ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈ ΠΊΠΎΡ€Π½ΠΈ уравнСния? Как Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅?

УравнСния Π±Ρ‹Π²Π°ΡŽΡ‚ Ρ€Π°Π·Π½Ρ‹Π΅. Π’Ρ‹ ΠΈΠ·ΡƒΡ‡ΠΈΡ‚Π΅ ΠΈΡ… ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Π²ΠΈΠ΄Ρ‹ Π² курсС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, Π½ΠΎ всС ΠΎΠ½ΠΈ Ρ€Π΅ΡˆΠ°ΡŽΡ‚ΡΡ ΠΏΠΎ ΠΎΠ΄Π½ΠΈΠΌ ΠΏΡ€Π°Π²ΠΈΠ»Π°ΠΌ, эти ΠΏΡ€Π°Π²ΠΈΠ»Π° ΠΌΡ‹ сСйчас рассмотрим ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅? Бмысл ΠΈ понятия.

Π£Π·Π½Π°Π΅ΠΌ сначала всС понятия, связанныС с ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅:
Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ – это равСнство, содСрТащСС ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΈ числовыС значСния.

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ (Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρ‹ уравнСния) ΠΈΠ»ΠΈ нСизвСстныС уравнСния – ΠΈΡ… ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ Π² основном латинскими Π±ΡƒΠΊΠ²Π°ΠΌΠΈ (x, y, z, f ΠΈ Ρ‚.Π΄.). ΠŸΡ€ΠΈ подстановки числового значСния ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Π²Π΅Ρ€Π½ΠΎΠ΅ равСнство – это ΠΊΠΎΡ€Π΅Π½ΡŒ уравнСния.

Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ – это Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ всС ΠΊΠΎΡ€Π½ΠΈ уравнСния ΠΈΠ»ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ρƒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ уравнСния Π½Π΅Ρ‚ ΠΊΠΎΡ€Π½Π΅ΠΉ.

ΠšΠΎΡ€Π½ΠΈ уравнСния – это Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прСвращаСтся Π² Π²Π΅Ρ€Π½ΠΎΠ΅ равСнство.

Рассмотрим Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ, всС Ρ‚Π΅Ρ€ΠΌΠΈΠ½Ρ‹ Π½Π° простом ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅:
x+1=3

Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС x – пСрСмСнная ΠΈΠ»ΠΈ нСизвСстноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ уравнСния.

МоТно устно Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅. КакоС Π½Π°Π΄ΠΎ число ΠΏΡ€ΠΈΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊ 1, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ 3? ΠšΠΎΠ½Π΅Ρ‡Π½ΠΎ, число 2. Π’ΠΎ Π΅ΡΡ‚ΡŒ наша пСрСмСнная x =2. ΠšΠΎΡ€Π΅Π½ΡŒ уравнСния Ρ€Π°Π²Π΅Π½ 2. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΠΌ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ Π»ΠΈ ΠΌΡ‹ Ρ€Π΅ΡˆΠΈΠ»ΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅? Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, Π½ΡƒΠΆΠ½ΠΎ вмСсто ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ уравнСния.

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π²Π΅Ρ€Π½ΠΎΠ΅ равСнство. Π—Π½Π°Ρ‡ΠΈΡ‚, ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ нашли ΠΊΠΎΡ€Π½ΠΈ уравнСния.

Но Π±Ρ‹Π²Π°ΡŽΡ‚ Π±ΠΎΠ»Π΅Π΅ слоТныС уравнСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ устно Π½Π΅ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ. НуТно ΠΏΡ€ΠΈΠ±Π΅Π³Π°Ρ‚ΡŒ ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»Π°ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. Рассмотрим ΠΏΡ€Π°Π²ΠΈΠ»Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π½ΠΈΠΆΠ΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ±ΡŠΡΡΠ½ΡΡ‚ Π½Π°ΠΌ ΠΊΠ°ΠΊ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ уравнСния.

ΠŸΡ€Π°Π²ΠΈΠ»Π° ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ ΠΈΠ»ΠΈ увСличСния уравнСния Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ΅ число.

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΡΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ рассмотрим ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ простой ΠΏΡ€ΠΈΠΌΠ΅Ρ€:
Π Π΅ΡˆΠΈΡ‚Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ x+2=7

РСшСниС:
Π§Ρ‚ΠΎΠ±Ρ‹ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½ΡƒΠΆΠ½ΠΎ Π»Π΅Π²ΡƒΡŽ ΠΈ ΠΏΡ€Π°Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π½Π° 2. Π­Ρ‚ΠΎ Π½ΡƒΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ пСрСмСнная x ΠΎΡΡ‚Π°Π»Π°ΡΡŒ слСва, Π° извСстныС (Ρ‚.Π΅. числа) справа. Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π½Π° 2? Π­Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΎΡ‚Π½ΡΡ‚ΡŒ ΠΎΡ‚ Π»Π΅Π²ΠΎΠΉ части Π΄Π²ΠΎΠΉΠΊΡƒ ΠΈ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΎΡ‚ ΠΏΡ€Π°Π²ΠΎΠΉ части ΠΎΡ‚Π½ΡΡ‚ΡŒ Π΄Π²ΠΎΠΉΠΊΡƒ. Если ΠΌΡ‹ Π΄Π΅Π»Π°Π΅ΠΌ ΠΊΠ°ΠΊΠΎΠ΅-Ρ‚ΠΎ дСйствиС, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π²Ρ‹Ρ‡ΠΈΡ‚Π°Π½ΠΈΠ΅ примСняя Π΅Π³ΠΎ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΊ Π»Π΅Π²ΠΎΠΉ части уравнСния ΠΈ ΠΊ ΠΏΡ€Π°Π²ΠΎΠΉ, Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ мСняСт смысл.

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Как ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ Π»ΠΈ Π²Ρ‹ нашли ΠΊΠΎΡ€Π΅Π½ΡŒ уравнСния? Π’Π΅Π΄ΡŒ Π½Π΅ всС уравнСния Π±ΡƒΠ΄ΡƒΡ‚ простыми ΠΊΠ°ΠΊ Π΄Π°Π½Π½ΠΎΠ΅. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ уравнСния Π΅Π³ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² само ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅.

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ°:
ВмСсто ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x подставим 5.

x+2=7
5+2=7
ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π²Π΅Ρ€Π½ΠΎΠ΅ равСнство, Π·Π½Π°Ρ‡ΠΈΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΎ Π²Π΅Ρ€Π½ΠΎ.
ΠžΡ‚Π²Π΅Ρ‚: 5.

Π Π°Π·Π±Π΅Ρ€Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€:
Π Π΅ΡˆΠΈΡ‚Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ x-4=12.

РСшСниС:
Π§Ρ‚ΠΎΠ±Ρ‹ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½ΡƒΠΆΠ½ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΡ‚ΡŒ Π»Π΅Π²ΡƒΡŽ ΠΈ ΠΏΡ€Π°Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ уравнСния Π½Π° 4, Ρ‡Ρ‚ΠΎΠ±Ρ‹ пСрСмСнная x ΠΎΡΡ‚Π°Π»ΠΎΡΡŒ Π² Π»Π΅Π²ΠΎΠΉ сторонС, Π° извСстныС (Ρ‚.Π΅. числа) Π² ΠΏΡ€Π°Π²ΠΎΠΉ сторонС. ΠŸΡ€ΠΈΠ±Π°Π²ΠΈΠΌ ΠΊ Π»Π΅Π²ΠΎΠΉ ΠΈ ΠΏΡ€Π°Π²ΠΎΠΉ части число 4. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΡƒ, вмСсто ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x подставим Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ число 16.
x-4=12
16-4=12
ΠžΡ‚Π²Π΅Ρ‚: 16

ΠžΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½ΠΎ ΠΏΠΎΠ½ΡΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»Π° пСрСноса частСй уравнСния Ρ‡Π΅Ρ€Π΅Π· Π·Π½Π°ΠΊ Ρ€Π°Π²Π½ΠΎ. НС всСгда Π½ΡƒΠΆΠ½ΠΎ ΠΏΠ΅Ρ€Π΅Π½ΠΎΡΠΈΡ‚ΡŒ числа, ΠΈΠ½ΠΎΠ³Π΄Π° Π½ΡƒΠΆΠ½ΠΎ пСрСнСсти ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΈΠ»ΠΈ Π΄Π°ΠΆΠ΅ Ρ†Π΅Π»Ρ‹Π΅ выраТСния.

Рассмотрим ΠΏΡ€ΠΈΠΌΠ΅Ρ€:
Π Π΅ΡˆΠΈΡ‚Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ 4+3x=2x-5

Π’Π΅ΠΏΠ΅Ρ€ΡŒ, ΠΊΠΎΠ³Π΄Π° всС нСизвСстныС Π² Π»Π΅Π²ΠΎΠΉ сторонС, Π° всС извСстныС Π² ΠΏΡ€Π°Π²ΠΎΠΉ сторонС посчитаСм ΠΈΡ….
(3-2)x=-9
1x=-9 ΠΈΠ»ΠΈ x=-9

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ Π²Π΅Ρ€Π½ΠΎΠ΅ равСнство, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΎ Π²Π΅Ρ€Π½ΠΎ.
ΠžΡ‚Π²Π΅Ρ‚: ΠΊΠΎΡ€Π΅Π½ΡŒ уравнСния x=-9.

ΠŸΡ€Π°Π²ΠΈΠ»Π° ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ ΠΈΠ»ΠΈ увСличСния уравнСния Π² нСсколько Ρ€Π°Π·.

Π”Π°Π½Π½ΠΎΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Π²Ρ‹ ΡƒΠΆΠ΅ посчитали всС нСизвСстныС ΠΈ извСстныС, Π½ΠΎ ΠΊΠ°ΠΊΠΎΠΉ-Ρ‚ΠΎ коэффициСнт остался ΠΏΠ΅Ρ€Π΅Π΄ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ. Π§Ρ‚ΠΎΠ±Ρ‹ избавится ΠΎΡ‚ Π½Π΅ Π½ΡƒΠΆΠ½ΠΎΠ³ΠΎ коэффициСнта ΠΌΡ‹ примСняСм ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ ΠΈΠ»ΠΈ увСличСния Π² нСсколько Ρ€Π°Π· коэффициСнт уравнСния.

Рассмотрим ΠΏΡ€ΠΈΠΌΠ΅Ρ€:
Π Π΅ΡˆΠΈΡ‚Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ 5x=20.

РСшСниС:
Π’ Π΄Π°Π½Π½ΠΎΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ Π½ΡƒΠΆΠ½ΠΎ ΠΏΠ΅Ρ€Π΅Π½ΠΎΡΠΈΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΈ числа, всС ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ уравнСния стоят Π½Π° мСстС. Но Π½Π°ΠΌ ΠΌΠ΅ΡˆΠ°Π΅Ρ‚ коэффициСнт 5 ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ стоит ΠΏΠ΅Ρ€Π΅Π΄ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x. ΠœΡ‹ Π½Π΅ ΠΌΠΎΠΆΠ΅ΠΌ Π΅Π³ΠΎ просто Π²Π·ΡΡ‚ΡŒ ΠΈ пСрСнСсти Π² ΠΏΡ€Π°Π²ΡƒΡŽ сторону уравнСния, ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ число 5 ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ x стоит ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ 5β‹…Ρ…. Если Π±Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈ числом стоял Π·Π½Π°ΠΊ плюс ΠΈΠ»ΠΈ минус, ΠΌΡ‹ ΠΌΠΎΠ³Π»ΠΈ Π±Ρ‹ 5 пСрСнСсти Π²ΠΏΡ€Π°Π²ΠΎ. Но ΠΌΡ‹ Ρ‚Π°ΠΊ ΠΏΠΎΡΡ‚ΡƒΠΏΠΈΡ‚ΡŒ Π½Π΅ ΠΌΠΎΠΆΠ΅ΠΌ. Π—Π° Ρ‚ΠΎ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ всС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ Π² 5 Ρ€Π°Π· ΠΈΠ»ΠΈ ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° 5. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Π΅Π»ΠΈΠΌ ΠΏΡ€Π°Π²ΡƒΡŽ ΠΈ Π»Π΅Π²ΡƒΡŽ сторону ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ.

5x=20
5x :5 =20 :5
5:5x=4
1x=4 ΠΈΠ»ΠΈ x=4

Π”Π΅Π»Π°Π΅ΠΌ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΡƒ уравнСния. ВмСсто ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x подставляСм 4.
5x=20
5β‹… 4 =20
20=20 ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π²Π΅Ρ€Π½ΠΎΠ΅ равСнство, ΠΊΠΎΡ€Π΅Π½ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π°ΠΉΠ΄Π΅Π½ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ.
ΠžΡ‚Π²Π΅Ρ‚: x=4.

РСшСниС:
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠ΅Ρ€Π΅Π΄ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x стоит коэффициСнт Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΡ‚ Π½Π΅Π³ΠΎ ΠΈΠ·Π±Π°Π²ΠΈΡ‚ΡŒΡΡ. Надо всС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΡ‚ΡŒ Π² 3 Ρ€Π°Π·Π° ΠΈΠ»ΠΈ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° 3, ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Π»Π΅Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ уравнСния ΠΈ ΠΏΡ€Π°Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ.

Π‘Π΄Π΅Π»Π°Π΅ΠΌ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΡƒ уравнСния. ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ вмСсто ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ x ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ уравнСния 21.

7=7 ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ Π²Π΅Ρ€Π½ΠΎΠ΅ равСнство.

ΠžΡ‚Π²Π΅Ρ‚: ΠΊΠΎΡ€Π΅Π½ΡŒ уравнСния Ρ€Π°Π²Π΅Π½ x=21.

Π‘Π»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€:
НайдитС ΠΊΠΎΡ€Π½ΠΈ уравнСния

Π”Π°Π»Π΅Π΅ Π΄Π΅Π»ΠΈΠΌ всС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π° 3.

Π‘Π΄Π΅Π»Π°Π΅ΠΌ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΡƒ. ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π°ΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ.

Как Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ уравнСния? Алгоритм дСйствий.

ПодвСдСм ΠΈΡ‚ΠΎΠ³ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, рассмотрим ΠΎΠ±Ρ‰ΠΈΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ:

Π­Ρ‚ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Π° Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ Π½Π° любой Π²ΠΈΠ΄ уравнСния (Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ, логарифмичСский, тригономСтричСский, Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅, ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅, ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π²ΠΈΠ΄Ρ‹). ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π²Π°ΠΆΠ½ΠΎ ΠΏΠΎΠ½ΡΡ‚ΡŒ эти простыС ΠΏΡ€Π°Π²ΠΈΠ»Π° ΠΈ Π½Π°ΡƒΡ‡ΠΈΡ‚ΡŒΡΡ ΠΈΠΌΠΈ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΈ нСравСнства с ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°ΠΌΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅:

Рассмотрим уравнСния, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… пСрСмСнная (нСизвСстноС) находится Π² ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ стСпСни. НапримСр:

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

УравнСния Ρ‚Π°ΠΊΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° принято Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ.

РСшСнии ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ

ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π½Π°ΠΌ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ слСдствиС ΠΈΠ· Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠΎ свойствах ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠŸΡƒΡΡ‚ΡŒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠšΠ°ΠΆΠ΄ΠΎΠΌΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ корнисоотвСтствуСт СдинствСнный ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ s.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

Богласно ΡΠ»Π΅Π΄ΡΡ‚Π²ΠΈΡŽ ΠΈΠ· равСнства Π΄Π²ΡƒΡ… стСпСнСй с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌ основаниСм 3 слСдуСт равСнство ΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π΄Π°Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

Π°) Π”Π°Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎ (пояснитС ΠΏΠΎΡ‡Π΅ΠΌΡƒ) ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Если стСпСни с основаниСм 3 Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ Ρ€Π°Π²Π½Ρ‹ ΠΈ ΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ:

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшив это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠžΡ‚Π²Π΅Ρ‚: ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ уравнСния ΠΈΠ· ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° 2 сначала ΠΎΠ±Π΅ части уравнСния прСдставили Π² Π²ΠΈΠ΄Π΅ стСпСни с ΠΎΠ΄Π½ΠΈΠΌ ΠΈ Ρ‚Π΅ΠΌ ΠΆΠ΅ основаниСм, Π° Π·Π°Ρ‚Π΅ΠΌ записали равСнство ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ этих стСпСнСй.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

Π°) Π”Π°Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшая Π΅Π³ΠΎ, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Π’Π°ΠΊ ΠΊΠ°ΠΊ Π΄Π²Π΅ стСпСни с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌ основаниСм 2 Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ Ρ€Π°Π²Π½Ρ‹ ΠΈ ΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ, Ρ‚. Π΅. ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠΎΡ‚ΠΊΡƒΠ΄Π° Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Π±) Π Π°Π·Π΄Π΅Π»ΠΈΠ² ΠΎΠ±Π΅ части уравнСния Π½Π° ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΡ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΠ΅ Π΄Π°Π½Π½ΠΎΠΌΡƒ. РСшив Π΅Π³ΠΎ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠžΡ‚Π²Π΅Ρ‚: ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° 3 Π°) Π»Π΅Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ уравнСния Ρ€Π°Π·Π»ΠΎΠΆΠΈΠ»ΠΈ Π½Π° ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΠΈ. ΠŸΡ€ΠΈΡ‡Π΅ΠΌ Π·Π° скобку вынСсли Ρ‚Π°ΠΊΠΎΠΉ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ, Ρ‡Ρ‚ΠΎ Π² скобках ΠΎΡΡ‚Π°Π»ΠΎΡΡŒ числовоС Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, Π½Π΅ содСрТащСС ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΡ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΈΠ· Π΄Π°Π½Π½ΠΎΠ³ΠΎ уравнСния ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠΎΡ‚ΠΊΡƒΠ΄Π° Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ: ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Π˜Ρ‚Π°ΠΊ, с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ обозначСния ΠΈΠΌΠ΅Π΅ΠΌ:

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° 4 Π±Ρ‹Π» использован ΠΌΠ΅Ρ‚ΠΎΠ΄ ввСдСния Π½ΠΎΠ²ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» свСсти Π΄Π°Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠΌΡƒ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ этой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

МоТно Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ 2 β€” ΠΊΠΎΡ€Π΅Π½ΡŒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ уравнСния. Π”Ρ€ΡƒΠ³ΠΈΡ… ΠΊΠΎΡ€Π½Π΅ΠΉ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ функция, стоящая Π² Π»Π΅Π²ΠΎΠΉ части уравнСния, Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰Π°Ρ, Π° функция, стоящая Π² ΠΏΡ€Π°Π²ΠΎΠΉ части уравнСния, ΡƒΠ±Ρ‹Π²Π°ΡŽΡ‰Π°Ρ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ корня (см. Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ ΠΈΠ· ΠΏ. 1.14).

ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

ΠŸΡ€ΠΈ ΠΊΠ°ΠΊΠΎΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ Π° ΠΊΠΎΡ€Π½Π΅ΠΌ уравнСния ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ корниявляСтся число, Ρ€Π°Π²Π½ΠΎΠ΅ 2?

РСшСниС:

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ… = 2 β€” ΠΊΠΎΡ€Π΅Π½ΡŒ, Ρ‚ΠΎ Π²Π΅Ρ€Π½ΠΎ равСнство

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшив это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, Π½Π°ΠΉΠ΄Π΅ΠΌ

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠžΡ‚Π²Π΅Ρ‚: ΠΏΡ€ΠΈ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ уравнСния ΠΈ ΠΈΡ… систСмы

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ называСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, Π² ΠΊΠΎ Ρ‚ΠΎΡ€ΠΎΠΌ нСизвСстноС Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ стСпСни. ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ тоТдСства: ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ² ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ.

1 ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡƒ основанию.

ΠœΠ΅Ρ‚ΠΎΠ΄ основан Π½Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ свойствС стСпСнСй: Ссли Π΄Π²Π΅ стСпСни Ρ€Π°Π²Π½Ρ‹ ΠΈ Ρ€Π°Π²Π½Ρ‹ ΠΈΡ… основания, Ρ‚ΠΎ Ρ€Π°Π²Π½Ρ‹ ΠΈ ΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ, Ρ‚.Π΅. уравнСния Π½Π°Π΄ΠΎ ΠΏΠΎΠΏΡ‹Ρ‚Π°Ρ‚ΡŒΡΡ привСсти ΠΊ Π²ΠΈΠ΄Ρƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠžΡ‚ΡΡŽΠ΄Π° ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–1

Π Π΅ΡˆΠΈΡ‚Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠΈ ΠΏΠ΅Ρ€Π΅ΠΏΠΈΡˆΠ΅ΠΌ нашС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π² Π²ΠΈΠ΄Π΅

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–2

Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Ρ ΠΊ основанию стСпСни 2, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Богласно тоТдСству (2), ΠΈΠΌΠ΅Π΅ΠΌ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ПослСднСС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ 4Ρ…-19 = 2,5Ρ…. ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

2 Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½ΠΎΠ²ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–3

Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

ΠŸΡ€ΠΈΠΌΠ΅Π½ΠΈΠ² тоТдСство 2, ΠΏΠ΅Ρ€Π΅ΠΏΠΈΡˆΠ΅ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Π’Π²Π΅Π΄Π΅ΠΌ Π½ΠΎΠ²ΡƒΡŽ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ: ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΡ€Π½ΠΈ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠžΠ΄Π½Π°ΠΊΠΎ ΠΊΠΎΡ€Π΅Π½ΡŒΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠ½Π΅ удовлСтворяСт ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠ—Π½Π°Ρ‡ΠΈΡ‚, ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–4

Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

Π Π°Π·Π΄Π΅Π»ΠΈΠ² ΠΎΠ±Π΅ части уравнСния Π½Π° ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

послСднСС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π·Π°ΠΏΠΈΡˆΠ΅Ρ‚ΡΡ Ρ‚Π°ΠΊ: ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшая ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠ½Π΅ удовлСтворяСт ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠ‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ,

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–5

Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠ—Π½Π°Ρ‡ΠΈΡ‚ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΠ΅Ρ€Π΅ΠΏΠΈΡˆΠ΅ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π² Π²ΠΈΠ΄Π΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠšΠΎΡ€Π½ΡΠΌΠΈ Π΄Π°Π½Π½ΠΎΠ³ΠΎ уравнСния Π±ΡƒΠ΄ΡƒΡ‚ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

III ВынСсСниС ΠΎΠ±Ρ‰Π΅Π³ΠΎ мноТитСля Π·Π° скобку.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–6

Π Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

ПослС вынСсСния Π·Π° скобку Π² Π»Π΅Π²ΠΎΠΉ части ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ, Π° Π² ΠΏΡ€Π°Π²ΠΎΠΉ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠ Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΎΠ±Π΅ части уравнСния Π½Π° ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

БистСмы ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–7

Π Π΅ΡˆΠΈΡ‚Π΅ систСму ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ: ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

По свойству стСпСнСй систСма ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ

систСмС :ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠžΡ‚ΡΡŽΠ΄Π° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ систСму ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ послСдняя систСма ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–8

Π Π΅ΡˆΠΈΡ‚Π΅ систСму ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ: ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

По свойству стСпСнСй систСма ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ систСмС: ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠŸΠΎΡΠ»Π΅Π΄Π½ΡΡ систСма, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Π° систСмС: ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Π£ΠΌΠ½ΠΎΠΆΠΈΠ² Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ этой систСмы Π½Π° (-2) ΠΈ слоТив с ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ β€”9Ρ…=-4. ΠžΡ‚ΡΡŽΠ΄Π°, Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠ² ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–9

Π Π΅ΡˆΠΈΡ‚Π΅ систСму ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ: ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

Π‘Π΄Π΅Π»Π°Π΅ΠΌ Π·Π°ΠΌΠ΅Π½Ρƒ: ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠ’ΠΎΠ³Π΄Π° наша систСма ΠΏΡ€ΠΈΠΌΠ΅Ρ‚ Π²ΠΈΠ΄: ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ эта систСма ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Π’ΠΎΠ³Π΄Π° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ уравнСния ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ

ΠŸΡƒΡΡ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ f(Ρ…) Π½Π° ΠΊΠΎΠ½Ρ†Π°Ρ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° [a,b] ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ значСния Ρ€Π°Π·Π½Ρ‹Ρ… Π·Π½Π°ΠΊΠΎΠ², Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π’ΠΎΠ³Π΄Π° Π²Π½ΡƒΡ‚Ρ€ΠΈ этого ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° сущСствуСт хотя Π±Ρ‹ ΠΎΠ΄Π½ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ уравнСния Π”Ρ…)=0. Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ сущСствуСт Ρ‚Π°ΠΊΠΎΠ΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ(читаСтся ΠΊΠ°ΠΊ «ΠΊΡΠΈ»), Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Π­Ρ‚ΠΎ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ Π½Π° ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ΅.

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ дСлСния ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° [a, b] ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ Π΄ΠΎ Ρ‚Π΅Ρ… ΠΏΠΎΡ€, ΠΏΠΎΠΊΠ° Π΄Π»ΠΈΠ½Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ мСньшС Π·Π°Π΄Π°Π½Π½ΠΎΠΉ точности ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ дСлСния ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ ΠΏΡ€ΠΎΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ Π½Π° этом Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΠ΅:

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Для нахоТдСния ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°, содСрТащСго ΠΊΠΎΡ€Π΅Π½ΡŒ уравнСния ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠ²Ρ‹Ρ‡ΠΈΡΠ»ΡΡŽΡ‚ΡΡ значСния ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–10

НайдитС ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π», содСрТащий ΠΊΠΎΡ€Π΅Π½ΡŒ уравнСния ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

Π’Π°ΠΊ ΠΊΠ°ΠΊ, для Π½ΠΎΠ²ΠΎΠ³ΠΎ уравнСния ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Π—Π½Π°Ρ‡ΠΈΡ‚, Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅, ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ хотя Π±Ρ‹ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠ½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ корня, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ,

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ корнивыполняСтся. Π—Π½Π°Ρ‡ΠΈΡ‚, ΠΊΠΎΡ€Π΅Π½ΡŒ уравнСния Π»Π΅ΠΆΠΈΡ‚ Π² (-2,5; 0). Для уточнСния этого ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ корниДля ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΠΌ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ условия

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Π—Π½Π°Ρ‡ΠΈΡ‚, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΡ€Π΅Π½ΡŒ, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρƒ (-1; 0).

НахоТдСниС ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ корня с Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· Π²Ρ‹ΡˆΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ, Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Ссли Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ нСравСнство ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠΊΠΎΡ€Π΅Π½ΡŒ уравнСния ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρƒ

ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠŸΡƒΡΡ‚ΡŒΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ корниЕсли ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹ΠΉ

ΠΊΠΎΡ€Π΅Π½ΡŒ уравнСния с Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Если ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΡ‚ΠΎ ΠΊΠΎΡ€Π΅Π½ΡŒ Π»Π΅ΠΆΠΈΡ‚ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ корниСсли ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΡ‚ΠΎ ΠΊΠΎΡ€Π΅Π½ΡŒ Π»Π΅ΠΆΠΈΡ‚ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠŸΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΠΌ процСсс Π΄ΠΎ нахоТдСния ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ значСния корня с Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–11

НайдитС ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ корня уравнСния ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ корнис Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

РСшСниС:

Из ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° Π½Π°ΠΌ извСстно, Ρ‡Ρ‚ΠΎ ΠΊΠΎΡ€Π΅Π½ΡŒ Π»Π΅ΠΆΠΈΡ‚ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅

(-1; 0). Из Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈΠ·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΊΠΎΡ€Π΅Π½ΡŒ Π»Π΅ΠΆΠΈΡ‚ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ (-0,5; 0).

Π’Π°ΠΊ ΠΊΠ°ΠΊ, |(-0,25)41,5(-0,25)2+2,5(-0,25)+0,5| = |-0,046| 1. Если ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

ΠŸΡƒΡΡ‚ΡŒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ. Π€ΠΎΡ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ уравнСния ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΡ€Π½ΠΈ

Π˜Π·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΡ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠ΄ΡΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ это свойство. На рисункС 27 Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Π° > 1 Π±ΠΎΠ»ΡŒΡˆΠ΅ΠΌΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ соотвСтствуСт большСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°. А Π½Π° рисункС 30 Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ 0

ΠŸΡ€ΠΈ ΠΊΠΎΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π»ΡŽΠ±Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² с сайта evkova.org ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Π° активная ссылка Π½Π° сайт www.evkova.org

Π‘Π°ΠΉΡ‚ создан ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²ΠΎΠΌ ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»Π΅ΠΉ Π½Π° нСкоммСрчСской основС для Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ образования ΠΌΠΎΠ»ΠΎΠ΄Π΅ΠΆΠΈ

Π‘Π°ΠΉΡ‚ ΠΏΠΈΡˆΠ΅Ρ‚ΡΡ, поддСрТиваСтся ΠΈ управляСтся ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²ΠΎΠΌ ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»Π΅ΠΉ

Whatsapp ΠΈ Π»ΠΎΠ³ΠΎΡ‚ΠΈΠΏ whatsapp ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚ΠΎΠ²Π°Ρ€Π½Ρ‹ΠΌΠΈ Π·Π½Π°ΠΊΠ°ΠΌΠΈ ΠΊΠΎΡ€ΠΏΠΎΡ€Π°Ρ†ΠΈΠΈ WhatsApp LLC.

CΠ°ΠΉΡ‚ носит ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ ΠΈ Π½ΠΈ ΠΏΡ€ΠΈ ΠΊΠ°ΠΊΠΈΡ… условиях Π½Π΅ являСтся ΠΏΡƒΠ±Π»ΠΈΡ‡Π½ΠΎΠΉ ΠΎΡ„Π΅Ρ€Ρ‚ΠΎΠΉ, которая опрСдСляСтся полоТСниями ΡΡ‚Π°Ρ‚ΡŒΠΈ 437 ГраТданского кодСкса Π Π€. Анна Π•Π²ΠΊΠΎΠ²Π° Π½Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½ΠΈΠΊΠ°ΠΊΠΈΡ… услуг.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *