какие существуют линии спектров излучения

Какие существуют линии спектров излучения

Виды спектров

Спектральный состав излучения веществ весьма разнообразен.
Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три типа.

Непрерывные спектры

Солнечный спектр или спектр дугового фонаря является непрерывным.
Это означает, что в спектре представлены волны всех длин волн.
В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу.

Распределение энергии по частотам, т. е. спектральная плотность интенсивности излучения, для разных тел различно.
Например, тело с очень черной поверхностью излучает электромагнитные волны всех частот, но кривая зависимости спектральной плотности интенсивности излучения от частоты имеет максимум при определенной частоте vmax.
Энергия излучения, приходящаяся на очень малые (ν → 0) и очень большие (ν → ∞) частоты, ничтожно мала.
При повышении температуры тела максимум спектральной плотности излучения смещается в сторону коротких волн.

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Непрерывные (или сплошные) спектры

Непрерывные (или сплошные) спектры дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы.
Для получения непрерывного спектра нужно нагреть тело до высокой температуры.

Характер непрерывного спектра и сам факт его существования не только определяются свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

Непрерывный спектр дает также высокотемпературная плазма.
Электромагнитные волны излучаются плазмой в основном при столкновениях электронов с ионами.

Линейчатые спектры

Если внести в бледное пламя газовой горелки кусочек асбеста, смоченный раствором обыкновенной поваренной соли, то при наблюдении пламени в спектроскоп видно, как на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия.
Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени.
Каждый из спектров — это частокол цветных линий различной яркости, разделенных широкими темными полосами.
Такие спектры называются линейчатыми.
Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах).

Примерное распределение спектральной плотности интенсивности излучения в линейчатом спектре дано на рисунке.
Каждая линия имеет конечную ширину.

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии.
В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом.
Это самый фундаментальный, основной тип спектров.

Изолированные атомы излучают свет строго определенных длин волн.

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и, наконец, при очень большом сжатии газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками.
С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий.
В отличие от линейчатых спектров полосатые спектры образуются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, используют свечение паров вещества в пламени или свечение газового разряда.

Спектры поглощения

Если пропускать белый свет сквозь холодный, не излучающий газ, то на фоне непрерывного спектра источника появляются темные линии.
Газ поглощает наиболее интенсивно свет именно тех длин волн, которые он сам испускает в сильно нагретом состоянии.
Темные линии на фоне непрерывного спектра — это линии поглощения, образующие в совокупности спектр поглощения.

Итак,
Существуют непрерывные, линейчатые и полосатые спектры излучения и столько же видов спектров поглощения.

Спектральный анализ

Линейчатые спектры имеют большое значение, потому что их структура тесно связана со строением атома.

Главное свойство линейчатых спектров в том, что длины волн (или частоты) линейчатого спектра вещества зависят только от свойств атомов этого вещества, но совершенно не зависят от способа возбуждения свечения атомов.
Атомы любого химического элемента дают спектр, не похожий на спектры всех других элементов: они способны излучать строго определенный набор длин волн.

Количественный анализ состава вещества по его спектру затруднен, так как яркость спектральных линий зависит не только от массы вещества, но и от способа возбуждения свечения.
Так, при низких температурах многие спектральные линии вообще не появляются.
Однако при соблюдении стандартных условий возбуждения свечения можно проводить и количественный (а не только качественный) спектральный анализ.

В настоящее время определены спектры всех атомов и составлены таблицы спектров.
С помощью спектрального анализа были открыты многие новые элементы: рубидий, цезий и др.
Элементам часто давали названия в соответствии с цветом наиболее интенсивных линий их спектров.
Рубидий дает темно-красные, рубиновые линии.
Слово цезий означает «небесно-голубой».
Это цвет основных линий спектра цезия.

Именно с помощью спектрального анализа узнали химический состав Солнца и звезд.
Другие методы анализа здесь вообще невозможны.
Оказалось, что звезды состоят из тех же самых химических элементов, которые имеются и на Земле.
Так гелий сначала открыли на Солнце и лишь затем в атмосфере Земли (гелий означает «солнечный»).

Благодаря сравнительной простоте и универсальности спектральный анализ является основным методом контроля состава вещества в металлургии, машиностроении, атомной индустрии.
С помощью спектрального анализа определяют химический состав руд и минералов.

Состав сложных, главным образом органических, смесей анализируется по их молекулярным спектрам.

Спектральный анализ можно проводить не только по спектрам испускания, но и по спектрам поглощения.
Именно линии поглощения в спектре Солнца и звезд позволяют исследовать химический состав этих небесных тел.
Ярко светящаяся поверхность Солнца—фотосфера — дает непрерывный спектр.
Солнечная атмосфера поглощает избирательно свет от фотосферы, что приводит к появлению линий поглощения на фоне непрерывного спектра фотосферы.

Но и сама атмосфера Солнца излучает свет.
Во время солнечных затмений, когда солнечный диск закрыт Луной, происходит «обращение» линий спектра.
На месте линий поглощения в солнечном спектре вспыхивают линии излучения.

В астрофизике под спектральным анализом понимают не только определение химического состава звезд, газовых облаков и т. д., но и методы нахождения по спектрам многих других физических характеристик этих объектов: температуры, давления, скорости движения, магнитной индукции.

Источник

Как сказал.

Вопросы к экзамену

Для всех групп технического профиля

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излученияСписок лекций по физике за 1,2 семестр

Я учу детей тому, как надо учиться

Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.

Урок 52. Виды спектров. Различные виды электромагнитных излучений, их свойства.

Совокупность монохроматических компонент в излучении называется спектром.

Спектры излучения

Спектральный состав излучения веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три типа.

Непрерывные спектры

Непрерывный спектр представлет собой сплошную разноцветную полосу.

Белый свет имеет непрерывный спектр. Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу.

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры. Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

Излучение источников, в которых свет испускается атомами вещества, имеет дискретный спектр. Они делятся на:

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Линейчатые спектры

Линейчатый спектр состоит изотдельных цветных линий различной яркости, разделенных широкими темными полосами.

Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На рисунке приведены также спектры водорода и гелия. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах).

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы излучают строго определенные длины волн.

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и, наконец, при очень большом сжатии газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками.

С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.

Спектры поглощения

Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету, и поглощает все остальные.

Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Это будет спектр поглощения.

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Спектр поглощения представляет собой темные линии на фоне непрерывного спектра источника.

Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра — это линии поглощения, образующие в совокупности спектр поглощения.

Существуют непрерывные, линейчатые и полосатые спектры поглощения.

Различные виды электромагнитных излучений, их свойства и практические применения.

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Шкала электромагнитных волн. Границы между различными диапазонами условны

Постоянный ток – частота ν = 0 – 10 Гц.

Атмосферные помехи и переменный ток – частота ν = 10 – 10 4 Гц

Частота ν =10 4 – 10 11 Гц

Получают с помощью колебательных контуров.

Радиоволны различных частот и с различными длинами волн по разному поглощаются и отражаются средами, проявляют свойства дифракции и интерференции.

Радиосвязь, телевидение, радиолокация.

Частота ν =3·10 11 – 4·10 14 Гц

Излучаются атомами и молекулами вещества.

Получают изображения предметов в темноте, приборах ночного видения, в тумане. Используют в криминалистике, в физиотерапии,. в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.

Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового).

Частота ν =4·10 14 – 8·10 14 Гц

Отражается, преломляется, воздействует на глаз, способно к явлениям дисперсии, интерференции, дифракции.

Частота ν =8·10 14 – 3·10 15 Гц

Источники: газоразрядные лампы с трубками из кварца(кварцевые лампы).

Излучается всеми твердыми телами, у которых t > 1000°С, а также светящимися парами ртути.

В медицине, в косметологии (солярий, загар), в промышленности.

Частота ν =3·10 15 – 3·10 19 Гц

Излучаются при резком торможении электронов, движущихся с большим ускорением.

Получают при помощи рентгеновской трубки: электроны в вакуумной трубке ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозятся. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 нм).

В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов).

Гамма – излучение (γ – излучение).

Частота ν =3·10 20 Гц и выше

Источники: атомное ядро (ядерные реакции).

В медицине, в производстве (γ – дефектоскопия).

Источник

Какие существуют линии спектров излучения

Тепловое излучение излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов (или молекул) излучающего тела. Тепловым источником является солнце, лампа накаливания и т. д.

Катодолюминесценция свечение твердых тел, вызванное бомбардировкой их электронами. Благодаря ей светятся экраны электронно-лучевых трубок телевизоров.

Хемилюминесценция излучение света в некоторых химических реакциях, идущих с выделением энергии. Ее можно наблюдать на примере светлячка и других живых организмах, обладающих свойством светиться.

Фотолюминесценция свечение тел непосредственно под действием падающих на них излучений. Примером являются светящиеся краски, которыми покрывают елочные игрушки, они излучают свет после их облучения. Это явление широко используется в лампах дневного света.

Для того чтобы атом начал излучать, ему необходимо передать определенную энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Схема устройства призменного спектрографа

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Тёмные линии на спектральных полосках были замечены давно (например, их отметил Волластон), но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света. Аналогичные линии он обнаружил у искусственных источников света, а также в спектрах Венеры и Сириуса.

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.

Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а 1861 году — рубидий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы соответственно).

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10—30 мг), необходимого для анализа на большое число элементов. Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000—10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Спектр электромагнитных излучений

Свойства электромагнитных излучений. Электромагнитные излучения с различными длинами волн имеют довольно много различий, но все они, от радиоволн и до гамма-излучения, одной физической природы. Все виды электромагнитного излучения в большей или меньшей степени проявляют свойства интерференции, дифракции и поляризации, характерные для волн. Вместе с тем все виды электромагнитного излучения в большей или меньшей мере обнаруживают квантовые свойства.

Общим для всех электромагнитных излучений являются механизмы их возникновения: электромагнитные волны с любой длиной волны могут возникать при ускоренном движении электрических зарядов или при переходах молекул, атомов или атомных ядер из одного квантового состояния в другое. Гармонические колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

Радиоволны. При колебаниях, происходящих с частотами от 10 5 до 10 12 Гц, возникают электромагнитные излучения, длины волн которых лежат в интервале от нескольких километров до нескольких миллиметров. Этот участок шкалы электромагнитных излучений относится к диапазону радиоволн. Радиоволны применяются для радиосвязи, телевидения, радиолокации.

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Инфракрасное излучение испускают любые нагретые тела. Источниками инфракрасного излучения служат печи, батареи водяного отопления, электрические лампы накаливания.

С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте. Инфракрасное излучение применяется для сушки окрашенных изделий, стен зданий, древесины.

Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения. Свет является обязательным условием развития зеленых растений и, следовательно, необходимым условием для существования жизни на Земле.

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами.

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Способность рентгеновских лучей проникать через толстые слои вещества используется для диагностики заболеваний внутренних органов человека. В технике рентгеновские лучи применяются для контроля внутренней структуры различных изделий, сварных швов. Рентгеновское излучение обладает сильным биологическим действием и применяется для лечения некоторых заболеваний. Гамма-излучение. Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными атомными ядрами и возникающее при взаимодействии элементарных частиц.

Источник

Как сказал.

Стремись не к тому, чтобы добиться успеха, а к тому, чтобы твоя жизнь имела смысл.

Альберт Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излученияСписок лекций по физике за 1,2 семестр

Я учу детей тому, как надо учиться

Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.

Урок 52. Виды спектров. Различные виды электромагнитных излучений, их свойства.

Совокупность монохроматических компонент в излучении называется спектром.

Спектры излучения

Спектральный состав излучения веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три типа.

Непрерывные спектры

Непрерывный спектр представлет собой сплошную разноцветную полосу.

Белый свет имеет непрерывный спектр. Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу.

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры. Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

Излучение источников, в которых свет испускается атомами вещества, имеет дискретный спектр. Они делятся на:

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Линейчатые спектры

Линейчатый спектр состоит изотдельных цветных линий различной яркости, разделенных широкими темными полосами.

Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На рисунке приведены также спектры водорода и гелия. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах).

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы излучают строго определенные длины волн.

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и, наконец, при очень большом сжатии газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Полосатые спектры

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками.

С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.

Спектры поглощения

Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету, и поглощает все остальные.

Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Это будет спектр поглощения.

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Спектр поглощения представляет собой темные линии на фоне непрерывного спектра источника.

Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра — это линии поглощения, образующие в совокупности спектр поглощения.

Существуют непрерывные, линейчатые и полосатые спектры поглощения.

Различные виды электромагнитных излучений, их свойства и практические применения.

какие существуют линии спектров излучения. Смотреть фото какие существуют линии спектров излучения. Смотреть картинку какие существуют линии спектров излучения. Картинка про какие существуют линии спектров излучения. Фото какие существуют линии спектров излучения

Шкала электромагнитных волн. Границы между различными диапазонами условны

Постоянный ток – частота ν = 0 – 10 Гц.

Атмосферные помехи и переменный ток – частота ν = 10 – 10 4 Гц

Частота ν =10 4 – 10 11 Гц

Получают с помощью колебательных контуров.

Радиоволны различных частот и с различными длинами волн по разному поглощаются и отражаются средами, проявляют свойства дифракции и интерференции.

Радиосвязь, телевидение, радиолокация.

Частота ν =3·10 11 – 4·10 14 Гц

Излучаются атомами и молекулами вещества.

Получают изображения предметов в темноте, приборах ночного видения, в тумане. Используют в криминалистике, в физиотерапии,. в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.

Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового).

Частота ν =4·10 14 – 8·10 14 Гц

Отражается, преломляется, воздействует на глаз, способно к явлениям дисперсии, интерференции, дифракции.

Частота ν =8·10 14 – 3·10 15 Гц

Источники: газоразрядные лампы с трубками из кварца(кварцевые лампы).

Излучается всеми твердыми телами, у которых t > 1000°С, а также светящимися парами ртути.

В медицине, в косметологии (солярий, загар), в промышленности.

Частота ν =3·10 15 – 3·10 19 Гц

Излучаются при резком торможении электронов, движущихся с большим ускорением.

Получают при помощи рентгеновской трубки: электроны в вакуумной трубке ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозятся. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 нм).

В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов).

Гамма – излучение (γ – излучение).

Частота ν =3·10 20 Гц и выше

Источники: атомное ядро (ядерные реакции).

В медицине, в производстве (γ – дефектоскопия).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *