какие способы раскрытия неопределенностей
Основные неопределенности и способы их раскрытия
При вычислении пределов зачастую появляются выражения, значение которых не определено. Такие выражения называют неопределенностями.
Все другие выражения не являются неопределенностями и принимают какое-то конкретное конечное или бесконечное значение.
Раскрытие неопределенностей
Для раскрытия неопределенностей используют следующее:
Основные пределы
Основные неопределенности и способы их раскрытия не по зубам? Тебе ответит эксперт через 10 минут!
Решение. Получим неопределенность и для решения предела воспользуемся вторым замечательным пределом.
3. Предел частного многочленов на бесконечности:
5. Пределы иррациональных выражений:
а) чтобы найти предел дроби, содержащей иррациональное выражение в случае, когда предел и числителя, и знаменателя равен нулю, надо перенести иррациональность из числителя в знаменатель, или из знаменателя в числитель и после этого сделать необходимые упрощения. Иррациональность переносится с помощью домножения и числителя и знаменателя дроби на выражение, сопряженное к иррациональности.
Решение. Получим неопределенность и домножим числитель и знаменатель на выражение, сопряженное к иррациональности.
б) Вычисление пределов, содержащих разность корней:
Решение. Получим неопределенность и домножим и поделим выражение на сопряженное.
Решение. Получим неопределенность, разложим на множители числитель и знаменатель, сократим одинаковые элементы.
Основные неопределенности пределов и их раскрытие
В предыдущей статье мы рассказывали, как правильно вычислять пределы элементарных функций. Если же мы возьмем более сложные функции, то у нас в расчетах появятся выражения с неопределенным значением. Они и называются неопределенностями.
Выделяют следующие основные виды неопределенностей:
Мы перечислили все основные неопределенности. Другие выражения в различных условиях могут принимать конечные или бесконечные значения, следовательно, они не могут считаться неопределенностями.
Раскрытие неопределенностей
Раскрыть неопределенность можно:
С помощью замечательных пределов;
С помощью правила Лопиталя;
Заменив одно бесконечно малое выражение на эквивалентное ему выражение (как правило, это действие выполняется с помощью таблицы бесконечно малых выражений).
Всю информацию, представленную выше, можно наглядно представить в виде таблицы. С левой стороны в ней приводится вид неопределенности, с правой – подходящий метод ее раскрытия (нахождения предела). Этой таблицей очень удобно пользоваться при расчетах, связанных с нахождением пределов.
Неопределенность | Метод раскрытия неопределенности |
1. Деление 0 на 0 | Преобразование и последующее упрощение выражения. Если выражение имеет вид sin ( k x ) k x или k x sin ( k x ) то нужно использовать первый замечательный предел. Если такое решение не подходит, пользуемся правилом Лопиталя или таблицей эквивалентных бесконечно малых выражений |
2. Деление бесконечности на бесконечность | Преобразование и упрощение выражения либо использование правила Лопиталя |
3. Умножение нуля на бесконечность или нахождение разности между двумя бесконечностями | Преобразование в » open=» 0 0 или » open=» ∞ ∞ с последующим применением правила Лопиталя |
4. Единица в степени бесконечности | Использование второго замечательного предела |
5. Возведение нуля или бесконечности в нулевую степень | Логарифмирование выражения с применением равенства lim x → x 0 ln ( f ( x ) ) = ln lim x → x 0 f ( x ) |
Разберем пару задач. Эти примеры довольно простые: в них ответ получается сразу после подстановки значений и неопределенности при этом не возникает.
Решение
Выполняем подстановку значений и получаем ответ.
Решение
Значит, мы можем преобразовать предел в следующее выражение:
Далее мы приведем примеры решений задач на раскрытие неопределенностей с использованием метода преобразования. На практике выполнять это приходится довольно часто.
Решение
Выполняем подстановку значений.
В итоге у нас получилась неопределенность. Используем таблицу выше, чтобы выбрать метод решения. Там указано, что нужно выполнить упрощение выражения.
Как мы видим, упрощение привело к раскрытию неопределенности.
Решение
Подставляем значение и получаем запись следующего вида.
Домножение знаменателя выполняется для того, чтобы потом можно было воспользоваться формулой сокращенного умножения (разность квадратов) и выполнить сокращение.
Как мы видим, в результате этих действий нам удалось избавиться от неопределенности.
Важно отметить, что при решении подобных задач подход с использованием домножения используется очень часто, так что советуем запомнить, как именно это делается.
Решение
Выполняем разложение числителя на множители:
Теперь делаем то же самое со знаменателем:
Мы получили предел следующего вида:
Как мы видим, в ходе преобразования нам удалось избавиться от неопределенности.
Решение
Решение
lim x → ∞ x 8 + 11 3 x 2 + x + 1 = » open=» ∞ ∞
lim x → ∞ x 8 + 11 3 x 2 + x + 1 = » open=» ∞ ∞ = lim x → ∞ x 8 + 11 3 x 8 3 x 2 + x + 1 x 8 3 = = lim x → ∞ 1 + 11 x 8 3 1 x 2 3 + 1 x 5 3 + 1 x 8 3 = 1 + 11 ∞ 3 1 ∞ + 1 ∞ + 1 ∞ = 1 + 0 3 0 + 0 + 0 = 1 0 = ∞
Решение
Выводы
В случае с пределом отношений возможны три основных варианта:
Если степень числителя равна степени знаменателя, то предел будет равен отношению коэффициентов при старших степенях.
Если степень числителя будет больше степени знаменателя, то предел будет равен бесконечности.
Если степень числителя меньше степени знаменателя, то предел будет равен нулю.
Другие методы раскрытия неопределенностей мы разберем в отдельных статьях.
Раскрытие неопределенностей вида
Пусть
Пример №1
Вычислить предел
Решение:
Числитель и знаменатель дроби при х=-2 обращаются в нуль. Имеем неопределенность вида
Для ее раскрытия разложим числитель и знаменатель дроби на множители, а затем применим теоремы о пределах частного, суммы и произведения:
Пример №2
Вычислить предел
Решение:
Имеем неопределенность вида Избавимся от иррациональности в числителе, умножив и разделив дробь на сопряженное к числителю выражение
Получим:
В остальных случаях для раскрытия неопределенности вида используют первый замечательный предел или эквивалентные бесконечно малые функции.
Раскрытие неопределенностей вида
Пусть
Пример №3
Вычислить предел если 1) а=2; 2) а=1; 3) а=4.
Решение:
Замечание. Для раскрытия неопределенностей вида используют также правило Лопиталя.
Раскрытие неопределенностей вида
Неопределенное выражение вида преобразуется к неопределенности вида
Методику раскрытия такой неопределенности покажем на примерах.
Пример №4
Вычислить предел
Решение:
Имеем неопределенность вида которая преобразуется к неопределенности вида
приведением функции к общему знаменателю:
Пример №5
Вычислить предел последовательности
Решение:
Для раскрытия неопределенности вида умножим и разделим выражение в скобках на сопряженное:
Получили неопределенность вида Раскроем ее, разделив все члены полученного выражения на n:
Раскрытие неопределенностей вида
Неопределенное выражение вида получается при нахождении пределов вида
где
и сводится к неопределенности вида
следующим образом:
Замечание. При вычислении пределов показательно-степенных функций могут получиться неопределенности вида
для раскрытия которых используют второй замечательный предел или правило Лопиталя.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Неопределенности пределов
Вы будете перенаправлены на Автор24
Очень часто при вычислении пределов функций в какой-либо точке в результате упрощения получаются выражения, не несущие какой-либо информации об этой функции. Такие выражения носят название неопределённостей.
Виды неопредлённостей
$\frac<0><0>$ — деление нуля на нуль;
$\frac<\infty><\infty>$ — деление бесконечности на бесконечность;
$0 \cdot \infty$ — умножение нуля на бесконечность;
$1^<\infty>$ — единица, возведённая в степень бесконечности;
$(\infty-\infty$) — разность бесконечностей;
$0^0$ — нуль в нулевой степени;
$\infty^0$ — бесконечность в степени 0.
Раскрытие неопределенностей
Сам по себе термин «неопределённость» не означает, что предела не существует. Во многих случаях для того чтобы прийти к конечному ответу можно использовать упрощения, правило Лопиталя и другие способы раскрытия математических неопределенностей.
Наиболее универсальным способом для раскрытия неопределённостей является правило Лопиталя, но к нему не всегда возможно прибегнуть. Как было упомянуто выше, его возможно применять лишь к двум видам неопределённостей, тогда как остальные необходимо для начала привести к одной из форм основных неопределённостей.
В целом, при раскрытии неопредлённостей возможно использовать различные тождественные преобразования, замечательные пределы и замену одного бесконечно малого выражения на другое, подобное ему.
Готовые работы на аналогичную тему
Рассмотрим подробнее замену бесконечно малых выражений на аналогичное.
Таблица эквивалентных бесконечно малых выражений
Таблица эквивалентных бесконечно малых функций:
Какие способы раскрытия неопределенностей
Пусть заданы две функции \(f\left( x \right)\) и \(g\left( x \right)\), такие, что \[\lim\limits_
Пусть две функции \(f\left( x \right)\) и \(g\left( x \right)\) обладают свойством \[\lim\limits_
Неопределенности этих типов сводятся к рассмотренным выше неопределенностям типа \(\large\frac<0><0>\normalsize\) и \(\large\frac<\infty><\infty>\normalsize\).
0>