какие физические величины равны при равномерном прямолинейном движении скорость и перемещение
Тест по физике Перемещение при прямолинейном равномерном движении 9 класс
Тест по физике Перемещение при прямолинейном равномерном движении для учащихся 9 класса. Тест состоит из 10 вопросов и предназначен для проверки знаний к главе Законы взаимодействия и движения тел.
1. Какое из ниже перечисленных тел движется равномерно и прямолинейно?
1) Экскурсионный автобус
2) Ребенок на качелях
3) Взлетающая ракета
4) Человек на движущемся эскалаторе
2. Какие физические величины равны при равномерном прямолинейном движении?
1) Скорость и перемещение
2) Пройденный путь и время движения
3) Пройденный путь и модуль вектора перемещения
4) Скорость и время движения
3. Автомобиль едет со скоростью 60 км/ч, а автобус — со скоростью 20 м/с. Сравните скорости этих тел.
1) У автобуса скорость больше
2) У автомобиля скорость больше
3) Их скорости равны
4) Среди ответов нет правильного
4. Мотоцикл едет со скоростью 54 км/ч, а грузовик — со скоростью 15 м/с. Сравните скорости этих тел.
1) У мотоцикла скорость больше
2) У грузовика скорость больше
3) Их скорости равны
4) Среди ответов нет правильного
5. Два лыжника преодолели одинаковую дистанцию 6 км за разное время. Первый затратил 20 мин, а второй 1500 с. Сравните скорости лыжников.
1) У первого скорость на 1 м/с больше
2) У первого скорость на 1 м/ с меньше
3) У первого скорость на 5 м/ с больше
4) У первого скорость на 5 м/с меньше
6. Два велосипедиста стартуют одновременно на дистанции 2,2 км. Скорость первого велосипедиста равна 10 м/с, второго — 11 м/с. На сколько секунд второй велосипедист опередит первого?
1) 10 с
2) 20 с
3) 30 с
4) 40 с
1) 0,5 м/с
2) 1 м/с
3) 1,5 м/с
4) 2 м/с
8. Тело движется вдоль оси ОХ. Проекция его скорости Vx(t) меняется по закону, приведенному на графике. Путь, пройденный телом за 2 с, равен
1) 10 м
2) 20 м
3) 40 м
4) 80 м
9. Тело движется вдоль оси ОХ. Проекция его скорости Vx(t) меняется по закону, приведенному на графике. Проекция перемещения тела за 2 с равна
10. Тело движется вдоль оси ОХ. Проекция его скорости Vx(t) меняется по закону, приведенному на графике. Путь, пройденный телом за 2 с, равен
Ответы на тест по физике Перемещение при прямолинейном равномерном движении
1-4, 2-3, 3-1, 4-3, 5-1, 6-2, 7-2, 8-2, 9-2, 10-4
Равномерное прямолинейное движение
1. Равномерное прямолинейное движение — движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Слова «любые равные» означают, что за каждый час, за каждую минуту, за каждые 30 минут, за каждую секунду, за каждую долю секунды тело совершает одинаковые перемещения.
Равномерное движение — идеализация, поскольку практически невозможно создать такие условия, чтобы движение тела было равномерным в течение достаточно большого промежутка времени. Реальное движение может лишь приближаться к равномерному движению с той или иной степенью точности.
2. Изменение положения тела в пространстве при равномерном движении может происходить с разной быстротой. Это свойство движения — его «быстрота» характеризуется физической величиной, называемой скоростью.
Скоростью равномерного прямолинейного движения называют векторную физическую величину, равную отношению перемещения ко времени, за которое это перемещение произошло.
Если за время \( t \) тело совершило перемещение \( \vec \) , то скорость его движения \( \vec >
3. Поскольку основной задачей механики является определение в любой момент времени положения тела, т.е. его координаты, необходимо записать уравнение зависимости координаты тела от времени при равномерном движении.
Полученная формула позволяет определить координату тела при равномерном движении в любой момент времени, если известны начальная координата и проекция скорости движения.
4. Зависимость координаты от времени можно представить графически.
Предположим, что тело движется из начала координат вдоль положительного направления оси ОХ с постоянной скоростью. Проекция скорости на ось ОХ равна 4 м/с. Уравнение движения в этом случае имеет вид: \( x \) = 4 м/с · \( t \) . Зависимость координаты от времени — линейная. Графиком такой зависимости является прямая линия, проходящая через начало координат (рис. 13).
Для того чтобы её построить, необходимо иметь две точки: одна из них \( t \) = 0 и \( x \) = 0, а другая \( t \) = 1 с, \( x \) = 4 м. На рисунке приведён график зависимости координаты от времени, соответствующий данному уравнению движения.
Если в начальный момент времени координата тела \( x_0 \) = 2 м, а проекция его скорости \( v_x \) = 4 м/с, то уравнение движения имеет вид: \( x \) = 2 м + 4 м/с · \( t \) . Это тоже линейная зависимость координаты от скорости, и её графиком является прямая линия, проходящая через точку, для которой \( t \) = 0, \( x \) = 2 м (рис. 14).
В том случае, если проекция скорости отрицательна, уравнение движения имеет вид: \( x \) = 2 м – 4 м/с · \( t \) . График зависимости координаты такого движения от времени представлен на рисунке 15.
Таким образом, движение тела может быть описано аналитически, т.е. с помощью уравнения движения (уравнения зависимости координаты тела от времени), и графически, т.е. с помощью графика зависимости координаты тела от времени.
График зависимости проекции скорости равномерного прямолинейного движения от времени представлен на рисунке 16.
5. Ниже приведён пример решения основной задачи кинематики — определения положения тела в некоторый момент времени.
Задача. Два автомобиля движутся навстречу друг другу равномерно и прямолинейно: один со скоростью 15 м/с, другой — со скоростью 12 м/с. Определите время и место встречи автомобилей, если в начальный момент времени расстояние между ними равно 270 м.
При решении задачи целесообразно придерживаться следующей последовательности действий:
Применим эту последовательность действий к приведённой выше задаче.
Автомобили можно считать материальными точками, поскольку расстояние между ними много больше их размеров и размерами автомобилей можно пренебречь
Система отсчёта связана с Землёй, ось \( Ox \) направлена в сторону движения первого тела, начало отсчёта координаты — т. \( O \) — положение первого тела в начальный момент времени.
Начальные условия: \( t \) = 0; \( x_ <01>\) = 0; \( x_ <02>\) = 270.
Уравнения для каждого тела с учётом начальных условий: \( x_1=v_1t \) ; \( x_2=l-v_2t \) . В месте встречи тел \( x_1=x_2 \) ; следовательно: \( v_1t=l-v_2t \) . Откуда \( t=\frac
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Чему равна проекция скорости равномерно движущегося автомобиля, если проекция его перемещения за 4 с равна 80 м?
1) 320 м/с
2) 80 м/с
3) 20 м/с
4) 0,05 м/с
2. Чему равен модуль перемещения мухи за 0,5 мин., если она летит со скоростью 5 м/с?
1) 0,25 м
2) 6 м
3) 10 м
4) 150 м
1) \( v_1=v_2 \)
2) \( v_1=2v_2 \)
3) \( 2v_1=v_2 \)
4) \( 1,2v_1=10v_2 \)
1) \( v_1=v_2 \)
2) \( v_1=2v_2 \)
3) \( 3v_1=v_2 \)
4) \( 2v_1=v_2 \)
5. На рисунке приведён график зависимости модуля скорости равномерного движения от времени. Модуль перемещения тела за 2 с равен
1) 20 м
2) 40 м
3) 80 м
4) 160 м
6. На рисунке приведён график зависимости пути, пройденного телом при равномерном движении от времени. Модуль скорости тела равен
1) 0,1 м/с
2) 10 м/с
3) 20 м/с
4) 40 м/с
7. На рисунке приведены графики зависимости пути от времени для трёх тел. Сравните значения скорости \( v_1 \) , \( v_2 \) и \( v_3 \) движения этих тел.
8. Какой из приведённых ниже графиков представляет собой график зависимости пути от времени при равномерном движении тела?
9. На рисунке приведён график зависимости координаты тела от времени. Чему равна координата тела в момент времени 6 с?
1) 9,8 м
2) 6 м
3) 4 м
4) 2 м
10. Уравнение движения тела, соответствующее приведённому в задаче 9 графику, имеет вид
1) \( x=1t \) (м)
2) \( x=2+3t \) (м)
3) \( x=2-1t \) (м)
4) \( x=4+2t \) (м)
11. Установите соответствие между величинами в левом столбце и зависимостью значения величины от выбора системы отсчёта в правом столбце. В таблице под номером элемента знаний левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.
ВЕЛИЧИНА
A) перемещение
Б) время
B) скорость
ЗАВИСИМОСТЬ ОТ ВЫБОРА СИСТЕМЫ ОТСЧЁТА
1) зависит
2) не зависит
12. На рисунке приведён график зависимости координаты тела от времени. Какие выводы можно сделать из анализа графика? Укажите два правильных ответа.
1) тело двигалось все время в одну сторону
2) в течение четырёх секунд модуль скорости тела уменьшался, а затем увеличивался
3) проекция скорости тела все время была положительной
4) проекция скорости тела в течение четырёх секунд была положительной, а затем — отрицательной
5) в момент времени 4 с тело остановилось
Часть 2
13. Два автомобиля движутся друг за другом равномерно и прямолинейно: один со скоростью 20 м/с, другой — со скоростью 15 м/с. Через какое время второй автомобиль догонит первый, если в начальный момент времени расстояние между ними равно 100 м?
Кинематика. Равномерное движение.
Если тело за любые равные промежутки времени проходит равные пути, его движение называется равномерным.
Равномерное движение встречается довольно редко. Например, почти равномерно движется Земля вокруг Солнца, проходя за год один оборот.
При равномерноем движении скорость не изменяется:
Равномерное движение происходит как по прямолинейной, так и по криволинейной траектории.
Равномерное движение тела описывается уравнением:
где s – путь, пройденный телом от некоторой точки, принятой за начало отсчета, t – время тела в пути, s0 – значение s в начальный момент времени t = 0.
Прямолинейным равномерным движением называют движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Скорость прямолинейного равномерного движения – величина постоянная. Определяется как отношение перемещения точки к промежутку времени, в течение которого это перемещение произошло:
Модуль этой скорости – это перемещение тела, совершаемое за единицу времени.
Скоростью равномерного прямолинейного движении называют величину, равную отношению перемещения тела за любой промежуток времени к значению этого промежутка:
Перемещение при равномерном прямолинейном движении (по оси Х) можно рассчитать по формуле:
где υx – проекция скорости на ось Х, откуда закон равномерного прямолинейного движения будет иметь вид:
Равномерное прямолинейное движение. Скорость
Урок 3. Подготовка к ЕГЭ по физике. Часть 1. Механика.
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Равномерное прямолинейное движение. Скорость»
В прошлой теме говорилось о механическом движении, которое представляет собой изменение положения тел (или частей одного и того же тела) относительно друг друга в пространстве с течением времени.
Для описания механического движения необходимо выбрать тело отсчета, то есть тело или группу тел, которое в данном случае принимают за неподвижное и относительно которого рассматривается движение других тел, и связать с ним систему координат.
Так же было установлено, что для определения положения тела в какой-то момент времени, нужно знать вектор его перемещения. Действительно, для того, чтобы сказать, как переместилось тело, необходимо знать не только расстояние от начальной точки, но и направление, в котором тело переместилось.
Также довольно важной характеристикой любого движения является скорость. В данной теме разговор пойдёт о скорости при равномерном прямолинейном движении тела. Равномерное прямолинейное движение — это самый простой вид движения. При таком движении тело двигается только по прямой и за любые равные промежутки времени совершает равные перемещения. То есть это движение с постоянной по модулю и направлению скоростью.
Обратите внимание на то, что всегда необходимо задавать направление скорости. В прошлых темах было показано, что выбор системы отсчёта имеет решающее значение, а в разных системах отсчета скорости могут быть направлены по-разному.
Вообще скоростью называется физическая векторная величина, численно равная отношению перемещения к промежутку времени, за который оно произошло, и направленная вдоль перемещения. Иными словами, это производная радиус-вектора точки по времени.
Уравнение скорости для равномерного прямолинейного движения имеет вид
По формулам, написанным в векторном виде, вычисления вести нельзя. Ведь векторная величина имеет не только численное значение, но и направление. При вычислениях удобно пользоваться формулами, в которые входят не векторы, а их проекции на оси координат, так как над проекциями можно производить алгебраические действия. И так, как же рассчитать проекцию скорости? Рассмотрим простой пример. Пусть в начальный момент времени координата тела была равна x0, а в момент времени t – x.
Из записанной формулы, воспользовавшись известными математическими приемами, можно получить уравнение зависимости координаты тела от времени.
Полученное уравнение называют кинематическим уравнением равномерного движения.
Известно, что разность между начальной и конечной координатой тела есть ни что иное, как проекция перемещения на выбранную координатную ось.
Воспользуемся основным свойством пропорции, чтобы выразить проекцию перемещения.
Полученное уравнение называется уравнением перемещения.
При равномерном прямолинейном движении направление вектора скорости не изменяется, а значит путь и модуль проекции перемещения тела равны. На основании этого, получим уравнение пути при равномерном прямолинейном движении тела.
Обратите внимание, что проекция скорости тела взята под знак модуля. Это объясняется тем, что путь не может быть отрицательным, а вот знак проекции вектора скорости, как и проекции перемещения, будет зависеть от выбора направления координатной оси.
Рассмотрим графические зависимости скорости, координаты, пути и перемещения от времени при равномерном прямолинейном движении. При равномерном движении скорость постоянна, поэтому график зависимости скорости от времени будет представлять собой прямую линию, параллельную оси времени. Иными словами, при равномерном движении скорость не зависит от времени, так как является величиной постоянной.
Из графика скорости видно, что проекция скорости тел для оранжевой и зелёной прямых больше нуля, так как они располагаются выше оси времени. В случае с синей прямой, наблюдается противоположная картина: значит, тело двигается в обратном направлении, поэтому проекция скорости отрицательная.
Если рассмотреть конечный промежуток времени, то получим ограниченную область, имеющую форму прямоугольника. Площадь этого прямоугольника будет являться ничем иным, как изменением координаты «Икс», а, следовательно, пройденным телом путем. Действительно, ведь длина одной из сторон прямоугольника — это скорость, а длина другой — это промежуток времени.
Следующим рассмотрим график зависимости проекции перемещения от времени. Для этого еще раз вспомним уравнение перемещения:
Из уравнения видим, что проекция перемещения линейно зависит от времени. Следовательно, при равномерном движении графиком перемещения является прямая линия.
Направление и угол наклона графика зависимости проекции перемещения к оси времени будет зависеть от проекции вектора скорости на координатную ось.
Из рисунка видно, что тело 1 и тело 3 движутся в положительном направлении оси х, при этом скорость первого тела больше скорости третьего.
Тело 2 движется в направлении, противоположном направлению оси х, поэтому график перемещения располагается под осью времени.
Рассмотрим зависимость пройденного пути от времени.
Для равномерного движения график зависимости пути от времени представляет собой прямую линию, так как зависимость пути от времени, как и в случае с перемещением тела, линейная. Однако графики зависимости пути от времени для всех трех тел располагаются выше оси времени. Это объясняется тем, что пройденный путь — это длина траектории, а, следовательно, путь не может быть отрицательным.
Наклон графика пути к оси времени, как и в случае с графиком перемещения, зависит от модуля скорости: чем больше скорость движения тела, тем больший угол наклона.
Рассмотрим графики зависимости координаты от времени (их еще называют графиками движения).
На рисунке представлены три прямые, каждая из которых описывается одним и тем же уравнением. Точки пересечения этих графиков с осью x соответствуют значениям начального положения. Как видно из графика, для первого тела x0 0.
Так же на графике хорошо видно, что проекции скоростей для первого и третьего тел больше нуля. Действительно, ведь значение координаты x увеличивается с течением времени. Значит, тело двигается в направлении, совпадающем с положительным направлением оси икс. Это соответствует положительному перемещению, а, значит, положительной проекции скорости.
В случае с синей прямой, наблюдается противоположная картина: значит второе тело двигается в обратном направлении, поэтому его проекция скорости отрицательная.
Кроме того, из графиков можно судить о модуле скорости. Очевидно, что тело, движение которого описано оранжевой прямой, двигается быстрее остальных, так как за один и тот же промежуток времени оно проходит большее расстояние. Используя этот же аргумент, можно сказать, что модуль скорости второго тела больше, чем модуль скорости тела номер три.
При этом, как и в случае с перемещением, угол наклона графика к оси времени зависит от скорости тела. Из этих наблюдений можно сделать следующий вывод: чем больше угол между прямой и осью времени, тем больше скорость движения тела.
В случае прямолинейного равномерного движения тела графики движения дают полное решение задачи механики, так как они позволяют найти положение тела в любой момент времени, в том числе и в моменты времени, предшествовавшие начальному моменту (если предположить, что тело двигалось с такой же скоростью и до начала отсчета времени).
С помощью графика движения можно определить:
1) координаты тела в любой момент времени;
2) путь, пройденный телом за некоторый промежуток времени;
3) время, за которое пройден какой-то путь;
4) кратчайшее расстояние между телами в любой момент времени;
5) момент и место встречи тел;
Необходимо помнить, что график зависимости координаты тела от времени не следует путать с траекторией движения тела — прямой, во всех точках которой тело побывало при своем движении.
Очень часто наблюдаются довольно сложные типы движения, когда тело движется относительно системы отсчёта, которая в тоже время движется относительно Земли. На прошлых уроках говорилось о том, что любое механическое движение относительно, то есть в разных системах отсчета будут различны вид траектории, значение скорости, перемещения и других физических величин.
Было установлено, что в случае, когда тело участвует одновременно в нескольких движениях, результирующее перемещение тела равно векторной сумме перемещений, совершаемых им в каждом из движений.
В рассматриваемом примере очевидно, что все перемещения произошли за один и тот же промежуток времени. Разделив каждое перемещение в уравнении на этот промежуток времени, получим классический закон сложения скоростей, установленный Галилеем: скорость тела относительно неподвижной системы отсчета равна геометрической сумме скорости тела относительно подвижной системы отсчета и скорости самой подвижной системы отсчета относительно неподвижной.
Здесь следует помнить, что данный закон справедлив и для неравномерного движения. В этом случае вектора скорости — это мгновенные скорости, то есть скорости в данный момент времени или в данной точке траектории.
В данной теме были повторены некоторые важные понятия кинематики. Поговорили о равномерном прямолинейном движении тел и способах описания такого движения. Еще раз затронули относительность движения и вывели классический закон сложения скоростей.