типы файловых систем Linux

Файловые системы в Linux используются не только для работы с файлами на диске, но и для хранения данных в оперативной памяти или доступа к конфигурации ядра во время работы системы. Дальше мы рассмотрим типы файловых систем Linux, включая специальные файловые системы.

Основные файловые системы

Каждый дистрибутив Linux позволяет использовать одну из этих файловых систем, каждая из них имеет свои преимущества и недостатки. Все они включены в ядро и могут использоваться в качестве корневой файловой системы. Давайте рассмотрим каждую из них более подробно.

Другие файловые системы, такие как NTFS, FAT, HFS могут использоваться в Linux, но корневая файловая система linux на них не устанавливается, поскольку они для этого не предназначены.

Специальные файловые системы

Ядро Linux использует специальные файловые системы, чтобы предоставить доступ пользователю и программам к своим настройкам и информации. Наиболее часто вы будете сталкиваться с такими вариантами:

Виртуальные файловые системы

Не все файловые системы нужны в ядре. Существуют некоторые решения, которые можно реализовать и в пространстве пользователя. Разработчики ядра создали модуль FUSE ( filesystem in userspace), который позволяет создавать файловые системы в пространстве пользователя. К виртуальным файловым системам можно отнести ФС для шифрования и сетевые файловые системы.

Таких файловых систем очень много, и мы не будем перечислять все их в данной статье. Есть даже очень экзотические варианты, обратите внимание на проект PIfs.

Выводы

На завершение видео о том, что такое файловая система и ее структура в linux:

Источник

Файловая система Linux

В этой статье мы поговорим про файловую систему Linux. Но здесь вы не найдете описания тонкостей работы с определенной файловой системой, например, ext4, а также не найдете команд для работы с какой-либо ФС. Мы остановимся на более общих понятиях и попытаемся разобраться что такое файловая система, и как она работает в целом.

Каждый компьютер сохраняет данные и результаты на жестком диске, твердотельном накопителе SSD или любом другом носителе информации, это неизбежно. Для этого есть несколько причин. Во-первых, содержимое RAM очищается при каждой перезагрузке компьютера. Конечно, есть быстрые энергонезависимые устройства хранения, такие как флеш память, но они стоят намного дороже, чем стандартные модули DDR3.

Вторая причина хранить данные на диске, это то, что оперативная память намного дороже чем более медленные, но вместительные жесткие диски. Фактически 16 Гб оперативной памяти будет стоить столько же, сколько жесткий диск на 2 Тб. Таким образом, мы видим, что оперативная память в 71 раза дороже чем HDD.

Что такое файловая система?

Люди могут подразумевать под файловой системой совсем разные понятия. Само словосочетание может иметь несколько значений и вам придется понимать о чем идет речь из контекста документа.

Давайте рассмотрим наиболее часто используемые значения слов файловая система. Мы не будем останавливаться на официальной трактовке, а попытаемся обратить внимание на сферу применения:

Дальше рассмотрим как выполнена организация файловой системы Linux и ее основные функции.

Основные функции файловой системы

Все файловые системы должны обеспечивать пространство имен. Оно определяет как будут называться файлы, ограничения на длину имени, используемые символы, а также логическую структуру данных на диске, например, использование каталогов для организации файлов, а не просто складывания их в одном месте.

Когда пространство имен определено, необходимо создать для него основу с помощью метаданных файловой системы. Она включает в себя структуры данных для создания иерархии каталогов, структуры для хранения занятых и свободных блоков на диске, структуры с именами файлов и каталогов, информацией о файлах, такой как размер, время создания, расположение файла на диске и так далее. В самих блоках файла на диске хранится только его содержимое, вся же остальная информация находится в метаданных.

Также метаданные используются для описания логических томов и подразделов, если таковые поддерживаются, и еще одни содержат информацию, описывающую файловую систему.

Для доступа к файлам также необходим набор функций API, с помощью которых программы могли бы управлять различными объектами файловой системы. Обычно должны существовать методы для создания, перемещения и удаления файлов.

Современные файловые системы также обеспечивают модель безопасности, которая представляет из себя схему прав доступа к файлам для пользователей. Модель безопасности ФС в Linux гарантирует что пользователи будут иметь доступ только к своим файлам.

Дальше, нам нужно программное обеспечение, которое будет выполнять все эти функции. Организация файловой системы linux состоит из двух частей:

какие файловые системы поддерживает linux. Смотреть фото какие файловые системы поддерживает linux. Смотреть картинку какие файловые системы поддерживает linux. Картинка про какие файловые системы поддерживает linux. Фото какие файловые системы поддерживает linux

Структура каталогов

Намного проще найти файлы, если они хранятся небольшими группами, каждый на своем месте, а не все в одной куче. Структуру файловой системы Linux можно представить в виде простой иерархии. Все каталоги находятся в корневом каталоге (/) поэтому каждый адрес файла начинается с него. Например, /var/log/dmesg, /usr/share/, /bin.

Каталоги /bin, /dev, /etc, /lib, /root, /sbin не могут быть примонтированы и должны быть доступны еще до загрузки, так как в них находятся все необходимые файлы. Что касается каталогов /media и /mnt, то они должны быть пустыми, поскольку это точки монтирования для других файловых систем. Остальные каталоги можно смело монтировать позже, они никак не повлияют на запуск.

В некоторых не Unix операционных системах разделам присваиваются отдельные буквы, например, C: или D:. В них каждый раздел будет иметь отдельную файловую систему. Чтобы найти нужный файл на диске C: вам необходимо сначала выполнить команду C:, а затем искать путь к файлу.

В Linux все физические диски и разделы, объеденные в одну файловую структуру. Она начинается с корня (/) в котором расположены все другие каталоги. Это работает потому что файловые системы /var, /home, /boot, /tmp и т д могут находиться на других физических дисках. Даже съемные диски подключаются в основную файловую систему.

И это очень хорошо, потому что при обновлении версии дистрибутива можно сохранить абсолютно все файлы и настройки в домашнем каталоге. Иногда полезно переформатировать корневой раздел чтобы убрать оттуда весь мусор, если /home находится на отдельном разделе, то вы ничего не потеряете. Есть и другие причины так поступать, например, защита корневой ФС от переполнения, что привело бы к неработоспособности системы.

Типы файловых систем

Как уже было сказано, Linux поддерживает более 10 различных файловых систем, но создавать и выполнять запись, возможно, только в некоторые из них. Зато можно подключить их все к корневой файловой системе. Под типом мы подразумеваем совокупность структур и метаданных, необходимых для хранения файлов.

Linux может монтировать и читать такие файловые системы:

какие файловые системы поддерживает linux. Смотреть фото какие файловые системы поддерживает linux. Смотреть картинку какие файловые системы поддерживает linux. Картинка про какие файловые системы поддерживает linux. Фото какие файловые системы поддерживает linux

Мы более подробно рассматривали особенности некоторых из них в статье типы файловых систем Linux.

Монтирование файловых систем

Термин смонтировать появился еще в самом начале развития Linux, тогда было необходимо вставить кассету или съемный диск в специальный привод. Только после этого можно было получить доступ к файловой системе устройства.

Корневая файловая система ос Linux / подключается на раннем этапе загрузки. Другие файловые системы монтируются системой инициализации, например, SysVinit или Systemd. Точки монтирования настраиваются с помощью файла /etc/fstab. Также можно выполнять ручное монтирование в Linux с помощью команды mount. Каталог для монтирования необязательно должен быть пустым, он может содержать файлы, но тогда они будут просто скрыты.

Выводы

Эта статья была ориентирована на новичков и я надеюсь, что некоторые вопросы, касаемо термина файловая система linux были сняты. Теперь вы можете оценить элегантность, сложность и функциональность файловой системы Linux. Если у вас есть вопросы, спрашивайте в комментариях!

Источник

Файловые системы Linux

Обновл. 28 Июл 2021 |

Файловая система — это набор стандартов и соответствующих процессов, которые определяют и управляют тем, в каком виде ваши данные хранятся на носителе информации и каким образом они могут быть из него извлечены.

Способ организации файловой системы в Linux

В качестве способа повышения эффективности ОС, в Linux применяется следующая модель файловой системы:

какие файловые системы поддерживает linux. Смотреть фото какие файловые системы поддерживает linux. Смотреть картинку какие файловые системы поддерживает linux. Картинка про какие файловые системы поддерживает linux. Фото какие файловые системы поддерживает linux

Благодаря такому подходу, добавление поддержки какой-нибудь новой файловой системы не потребует вносить соответствующих изменений в само ядро ОС.

Виртуальная файловая система (сокр. «VFS» от англ. «Virtual File System») — это специальный слой абстракции, предоставляющий программный интерфейс (единый набор команд) для взаимодействия между ядром и конкретной реализацией файловой системы.

Ядро Linux поддерживает различные типы файловых систем (ext3, ext4, ReiserFS, Btrfs, XFS и многие другие). На сегодняшний день наиболее часто используемой файловой системой является ext4, поэтому в данной статье основной упор будет сделан именно на нее.

Примечание: В Linux практически все объекты представлены в виде файлов (например, каталоги, принтеры, разделы диска, устройства и т.д.). Это делает еще более важным изучение того, как работает файловая система Linux.

Эволюция файловой системы ext в Linux

Давайте детально рассмотрим эволюцию файловой системы ext в Linux:

какие файловые системы поддерживает linux. Смотреть фото какие файловые системы поддерживает linux. Смотреть картинку какие файловые системы поддерживает linux. Картинка про какие файловые системы поддерживает linux. Фото какие файловые системы поддерживает linux

Файловая система Minix

Файловая система Minix — это первая файловая система, являющаяся прообразом современных файловых систем в Linux, которая была представлена в 1987 году Эндрю С. Таненбаумом в составе одноименной ОС Minix.

Операционная система Minix и её файловая система использовались в виде наглядного пособия для студентов, изучающих основы строения ОС (одним из таких студентов был сам Линус Торвальдс). Из-за того, что Minix была, прежде всего, учебной системой, её файловая система обладала множеством недостатков: производительность файловой системы оставляла желать лучшего; длина имени файла была ограничена 14 символами, а размер разделов — 64 МБ. Для сравнения, жесткие диски того времени имели размер вплоть до 140 МБ.

Файловая система ext

ext или extfs (сокр. от англ. «Extended File System») — это первая файловая система, предназначенная специально для Linux, которая была представлена в апреле 1992 года. Используемая структура метаданных была разработана Реми Кардом, на создание которой его вдохновила Unix File System. Максимальная длина имени файла составляла 255 символов, а размер раздела — до 2 ГБ.

Хотя ext и удалось решить проблемы, присутствовавшие в файловой системе Minix, у нее был один серьезный недостаток — временная метка. Сейчас, когда каждый файл в Linux имеет три временные метки (доступа к файлу, изменения содержимого файла, изменения свойств и метаданных файла (например, разрешений)), файловая система ext поддерживала только одну временную метку.

Файловая система ext2

В январе 1993 года, менее чем через год после выхода ext, Реми Кард разрабатывает новую файловую систему — ext2.

В ext2 были расширены функциональные возможности ext:

увеличена производительность файловой системы;

данные файлов хранились в блоках данных одинаковой длины;

поддерживался максимальный размер файла в 2 тебибайта;

длина имени файла была ограничена 255 байтами (а не количеством символов, как раньше).

Высокая скорость работы ext2 объяснялась тем, что система не поддерживала механизм ведения логов (или «журналируемости»). С одной стороны, данный аспект можно отнести к преимуществу ext2, так как при работе с имеющими ограниченный ресурс использования накопителями (например, SSD-дисками или USB-устройствами), нет избыточных циклов перезаписи данных, следовательно, ресурс накопителя расходуется медленнее. С другой стороны, отсутствие системы ведения логов в ext2 часто приводило к двум очень неприятным проблемам:

Повреждение файлов, если в момент записи данных на диск отключалось питание или возникал сбой системы.

Потеря производительности из-за фрагментации данных: происходит, когда один файл разбивается на части (фрагментируется) и распределяется по нескольким местам на диске. В результате чтение и запись файлов занимают больше времени, что приводит к снижению производительности файловой системы.

Система ext2 использовалась по большей части до начала 2000-х годов, когда была представлена файловая система ext3.

Файловая система ext3

В ноябре 2001 года, благодаря усилиям программиста Стивена Твиди, вместе с релизом ядра Linux 2.4.15 увидела свет и новая файловая система — ext3.

Файловая система ext3 — это улучшенная версия файловой системы ext2, в которой появилась возможность ведения логов. Она, как и ext2, поддерживает файлы размером в 2 тебибайта, а имена файлов ограничены 255 байтами.

Благодаря логам, система сохраняет в специальном лог-файле (или «журнале») всю информацию об изменениях в данных, которые еще предстоит внести. В случае потери питания или сбоя системы, информация о файлах, хранящаяся в логах, может быть восстановлена в течение нескольких секунд, благодаря чему снижается риск повреждения или потери данных.

Ядро Linux поддерживает три уровня ведения логов:

Journal — состоит из записи метаданных и содержимого файлов в лог-файл до внесения изменений в основную файловую систему, тем самым обеспечивая наиболее полное логирование данных. Если случится какая-нибудь аварийная ситуация, то можно перечитать лог-файл и восстановить потерянную информацию. Недостатком данного уровня ведения логов является то, что он снижает производительность системы.

Ordered — процесс сохранения данных выполняется в определенном порядке: сначала в лог-файл записываются метаданные, затем содержимое файла записывается в основную файловую систему и уже тогда метаданные соединяются с основной файловой системой. В случае сбоя, основная файловая система не будет повреждена; риску повреждения подвергаются только те файлы, которые находятся во время сбоя непосредственно в процессе записи.

Writeback — уровень ведения лог-файла, при котором в него заносятся только метаданные, а содержимое файла записывается непосредственно в основную файловую систему. Из-за отсутствия синхронизации метаданных и содержимого файлов, в случае сбоя системы они, скорее всего, окажутся поврежденными.

Файловая система ext4

Файловая система ext4 была представлена в октябре 2008 года вместе с ядром Linux 2.6.28. Она поддерживает максимальный размер файла в 16 тебибайт и ограничивает максимальную длину имени файла 255 байтами.

Особенности файловой системы ext4

Давайте рассмотрим основной функционал файловой системы ext4:

Обратная совместимость. Файловая система ext4 поддерживает обратную совместимость с файловыми системами ext3 и ext2. Дополнительной функцией является автоматическое монтирование файловой системы ext3 в режиме ext3 с помощью драйвера ext4.

Улучшения распределения. Файловая система ext4 более эффективно распределяет блоки данных перед их записью на диск. Это повышает производительность как чтения, так и записи.

Расширение диапазона временных меток. Файловая система ext4 добавляет еще 408 лет к диапазону значений временных меток и поддерживает даты вплоть до 10 мая 2446 года. Также улучшилась точность временных меток — теперь они измеряются в наносекундах.

Экстенты (Последовательные блоки). Устаревшие версии файловой системы ext отслеживают каждый блок, который связан с хранением данных файла (данный подход называется методом «непрямого сопоставления»). Но этот процесс перестает быть эффективным, когда речь заходит о больших файлах, требующих большого количества блоков. Экстенты решили эту проблему: с их помощью уменьшается объем метаданных, необходимых для сопоставления блоков каждого файла. Система сохраняет адрес только первого и последнего блока некоторого довольно большого файла, сообщая таким образом, что данные находятся в следующих n блоках. Благодаря этому, файл, например, размером в 500 МБ, может храниться в единственном экстенте сопоставимого размера, а не быть разбитым на 128 000 4-килобайтных блоков, как при непрямом сопоставлении.

Многоблочное распределение. Особый механизм распределения блоков ищет свободные блоки, которые можно использовать для записи данных на диск. Файловая система ext4 задействует многоблочное распределение, позволяющее распределять несколько блоков всего лишь одним вызовом. Это уменьшает фрагментацию диска.

Отложенное распределение. Функция отложенного распределения выделяет блоки только при записи файла на диск. Благодаря этой функции кэш-память не заполняется ненужными данными, а производительность системы повышается.

Неограниченное количество подкаталогов. Ядро Linux версии 2.6.23 поддерживает неограниченное количество подкаталогов. Файловая система ext4 ввела древовидную структуру данных HTree, чтобы избежать снижения производительности. HTree представляет собой специализированную версию B-дерева.

Подсчет контрольных сумм. Файловая система ext4 использует подсчет контрольной суммы файлов. Данный механизм был введен для снижения риска повреждения файлов. Система ведения логов является наиболее используемой частью диска. Когда происходит сбой оборудования, блоки становятся непригодными для использования и происходит повреждение файлов. Используя подсчет контрольной суммы, система постоянно проверяет, не поврежден ли блок. Этот процесс также повышает производительность, поскольку сокращает время работы с лог-файлом.

Онлайн-дефрагментация. Фрагментация диска приводит к снижению производительности файловой системы, что было серьезной проблемой для ext2 и ext3. Файловая система ext4 поддерживает утилиту e4defrag, которая позволяет пользователям дефрагментировать отдельные файлы или всю файловую систему.

Ограничения файловой системы ext4

Хотя файловая система ext4 считается лучшей файловой системой для дистрибутивов Linux, есть несколько ограничений, которые следует учитывать в вашей дальнейшей работе:

Восстановление поврежденных данных. Файловая система ext4 не может обнаружить или восстановить поврежденные данные, уже записанные на диск.

Максимальный размер тома установлен в 1 эксбибайт. Однако файловая система не может обрабатывать более 100 тебибайт данных без значительной потери производительности и увеличения фрагментации диска.

Альтернативные файловые системы

Существует несколько альтернативных файловых систем, поддерживаемых ядром Linux.

XFS — это 64-разрядная файловая система, которая впервые была представлена в 1994 году и встроена в ядро Linux с 2001 года. XFS поддерживает максимальный размер файла в 8 эксбибайт и ограничивает длину имени файла 255 байтами. Она поддерживает ведение логов и, как и ext4, сохраняет изменения в лог-файле до того, как они будут зафиксированы в основной файловой системе. Это снижает вероятность повреждения файлов.

Основным недостатком этой системы является сложный процесс изменения размера существующей файловой системы XFS.

OpenZFS

OpenZFS — это платформа, которая объединяет функционал традиционных файловых систем и диспетчера томов. Впервые была представлена в 2013 году. OpenZFS поддерживает максимальный размер файла в 16 эксбибайт и ограничивает максимальную длину имени файла 255 символами. В качестве особенностей данной системы можно выделить защиту от повреждения данных, шифрование данных, поддержку накопителей увеличенного объема, копирование при записи и RAID-Z.

Основным недостатком OpenZFS является юридическая несовместимость между лицензиями CDDL (OpenZFS) и GPL (ядро Linux). Эта проблема решается путем компиляции и загрузки кода ZFS в ядро Linux.

Btrfs

Btrfs (сокр. от англ. «Btree file system») — это файловая система, которая была разработана компанией Oracle и выпущена вместе с ядром Linux 2.6.29 в 2009 году. Btrfs поддерживает максимальный размер файла в 16 эксбибайт и ограничивает максимальную длину имени файла 255 символами.

Некоторые особенности Btrfs включают в себя:

добавление и удаление блочных устройств в режиме онлайн;

настраиваемое для каждого файла или тома сжатие;

контрольные суммы и возможность создания файлов подкачки и разделов подкачки.

JFS (сокр. от англ. «Journaled File System») — это файловая система, которая была разработана компанией IBM для AIX Unix в 1990 году. Она является альтернативой файловой системе ext. Она также может быть использована вместо ext4 там, где требуется стабильность при небольшом количестве затрачиваемых ресурсов.

ReiserFS

ReiserFS — это альтернатива файловой системе ext3, которая обладает улучшенной производительностью и расширенным функционалом. Ранее, ReiserFS использовалась в качестве файловой системы по умолчанию в SUSE Linux. ReiserFS поддерживает динамическое изменение размеров файловой системы. К недостаткам можно отнести относительно низкую производительность.

Примечание: Такие файловые системы, как NTFS, FAT и HFS могут использоваться в Linux, но корневая файловая система Linux на них не устанавливается, поскольку они для этого не предназначены. Swap — это файл подкачки, служащий источником дополнительной памяти в тех случаях, когда для выполнения программы требуется больше оперативной памяти, чем имеется в компьютере, — он не является отдельной файловой системой.

Как узнать, какая у меня файловая система?

Способ №1: Использование команды df

Команда df отображает информацию об использовании дискового пространства файловой системы. Для указания того, что нам нужно вывести тип файловой системы, используйте следующую команду:

какие файловые системы поддерживает linux. Смотреть фото какие файловые системы поддерживает linux. Смотреть картинку какие файловые системы поддерживает linux. Картинка про какие файловые системы поддерживает linux. Фото какие файловые системы поддерживает linux

Как вы можете видеть, у меня используется файловая система ext4 (см. раздел /dev/sda1).

Примечание: Имена дисков в Linux расположены в алфавитном порядке. /dev/sda — это первый жесткий диск (основной), /dev/sdb — второй и т.д. Цифры относятся к разделам, поэтому /dev/sda1 — это первый раздел первого диска.

Способ №2: Использование команды fsck

Команда fsck применяется для проверки и, при необходимости, восстановления файловых систем Linux. При этом она также может отображать и тип файловой системы на указанных разделах диска, например:

какие файловые системы поддерживает linux. Смотреть фото какие файловые системы поддерживает linux. Смотреть картинку какие файловые системы поддерживает linux. Картинка про какие файловые системы поддерживает linux. Фото какие файловые системы поддерживает linux

Способ №3: Использование команды lsblk

какие файловые системы поддерживает linux. Смотреть фото какие файловые системы поддерживает linux. Смотреть картинку какие файловые системы поддерживает linux. Картинка про какие файловые системы поддерживает linux. Фото какие файловые системы поддерживает linux

Способ №4: Использование команды mount

Команда mount применяется для монтирования файловой системы в Linux. Её также можно использовать для монтирования ISO-образа, удаленной файловой системы Linux и многого другого. Чтобы узнать тип файловой системы, используйте следующую комбинацию:

какие файловые системы поддерживает linux. Смотреть фото какие файловые системы поддерживает linux. Смотреть картинку какие файловые системы поддерживает linux. Картинка про какие файловые системы поддерживает linux. Фото какие файловые системы поддерживает linux

Поделиться в социальных сетях:

Логи в Linux. Как найти и прочитать?

Комментариев: 2

Дополнение к ФС btrfs (пользуюсь ей уже почти год):

— поддержка RAID
И не только! Кроме RAID есть дедупликация данных, когда просто создается еще одна копия файла при его создании и в метаданные добавляется информация о том, что эта копия есть (в точную реализацию я не углублялся). Именно это делает систему почти не убиваемой, и если насильно пытаться ФС ломать, то она таки восстановиться, хотя и не на 100% если повредились оба экземпляра файлов.

На SSD редко встречается случай, когда дедупликации не происходит, потому как сам SSD делает ссылку на оригинал одинакового файла.

— бесплатные бекапы (резервные копии)
Можно создавать бекапы, которые ничего не весят до тех пор, пока в оригинале не появятся изменения (инкрементальные бекапы на уровне ФС!), при этом их можно настраивать

— подразделы (subvolume)
BTRFS дает возможность поделить ее на разные части, которые можно подключать к Linux с различными параметрами (сжатие и прочее) и делать бекапы для каждого из них (для этого удобно разбить систему на подразделы home, etc, usr или другие)

— клонирование файлов
Которое ничего не весит! Можно копировать файлы хоть до бесконечности, но они свободное место будет уменьшаться очень медленно, так как на уровне ФС происходит просто создание ссылки на файл (CoW)

— контрольные суммы и возможность создания файлов подкачки и разделов подкачки.

С первым согласен. А вот возможность создания файлов подкачки и разделов подкачки есть, но я сильно не рекомендую так поступать, скорее всего будут проблемы если делать подкачку на этой системе, самое лучшее — отдельный раздел swap.

Встретился с минусами, такими как неадекватный подсчет свободного места, если есть бекапы. Но на OpenSUSE я встретил самую лучшую поддержку этой ФС из коробки — тут тебе и автоматизация бекапов с удалением старых и больших при условии их ненужности, и выбор бекапов из меню загрузчика, и разбиение системы на подразделы, и баг со свободным местом починили, и в целом есть очень удобный yast для управления этой ФС

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *