какие стороны четырехугольника называются соседними какие противолежащими
Какие стороны четырёхугольника называются соседними, а какие противолежащими?
Четырехугольником называется фигура, которая состоит из четырех точек и четырех последовательно соединяющих их отрезков. При этом никакие три из данных точек не лежат на одной прямой, а соединяющие их отрезки не пересекаются. Четырехугольники
Четырехугольники бывают выпуклые (как ABCD) и
невыпуклые (A1B1C1D1).
Виды четырёхугольников
Параллелограмм
Параллелограммом называется четырехугольник, у которого противолежащие стороны попарно параллельны.
Свойства параллелограммаСвойства параллелограмма
* противолежащие стороны равны;
* противоположные углы равны;
* диагонали точкой пересечения делятся пополам;
* сумма углов, прилежащих к одной стороне, равна 180°;
* сумма квадратов диагоналей равна сумме квадратов всех сторон:
d12+d22=2(a2+b2).
Признаки параллелограмма
Четырехугольник является параллелограммом, если:
1. Две его противоположные стороны равны и параллельны.
2. Противоположные стороны попарно равны.
3. Противоположные углы попарно равны.
4. Диагонали точкой пересечения делятся пополам.
Трапецией называется четырехугольник, у которого две противолежащие стороны параллельны, а две другие непараллельны. Трапеция
Параллельные стороны трапеции называются ее основаниями, а непараллельные стороны — боковыми сторонами. Отрезок, соединяющий середины боковых сторон, называется средней линией.
Трапеция, один из углов которой прямой, называется прямоугольной.
Свойства трапеции
* ее средняя линия параллельна основаниям и равна их полусумме;
* если трапеция равнобокая, то ее диагонали равны и углы при основании равны;
* если трапеция равнобокая, то около нее можно описать окружность;
* если сумма оснований равна сумме боковых сторон, то в нее можно вписать окружность.
Четырехугольник является трапецией, если его параллельные стороны не равны
Прямоугольник
Прямоугольником называется параллелограмм, у которого все углы прямые.
Свойства прямоугольникаСвойства прямоугольника
* все свойства параллелограмма;
* диагонали равны.
Параллелограмм является прямоугольником, если:
1. Один из его углов прямой.
2. Его диагонали равны.
Ромбом называется параллелограмм, у которого все стороны равны.
Свойства ромбаСвойства ромба
* все свойства параллелограмма;
* диагонали перпендикулярны;
* диагонали являются биссектрисами его углов.
1. Параллелограмм является ромбом, если:
2. Две его смежные стороны равны.
3. Его диагонали перпендикулярны.
4. Одна из диагоналей является биссектрисой его угла.
Квадратом называется прямоугольник, у которого все стороны равны.
Свойства квадратаСвойства квадрата
* все углы квадрата прямые;
* диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.
Прямоугольник является квадратом, если он обладает каким-нибудь признаком ромба.
Геометрия. Урок 4. Четырехугольники
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Определение четырехугольника
Четырехугольником называется фигура, которая состоит из четырех точек (вершин) и четырех отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться.
Выпуклые четырехугольники
В задачах ОГЭ встречаются выпуклые четырехугольники, поэтому подробно изучим их.
Диагонали выпуклого четырехугольника пересекаются в одной точке.
Площадь произвольного выпуклого четырехугольника можно найти по формуле:
S = 1 2 d 1 d 2 ⋅ sin φ
где d 1 и d 2 – диагонали четырехугольника, φ – угол между диагоналями (острый или тупой – не важно).
Рассмотрим более подробно некоторые виды выпуклых четырехугольников.
Класс параллелограммов : параллелограмм, ромб, прямоугольник, квадрат.
Класс трапеций : произвольная трапеция, прямоугольная трапеция, равнобокая (равнобедренная) трапеция.
Параллелограмм
Параллелограмм – четырехугольник, у которого противолежащие стороны попарно параллельны.
Свойства параллелограмма:
Площадь параллелограмма можно найти по трём формулам.
Как произведение стороны и высоты, проведенной к ней.
Поскольку стороны имеют разные длины, то высоты, которые к ним проведены, тоже будут иметь разные длины.
Как произведение двух смежных (соседних) сторон на синус угла между ними.
Как полупроизведение диагоналей на синус угла между ними.
Ромб – параллелограмм, у которого все стороны равны.
Свойства ромба:
Площадь ромба можно найти по трём формулам.
Как произведение стороны ромба на высоту ромба.
Как квадрат стороны ромба на синус угла между двумя сторонами.
Как полупроизведение диагоналей ромба.
Прямоугольник
Свойства прямоугольника:
Площадь прямоугольника можно найти по двум формулам:
Как произведение двух смежных (соседних) сторон прямоугольника.
Как полупроизведение диагоналей (так как они обе равны, обозначим их буквой d ) на синус угла между ними.
Квадрат
Квадрат – прямоугольник, у которого все стороны равны.
Свойства квадрата:
Площадь квадрата можно вычислить по двум формулам:
Как квадрат стороны.
Как полупроизведение квадратов диагоналей (диагонали в квадрате равны).
Трапеция
Трапеция – это четырехугольник, у которого две стороны параллельны, а две другие нет.
Свойства трапеции:
Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.
Средняя линия параллельна основаниям. Её длина находится по формуле: m = a + b 2
Площадь трапеции можно найти по двум формулам:
Как полусумму оснований на высоту. Поскольку полусумма оснований есть средняя линия трапеции, можно найти площадь трапеции как произведение средней линии на высоту.
Как полупроизведение диагоналей на синус угла между ними.
Виды трапеций
Прямоугольная трапеция – трапеция, у которой два угла прямые.
Равнобокая (равнобедренная) трапеция – трапеция, у которой боковые стороны равны.
Свойство равнобокой трапеции: углы при основании равны
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с четырехугольниками
Какие стороны четырехугольника называются соседними какие противолежащими
Четырехугольник — фигура, состоящая из четырех точек и четырех отрезков,последовательно их соединяющих; причем ни одна из трех данных точек не лежит на одной прямой, а отрезки, соединяющие их, не пересекаются.
Соседние вершины — вершины четырехугольника, являющиеся концами одной из его сторон.
Противолежащие вершины — несоседние вершины.
Соседние стороны — стороны выходящие из одной вершины. Противолежащие стороны — несоседние стороны.
Диагональ четырехугольника — отрезок, соединяющий противолежащие вершины четырехугольника.
Периметр четырехугольника — сумма длин всех сторон.
Выпуклый четырехугoльник — четырехугольник, лежащий в одной полуплоскости относительно прямой,содержащей его сторону.
Внешний угол четырехугольника — угол,смежный с углом четырехугольника.
Свойства углов и сторон четырехугольника
Свойства углов
1. Сумма углов четырехугольника равна 360°.
2. Сумма внешних углов четырехугольника, взятых по одному при каждой вершине, равна 360°.
Свойства сторон
1. Каждая сторона четырехугольника меньше суммы всех его других сторон.
2. Сумма диагоналей меньше его периметра.
Виды четырехугольников
Конспекты по четырехугольникам:
Это конспект по теме «Четырехугольники и его свойства». Выберите дальнейшие действия:
Презентация. Четырёхугольник и его элементы
Ищем педагогов в команду «Инфоурок»
Описание презентации по отдельным слайдам:
ЧЕТЫРЕХУГОЛЬНИК И ЕГО ЭЛЕМЕНТЫ
Рассмотрим фигуру, состоящую из четырех точек A,B,C,D A B C D и четырех отрезков AB, BC, CD, DA, таких, что никакие два соседних отрезка не лежат на одной прямой и никакие два несоседних отрезка не имеют общих точек Фигура, образованная этими отрезками, ограничивает часть плоскости. Эту часть плоскости называют ЧЕТЫРЕХУГОЛЬНИКОМ Вершины четырехугольника Стороны четырехугольника
Задание. Среди фигур, изображенных на рисунке, укажите четырехугольники.
Стороны четырехугольника, являющиеся соседними отрезками, называются соседними сторонами четырехугольника Вершины четырехугольника, являющиеся концами одной стороны, называют соседними вершинами четырехугольника Стороны четырехугольника, не являющиеся соседними, называют противолежащими сторонами четырехугольника Несоседние вершины четырехугольника, называют противолежащими вершинами четырехугольника Отрезок, соединяющий противолежащие вершины четырехугольника, называют диагональю четырехугольника
Задание. 1.Какие вершины четырехугольника являются соседними, противолежащими? 2.Какие стороны четырехугольника являются соседними, противолежащими?
Укажите: 1.вершины четырехугольника; Задание. Назовите четыре каких-нибудь обозначения четырехугольника. 2.стороны четырехугольника; 3.пары соседних вершин; 4.пары противолежащих вершин; 5.пары соседних сторон; 6.пары противолежащих сторон.
Углы ABC,BCD,CDA,DAB называют углами четырехугольника ABCD В этом четырехугольнике все они меньше развернутого угла. Такой четырехугольник называют выпуклым. В четырехугольнике ABCD ˪ABC больше развернутого. Такой четырехугольник не является выпуклым.
Задание. Среди четырехугольников, изображенных на рисунке, назовите выпуклые.
Теорема. Сумма углов четырехугольника равна 360º Дано: АBCD – четырехугольник Доказать: ˪А+˪В+˪С+˪D=360º Доказательство: Диагональ BD разбивает четырехугольник на два треугольника. Сумма углов треугольника равна 180°. Сумма углов четырехугольника ABCD равна сумме углов треугольников ABD и CBD. Значит, ˪А+˪В+˪С+˪D=360º Теорема доказана
Задание. Чему равен четвертый угол четырехугольника, если три его угла равны 78º, 89º и 93º? 100º Задание. Найдите углы четырехугольника, если они равны между собой. 90º
Следствие. В четырехугольнике только один из углов может быть больше развернутого Длина любой стороны четырехугольника меньше суммы длин трех остальных его сторон. Рассмотрим произвольный четырехугольник ABCD Проведем диагональ AC. Применяя неравенство треугольника для сторон AB и AC соответственно треугольников ABC и ADC, получаем неравенства: Решение..
Задача. Может ли у четырехугольника быть: три прямых угла и один острый; три прямых угла и один тупой; четыре прямых угла; четыре острых угла; два прямых и два тупых угла; два прямых угла, один острый и один тупой? Задача. Могут ли стороны четырехугольника быть равными: 2 дм, 3 дм, 4 дм, 9 дм; 2 дм, 3 дм, 4 дм, 10 дм?
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Номер материала: ДБ-759146
Международная дистанционная олимпиада Осень 2021
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Фальков поручил проверить знания студентов после нерабочих дней
Время чтения: 1 минута
Школьников не планируют переводить на удаленку после каникул
Время чтения: 1 минута
Большинство московских родителей поддерживают экспресс-тестирование на ковид в школах
Время чтения: 1 минута
Минобразования Кузбасса рекомендовало техникумам и школам уйти на каникулы до 7 ноября
Время чтения: 1 минута
В школе в Пермском крае произошла стрельба
Время чтения: 1 минута
Минпросвещения планирует прекратить прием в колледжи по 43 профессиям
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Презентация по геометрии «Четырёхугольники»
Ищем педагогов в команду «Инфоурок»
Описание презентации по отдельным слайдам:
ЧЕТЫРЕХУГОЛЬНИК И ЕГО ЭЛЕМЕНТЫ
Рассмотрим фигуру, состоящую из четырех точек A,B,C,D A B C D и четырех отрезков AB, BC, CD, DA, таких, что никакие два соседних отрезка не лежат на одной прямой и никакие два несоседних отрезка не имеют общих точек. Фигура, образованная этими отрезками, ограничивает часть плоскости. Эту часть плоскости называют ЧЕТЫРЕХУГОЛЬНИКОМ Вершины четырехугольника Стороны четырехугольника
Задание. Среди фигур, изображенных на рисунке, укажите четырехугольники.
Стороны четырехугольника, являющиеся соседними отрезками, называются соседними сторонами четырехугольника Вершины четырехугольника, являющиеся концами одной стороны, называют соседними вершинами четырехугольника Стороны четырехугольника, не являющиеся соседними, называют противолежащими сторонами четырехугольника Несоседние вершины четырехугольника, называют противолежащими вершинами четырехугольника Отрезок, соединяющий противолежащие вершины четырехугольника, называют диагональю четырехугольника
Задание. 1.Какие вершины четырехугольника являются соседними, противолежащими? 2.Какие стороны четырехугольника являются соседними, противолежащими?
Укажите: 1.вершины четырехугольника; Задание. Назовите четыре каких-нибудь обозначения четырехугольника. 2.стороны четырехугольника; 3.пары соседних вершин; 4.пары противолежащих вершин; 5.пары соседних сторон; 6.пары противолежащих сторон.
Углы ABC,BCD,CDA,DAB называют углами четырехугольника ABCD В этом четырехугольнике все они меньше развернутого угла. Такой четырехугольник называют выпуклым. В четырехугольнике ABCD ˪ABC больше развернутого. Такой четырехугольник не является выпуклым.
Задание. Среди четырехугольников, изображенных на рисунке, назовите выпуклые и вогнутые.
Теорема. Сумма углов четырехугольника равна 360º Дано: АBCD – четырехугольник Доказать: ˪А+˪В+˪С+˪D=360º Доказательство: Диагональ BD разбивает четырехугольник на два треугольника. Сумма углов треугольника равна 180°. Сумма углов четырехугольника ABCD равна сумме углов треугольников ABD и CBD. Значит, ˪А+˪В+˪С+˪D=360º Теорема доказана
Задача. Может ли у четырехугольника быть: три прямых угла и один острый; три прямых угла и один тупой; четыре прямых угла; четыре острых угла; два прямых и два тупых угла; два прямых угла, один острый и один тупой? Задача. Могут ли стороны четырехугольника быть равными: 2 дм, 3 дм, 4 дм, 9 дм; 2 дм, 3 дм, 4 дм, 10 дм?
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Номер материала: ДБ-1233529
Международная дистанционная олимпиада Осень 2021
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Школьников не планируют переводить на удаленку после каникул
Время чтения: 1 минута
Минпросвещения планирует прекратить прием в колледжи по 43 профессиям
Время чтения: 1 минута
В школе в Пермском крае произошла стрельба
Время чтения: 1 минута
Большинство московских родителей поддерживают экспресс-тестирование на ковид в школах
Время чтения: 1 минута
Минобразования Кузбасса рекомендовало техникумам и школам уйти на каникулы до 7 ноября
Время чтения: 1 минута
В России запустили «Школу общественной дипломатии» для малочисленных народов
Время чтения: 2 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.