Первую логическую машину изобрел
«Мыслительная машина» Щукарева
Логические машины являются важным этапом развития современных компьютеров. Их история начинается в XIII веке с работ средневекового философа и мыслителя Раймонда Луллия (Raymundus Lullius), признанного реформатором логики. Он написал книгу «Великое искусство» («Ars magna») описывающей теорию комбинирования понятий. Вершины своего становления логические машины достигли в конце XIX века благодаря трудам англичанина Уильяма Стенли Джевонса (William Stanley Jevons, 1835-1882 гг.), американца Аллана Маркванда (Allan Marquand, 1853-1924 гг.) и, несколько позже, русских изобретателей Павла Дмитриевича Хрущова (1849-1909 гг.) и Александра Николаевича Щукарева (1864-1936 гг.).
Весной 1914 года на лекции “Познание и мышление”, которая проходила в Московском политехническом музее, профессор химии Харьковского технологического института Александр Николаевич Щукарев продемонстрировал присутствующим «машину логического мышления». Данное механическое устройство умело делать простые логические выводы из заданных предпосылок. Изобретение вызвало немало споров, так как по мнению ученых того времени, технике не дано было мыслить…
Но прежде история жизни самого разработчика — талантливого профессора Щукарева.
Краткая биография
Александр Николаевич Щукарев родился в ноябре 1864 года в Москве. Способности к математике и физике проявились у него еще в детстве. Окончив в 1885 году среднюю школу, он сразу же поступил в Московский университет на отделение естественных наук физико-математического факультета. После окончания университета Щукарев стал работать лаборантом в одной из первых термохимических лабораторий профессора Владимира Федоровича Лунгина, где в течении семнадцати лет проводил свои исследования. У него были весьма разнообразные научные интересы и помимо химии, ученый изучал логику, методологию науки, а также проблемы механизации формализуемых сторон мышления.
В 1906 году Щукарев защитил магистерскую диссертацию на тему «Исследования внутренней энергии газообразных и жидких тел», после чего получил должность приват-доцента в Московском университете. Четыре года спустя он уже защитил докторскую диссертацию под названием «Свойства растворов при критической температуре смещения».
В 1909 году Александр Николаевич усовершенствовал логарифмическую линейку, которая в те времена была основным математическим инструментом для большинства научных и технических расчетов. А еще через год он стал экстраординарным профессором по кафедре общей химии Высшего горного училища в Екатеринославе (Днепропетровск), где обнаружил и описал явление химической поляризации и магнито-химический эффект.
И собственно в апреле 1914 года Щукарев презентовал свое изобретение — «машину логического мышления», осуществляющую простые логические выводы на основе исходных смысловых посылок. Ученый усовершенствовал устройство, созданное английским математиком В.С. Джевонсом под названием «логическое пианино» (1870 год). Логическая машина Щукарева была меньше и состояла полностью из металла, а также в техническом плане оказалась более совершенной.
С 1926 по 1931 годы в Харьковском технологическом институте (ХТИ) Щукарев возглавлял кафедру физической химии. Он проработал на этой должности около 20 лет и даже находясь в отставке продолжал консультировать многие научно-исследовательские институты (Институт прикладной химии, Палату мер и весов, Институт экспериментальной медицины и т.д.).
Александр Николаевич был горячо предан науке и никогда не изменял принципам, идеалам. Даже в самые тяжелые послереволюционные годы он стойко отстаивал свои взгляды. Щукарев оставался в стороне от политики и как мастер своего дела, принимал тезис «там где начинается борьба, там кончается творчество».
Один любопытный эпизод может дать более красочное представление о том, что это был за человек. В 1919 году после установления советской власти в Харькове, Александру Николаевичу пришлось выступать на первом заседании «Кружка по изучению диалектического материализма». Он прочел научный доклад и как только закончил, вдруг спохватившись, добавил: «Ах да, я забыл, что это кружок по изучению диалектического материализма… Что же сказать об изучении диалектического материализма? Только то, что можно заниматься чем угодно — это все равно, например, что коллекционировать белых мышей». После сказанного Щукарев невозмутимо ушел, а поднявшийся скандал кое-как замяли.
Александра Николаевича описывали как типичного профессора с классическими повадками истинного интеллигента, живущего только наукой и не замечающего ничего вокруг. Он обитал в своей квартире, носил сюртук и выглядел всегда опрятно. Достижения и заслуги этого человека вызывали всеобщее уважение, возможно поэтому ему удалось избежать репрессий. Щукарев окончил жизнь, как почтенный и важный профессор. В ноябре 1935 года выдающийся ученый серьезно заболел и через пять месяцев умер.
История мыслительной машины
История возникновения «Мыслительной машины» начинается в 1911 году, когда Щукарев принял приглашение на работу в Харьковский технологический институт (ХТИ) на кафедру общей и неорганической химии. У Александра Николаевича был предшественник — профессор ХТИ Хрущов, который еще до него занимался изучением вопроса механизации мышления и методологии науки. Используя идеи английского математика В.С. Джевонса, Хрущов построил собственное «логическое пианино».
Павел Дмитриевич Хрущов
Это устройство попало в руки Щукарева уже после смерти Хрущова и привлекло внимание первого, как техническое средство механизации формализуемых сторон мышления. С того времени ученый всерьез увлекся усовершенствованием «машины логического мышления». Занимаясь преподавательской деятельностью совместно с исследованиями в сфере физической химии, он находил время и для развития идей Джевонса. В результате его трудов «логическое пианино» преобразилось, в нем появился световой экран, который можно считать прообразом современных дисплеев.
Логическая машина Хрущова
Вот, что писал о своей работе Щукарев:
Я попытался построить несколько видоизмененный экземпляр, вводя в конструкцию Джевонса некоторые усовершенствования. Усовершенствования эти, впрочем, не носили принципиального характера. Я просто придал инструменту несколько меньшие размеры, сделал его целиком из металла и устранил кое-какие конструктивные дефекты, которых в приборе Джевонса, надо сознаться, было довольно порядочно. Некоторым дальнейшим шагом вперед было присоединение к инструменту особого светового экрана, на который передается работа машины и на котором результаты «мышления» появляются не в условно-буквенной форме, как на самой машине Джевонса, а в обыкновенной словесной форме.
«Машина логического мышления»
Щукарев модернизировал «машину логического мышления» и представил на заседании общества физико-химических наук при Харьковском университете в 1912 году. После этого устройство было представлено еще в нескольких городах Российской империи и наконец в 1914 году предстало перед московским научным сообществом. Демонстрация проходила в Политехническом музее на лекции «Познание и мышление». Машина напоминала коробку высотой 40 см, шириной 5 см и длиной 25 см. Снабжалась клавиатурой, задний ряд — подлежащие, передний ряд — сказуемые. Внутри находилось 16 штанг (палочек) со шрифтом сзади, на каждой по 4 буквы A. B. C. и D. Штанги начинали двигаться при нажатии на кнопки на панели ввода исходных данных (смысловых посылок). В свою очередь штанги воздействовали на световое табло, где в виде слов появлялся конечный результат (логические выводы из заданных смысловых посылок).
Во время презентации, Щукарев постарался наиболее подробно, полно и многогранно показать публике свое устройство. Для наглядности, он задавал машине запутанные логические задачки, «корявость» подачи которых совершенно не сбивала с толку устройство. Ниже представлен пример одной из задач.
Задавались исходные посылки: «серебро есть металл; металлы есть проводники; проводники имеют свободные электроны; свободные электроны под действием электрического поля создают ток». Машина получала такие выводы:
— не серебро, но металл (например, медь) есть проводник, имеет свободные электроны, которые под действием электрического поля создают ток;
— не серебро, не металл, но проводник (например, углерод), имеет свободные электроны, которые под действием электрического поля создают ток;
— не серебро, не металл, не проводник (например, сера) не имеет свободных электронов и не проводит электрический ток.
По принципу если A=AB, а B=BC, то A=ABC или если A=1/p B 2, а B=1/t C 3, то A=1/p 1/t C.
Еще более простой пример произведения интересных выводов из посылок: «вор имел белую шапку и черные волосы» и «Карп имел белую шапку и черные волосы». Получалось: «Карп имел белую шапку и черные волосы и он вор», но далее следовали еще выводы: «Карп, имеющий и то и другое — не вор» и «вор, имеющий и то и другое — не Карп».
«Может ли машина мыслить?»
Как уже было упомянуто выше, появление «мыслящей машины» вызвало множество жарких споров в научном мире. Образовалось два разных лагеря — одни считали изобретение настоящим прорывом в науке, другие же были убеждены, что все это лишь трюки и уловки, потому что процесс логического мышления не поддается механизации.
Мемориальная доска, установленная на фронтоне здания Химического корпуса НТУ «ХПИ»
Разные профессоры высказывали свои мнения. Например, А.Н. Соков воспринял разработку коллеги весьма и весьма положительно. Он провел параллели между арифмометрами, которые умели складывать, вычитать, умножать миллионные числа поворотом рычага с логической машиной, выдающей логические умозаключения с помощью нажатия клавиш.
Но вот совершенно по-другому отозвался профессор И.Е. Орлов. В одном из ведущих идеологических изданий «Под знаменем марксизма», он раскритиковал не только «мыслящую машину», но и всю научную деятельность Щукарева. Статья называлась «О рационализации умственного труда». Орлов обозначил презентацию машины, как комичное представление, показывающее школьное пособие Джевонса в качестве «мыслящего» аппарата. Критик посмеялся и над наивностью слушателей, поверивших, что мышление имеет формальный характер и может быть механизировано.
Но к несчастью, именно негативное мнение Орлова стало преобладающим в научных кругах. В следствии чего «машину логического мышления» начали называть ненаучной, постепенно теряя к ней всякий интерес. В конце 20-х годов Щукарев прекратил публичные демонстрации своей логической машины и передал модель на хранение на кафедру математики Харьковского университета.
И только почти 40 лет спустя ученые вновь вернулись к изучению вопроса о том, способна ли машина мыслить. Поводом для этого стали исследования известного английского математика Алана Мэтисоан Тьюринга (Alan Mathison Turing), опубликовавшего работу “Может ли машина думать?”.
Алан Мэтисон Тьюринг (1912-1954 гг.)
Что же касается «машины логического мышления» Щукарева, то судьба данного устройства затеряна в трагических событиях последовавших войн — Первой Мировой и Гражданской.
Александр Николаевич Щукарев сделал достаточно много для современной науки. Совместно с профессором Лугининым он основал современную термохимию, обнаружил ток поляризации при протекании химической реакции и магнито-химический эффект в электрохимии, выявил влияние деформации кристаллической решетки металлов и влияние ультрафиолетового и рентгеновского облучения на электродный потенциал металлов.
Непосредственно Александру Николаевичу принадлежит выведение именного уравнения кинетики растворения кристаллов, которое стало классическим, приводится в современных учебниках физической химии и широко применяется в исследованиях. Его идея философского структурализма, описанная в работе «Очерки философии естествознания», главным в которой является предположение об упорядоченности мира, была одной из первых в философии науки.
Шесть веков истории логических машин
За последние шесть веков было создано несколько конструкций логических машин, и все они оказались тупиковыми ветками развития компьютеров. Но ведь не будь тупиковых, то, пожалуй, не было бы и основных ветвей.
Когда-то очень давно ту часть компьютера, которую сейчас называют процессором, именовали по-русски и по-английски практически одинаково — АЛУ/ALU, то есть «арифметико-логическим устройством». Сочетание «арифметики» и «логики» в одном термине точно выражает функцию процессора. Действительно, на уровне системы команд процессора компьютер способен выполнять лишь простейшие логические и арифметические операции; все остальное — ни что иное, как надстройка над ними. Совершенствование архитектуры и системы команд позволяет лишь оптимизировать работу процессора, но не изменять ее по существу.
С годами, по мере развития технологий, по мере появления языков программирования, а затем операционных систем и нынешних системных архитектур на базе сервисов, логическая первооснова была погребена под многочисленными этажами надстройки и изрядно подзабыта. Большинству тех, кого принято называть ИТ-специалистами, практически нет нужды знать алгебру логики, предложенную Джоном Булем в XIX веке и реанимированную в середине XX века Клодом Шенноном. Примерно так же отпала необходимость в умении пользоваться шестнадцатеричной системой счисления и понимать принципы работы регистров-сумматоров.
Однако компьютер был, есть и в неопределенном будущем останется всего лишь устройством (пусть и невероятно сложным), способным выполнять логические и арифметические операции. За последние шестьдесят лет на уровне элементарных действий практически ничего не изменилось. В основном используются все та же булева алгебра и те же операции двоичной арифметики. Другими словами, это все тот же двугорбый верблюд, на одном горбу которого написано «логика», а на другом — «арифметика».
Правда, арифметике повезло больше. Обычно историю компьютеров представляют как хронику развития счетных возможностей машин, поэтому традиционно выстраивают последовательность от работ Паскаля и Лейбница к Бэббиджу, затем — к работам первой половины XX века и, далее, к современным компьютерам. Но существует еще и история развития логических машин — менее насыщенная, но не менее интересная. В конечном счете, продвижение по этой ветви и привело к результатам, полученным Шенноном.
Раймонд Луллий и его компьютеры
«Путешествия Гулливера» были написаны Джонотаном Свифтом в жанре сатиры, и лишь с годами эту книгу стали воспринимать как детскую. По законам жанра у многих ее персонажей были совершенно конкретные прототипы. Скажем, в третьей части «Путешествий», где описан визит Гулливера в Великую академию, находящуюся в столице Лапутии, автор осмеивает некоторых не слишком прагматичных ученых. Специфическое отношение к ним Свифта можно понять, если учесть, что по своей «первой специальности» он был разведчиком. Не случайно его любили классики марксизма и советские литературоведы: уж им-то подобная критика науки точно пришлась по душе.
Переходя из комнаты в комнату, Гулливер в одной из них обнаруживает своеобразную конструкцию и выясняет, что огромная, площадью 20 квадратных метров рама представляет собой прибор для открытия отвлеченных истин. На раме располагаются таблички со словами, которые можно произвольно сочетать с помощью встроенного «генератора случайных чисел». Совершив очередную перетасовку, вовлеченные в эксперимент ученые пытаются найти в беспорядочном наборе слов и знаков осмысленные фразы и таким образом создать полный обзор всех наук и искусств. Эту машину Свифт назвал «компьютером», а прототипом ее создателя стал Раймонд Луллий.
Луллий жил за триста лет до появления книги Свифта, и, надо сказать, фигура эта представляется крайне противоречивой. В разные времена Луллия оценивали по-разному, у его идей были приверженцы (в том числе Джордано Бруно) и противники, а сегодня в Европе есть даже несколько центров по изучению его наследия. Этот францисканский монах, испанский философ, мистик, писатель, поэт, миссионер конца XIII — начала XIV веков являл собой пример универсального гения. Современники называли его doctor illuminatus, то есть «озаренный наставник».
|
Рис. 1. Машина и логическая лестница Луллия, XVI век |
Луллий был автором многих трудов, однако в данном контексте интерес представляет его книга Ars Magna («Великое искусство»). Среди прочего в ней излагается метод, посредством которого любой человек может не только легко понять и усвоить все известные истины веры, но даже открыть новые. Этот универсальный способ открытия истин подразумевает использование машины (рис. 1), состоящей из вложенных друг в друга концентрических дисков. Эта машина и стала прототипом свифтовского компьютера.
Вне исторического контекста, представленная как шарж, машина Луллия действительно смешна, но стоит задуматься, почему и для чего она создавалась. Прежде всего, Луллий был миссионером, но, в отличие от инквизиторов, он, францисканец, хотел нести веру не крестом и мечом, а логикой и стремился быть доказательным в своей позиции. Поэтому он, возможно первым из христиан-богословов, стал изучать восточные языки и культуру и оказался одним из тех, кто проложил мостик между древней культурой Востока и культурой Возрождения Запада.
Он хотел говорить с иноверцами на их языке, используя для этого, как бы сегодня сказали, формальную логику. Ему были знакомы алгебраические труды Аль Хорезми и само понятие «алгоритм», а во время путешествий по Северной Африке он видел гадальные устройства, состоящие из концентрических вращающихся дисков. Сочетая алгоритмическую основу с дисковой механикой, Луллий намеревался создать инструмент для получения логических доказательств.
Свифт назвал машину Луллия «компьютером» вслед за Лейбницем, который считал, что научный спор можно решить с помощью бумаги, пера и вычислений. В английском переводе его тезис звучит так: Gentlemen, let us compute! (Надо иметь в виду, что до недавнего времени под словом compute понимали как доказательство чего-то математическими средствами, а не просто как вычисление.)
|
Рис. 2. Диаграммы Луллия |
О том, насколько удачным оказался опыт использования этой машины, сказать трудно. Однако, попутно Луллий сделал целый ряд открытий. Задолго до Буля он сформулировал идею создания «алфавита для мыслей», выдвинул принципы логического анализа, изложил свои соображения об эвристических и дедуктивных методах (правда, представленных в зародышевой форме). Помимо машин он использовал то, что мы называем теорией графов, табличные и графические формы представления информации. В его трудах можно найти диаграммы (рис. 2), весьма похожие на применяемые сейчас диаграммы Венна. Все это дает основание считать Луллия первооткрывателем формальных логических методов, а его машину — предшественником современных компьютеров, пусть полумифическим. (Биографический очерк «Блистательный мастер Раймонд Луллий» можно найти по адресу http://www.trizland.ru/trizba/pdf-articles/ master_Lullii.pdf.)
Логические машины Стэнхоупа и Сми
В Англии XIX века были предприняты дальнейшие попытки построить логическую машину. Начало им положил лорд Чарльз Стэнхоуп (1753-1816), известный политический деятель и изобретатель. На его счету — несложные оптические приборы и металлическое перо для письма, но наиболее интересна логическая машина, поучившая название Stanhope Demonstrator, то есть «Демонстратор Стэнхоупа» (рис. 3). В отличие от компьютера Луллия, это была совершенно рациональная конструкция, но и ее судьба оказалась не без странностей: хотя Стэнхоуп построил Демонстратор в самом начале XIX века, первая статья о нем датируется лишь 1879 годом.
|
Рис. 3. Фрагмент из описания Stanhope Demonstrator |
Основой этой машины является двумерная матричная конструкция, а потому с ее помощью можно решать лишь простые логические и вероятностные задачи с двумя аргументами. Например, ей доступна известная задача из книги Я.И. Перельмана «Занимательная алгебра»: если 8 из 10 предметов имеют качество А, а 4 из тех же 10 предметов — качество B, то по меньшей мере два предмета имеют оба качества. Или же если вероятность события A = 0,5, а события В = 0,2, то условная вероятность равна 0,1.
Еще одной интересной фигурой был хирург Альфред Сми (1818-1877), увлекавшийся электробиологией (так называли влияние электричества на жизнедеятельность организма). Сми выдвинул утопический проект создания искусственного мозга, состоящего из двух машин — реляционной и дифференциальной. При использовании доступных изобретателю технологий эта машина, будь она построена, заняла бы площадь, сопоставимую с территорией Лондона тех времен. В 1851 году Сми опубликовал книгу «Процесс мышления», которая стала популярной в Англии и способствовала распространению взглядов, предполагающих возможность механизации мышления.
Второе поколение логических машин
Стэнли Джевонс (1835-1882) в русскоязычной литературе известен как выдающийся экономист, но он был еще и одаренным математиком. Ему повезло с преподавателем, которым оказался Август де Морган, друживший с Чарльзом Бэббиджем. В свое время Джевонс прочитал «Процесс мышления» Сми, ознакомился с работой Чарльза Стэнхоупа, а книга «Законы мышления» подвигла его вступить в переписку с Джоном Булем. В 1874 году он выпустил собственную книгу «Принципы науки». Как математика, Джевонса в наибольшей степени интересовали теория вероятностей и логика.
Все это стимулировало Джевонса к созданию собственной логической машины, которую назвали логическим пианино (рис. 4) из-за внешнего сходства с этим музыкальным инструментом. Машина, построенная знакомым Джевонса, часовым мастером, представляла собой конструкцию высотой около метра. Ее клавиатура использовалась для ввода аргументов, а с помощью пластинок на лицевой части задавалась таблица истинности. В силу понятных ограничений она не могла использоваться для решения сложных задач, да и не предназначалась для таких целей — это было всего лишь учебное пособие.
|
Рис. 4. Логическое пианино Стэнли Джевонса |
Показательно, что одним из тех, кто изучал логику с помощью машины Джевонса, был Джон Венн (1834-1923). Готфрид Лейбниц и Леонард Эйлер использовали диаграммы для иллюстрации логических задач, но лишь Венн их систематизировал. В 1880 году он опубликовал статью, в которой диаграммы описывались точно в таком же виде, в каком они сегодня используются в началах теории множеств.
Конструктивным развитием машины Джевонса были устройства, построенные в США профессором Принстонского университета Алленом Макгвардом и Бенжаменом Бураком. А последней логической машиной стало электромеханическое детище Уильяма Буркхарда и Теодора Калина, созданное по мотивам работ Шеннона.
Ни одна из логических машин не использовалась для практических целей. В основном они оставались учебными пособиями, позволявшими продемонстрировать возможность механизации логических операций. Признано, что первым доказательно установил изоморфизм между коммутируемыми цепями и логическими функциями Клод Шеннон. Сначала он описал это в дипломной работе в Массачусетском технологическом институте, а затем в статье, опубликованной в 1938 году. В России на возможность физической интерпретации логических функций первым указал петербургский профессор П.С. Эренфест (1910 год), а развил подобные взгляды В.И. Шестаков в статье «О физической интерпретации булевых функций», напечатанной в 1941 году.
Поделитесь материалом с коллегами и друзьями