Солнце как красный гигант
Что случится с Солнцем в будущем?
Череда невероятных совпадений привела к тому, что где-то в бесконечном космическом океане, в ничем не примечательной галактике возле самой обычной звезды зародилась жизнь. Это немного странно, но именно энергия Солнца позволила мне написать эту статью, а вам – прочитать ее. Солнце – символ самой жизни. Неудивительно, что наши предки поклонялись ему, наделяя звезду божественной силой. Но если жизнь на Земле когда-нибудь исчезнет, что произойдет с Солнцем? Современная наука и технологии позволили нам не только заглянуть в прошлое Вселенной, но и предсказать будущие события. Из этой статьи вы узнаете, поглотит ли Солнце Венеру, Меркурий и Землю.
Наше Солнца – самая обычна звезда по галактическим меркам
Начнем с того, что Солнце – это обычная звезда. Она озаряет Солнечную систему светом и теплом, устанавливая суточные циклы сна и бодрствования у всех живых организмов на нашей планете. Но Солнце не всегда будет таким. Наступит время, когда наша родная звезда погибнет, а вся Солнечная система превратится в очень неприятное место. Важно понимать, что все физические процессы протекающие на Солнце, в значительной степени определяют физику планет (по крайней мере ближайших к звезде).
Среднее расстояние от Земли до Солнца составляет 150 миллионов километров. Свет преодолевает это расстояние за 8 минут. Для сравнения – следующая ближайшая к нам звезда Проксима Центавра находится от нас на расстоянии 4 световых лет.
Астрономы классифицируют Солнце как молодую звезду с высоким содержанием металлов. Это значит, что Солнце образовалось из останков более древних звезд. Текущий возраст нашего светила исследователи оценивают приблизительно в 4,6 миллиардов лет, а значит, звезда прожила примерно половину своей жизни, так как ее взросление – фаза главной последовательности – длится 10 миллиардов лет. После завершения этого срока наступит следующий этап ее эволюции. По мере того, как Солнце расходует запасы своего водородного топлива, оно становится все горячее, а его светимость увеличивается. К тому моменту, когда Солнце отметит свой 5,6 миллиардный день рождения, оно будет в 11 раз ярче, чем сегодня.
Ничто во Вселенной не вечно, тем более звезды
Исследователи полагают, что уже к этому моменту на нашей планете либо произойдет кардинальное изменение жизни, либо она и вовсе исчезнет. Вообще, некоторые ученые считают, что человеческая цивилизация погибнет задолго до того, как Солнце превратится в красного гиганта. Подробнее об этом я рассказывала в предыдущей статье.
Красный гигант
Красные гиганты – это звезды, в ядрах которых горение водорода прекратилось. По этой причине в ядре больше не выделяется энергия и оно начинает быстро сжиматься и нагреваться под действием сил гравитации. Так как во время сжатия температура ядра поднимается, то оно поджигает водород в окружающем ядро тонком слое.
Превращение желтого карлика в красного гиганта является одним из самых необычных превращений, известных современной науке: гелиевое ядро Солнца, размером с гигантскую планету, сжимается и нагревается. В ответ на это Солнце станет шире в 100 раз. Разросшееся светило поглотит Меркурий и Венеру, а возможно, и Землю. Астрономы, наблюдающие из другой Солнечной системы, классифицировали бы эту раздутую версию нашего Солнца как красного гиганта.
Еще больше интересных статей о нашей галактике, Солнечной системе и Вселенной читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте.
Необходимо отметить, что с превращением Солнца в красный гигант неизбежно произойдут новые виды термоядерных реакций, в результате которых ядро звезды еще больше сожмется и нагреется. Когда температура ядра достигнет 100 миллионов градусов по Цельсию, гелий воспламенится и начнет плавиться в углерод и кислород. Это приведет к тому, что Солнце будет несколько уменьшаться, но через некоторое время – и в течение следующих 100 миллионов лет – оно снова начнет расширяться. На последней фазе жизни произойдет циклический, мягкий выброс газа – астрономы называют это планетарной туманностью.
Вот какую красоту оставляют после себя красные гиганты
Еще три с половиной миллиарда лет спустя яркость Солнца возрастет на 40%. К этому времени, как полагают исследователи, наша планета превратится в нечто, напоминающее современную Венеру: вода с поверхности Земли полностью исчезнет, что приведет к окончательной гибели всех наземных организмов (при условии, что они смогли адаптироваться к изменившимся условиям миллиарды лет назад). Спустя еще 6,4 миллиардов лет, Солнце начнет относительно быстро расширяться, сохраняя постоянную светимость. В итоге через 7 миллиардов лет от настоящего времени наша родная звезда превратится в субгиганта – звезду, в ядре которой закончилось все водородное топливо.
Сегодня около 10 миллиардов красных гигантов пылают в галактике Млечный Путь. Среди всех этих старых звезд, возможно, некоторые породили новую жизнь в далеких мирах, наподобие Европы и Энцелада. Как думаете, могут ли формы жизни развиваться на планетах во время разных этапов звездной эволюции? Поделитесь ответом в комментариях к этой статье и присоединяйтесь к участникам нашего Telegram чата, где мы общаемся обо всем на свете.
Красный гигант
Все звёзды, которые видны с Земли, кажутся одинаковыми маленькими точками. Однако на самом деле существует огромное количество разновидностей звёзд, отличающихся друг от друга габаритами, интенсивностью излучаемого света и температурой. Наиболее большая и яркая звезда – красный гигант.
Как появляется красный гигант?
Астрономы знают о существовании разных типов звёзд. Классифицируются они по размерам и имеющимся спектральным характеристикам, благодаря которым можно узнать много новой и полезной информации о далёких небесных объектах.
В начале 1910 года учёными была разработана специальная диаграмма, в которой упростили классификацию звёзд и показали основные этапы их эволюции. Также с её помощью была показана зависимость между светимостью, размером и спектральным классом звёздных тел. Звёзды, находящиеся на диаграмме, образуют на ней несколько отдельных участков. Большинство из них располагаются в области, которую часто называют главной последовательностью.
На диаграмме есть отдельное место для сверхгигантов и красных гигантов. Здесь располагаются объекты, находящиеся на финальном этапе своей жизни. Феномен превращения звёзд в красных гигантов объясняется просто. Практически всю свою жизнь светила питаются энергией, которая генерируется внутри их ядра. Однако со временем все реакции постепенно останавливаются, после чего в центральной части образуется огромное гелиевое ядро. Именно из-за этого светила превращаются в красных гигантов. Если звезда слишком большая, она становится сверхгигантом.
Бывают ли «молодые» гиганты?
Некоторые небесные объекты достигают поздних спектральных классов ещё до начала завершения своей жизни. Бывают случаи, когда процесс преобразования в красного гиганта начинается в самом начале звездообразования. У таких светил излучение осуществляется благодаря гравитации, образующейся из-за сжатия объекта. Длительность трансформации напрямую зависит от массы и габаритов звезды и продолжаются от
Благодаря сжатию повышается температура звёзд и уменьшается их размер. Это приводит к снижению светимости. В результате в центре светила начинаются термоядерные реакции, после чего они попадают в главную последовательность. Несмотря на то что «молодые» и «старые» гиганты очень похожи друг на друга, астрономы называют красными гигантами только те объекты, которые дошли до поздних этапов эволюции. Молодые светила, находящихся в начальной стадии своего формирования, называют протозвёздами.
Общие характеристики и описание
Красный гигант – светило, которое относится к спектральным классам М и К. В сравнении с другими звёздами, температурные показатели на поверхности таких объектов не очень большие и достигают всего 5000 К. Однако несмотря на это, их всё равно хорошо видно на небосклоне благодаря большим габаритам.
Красный гигант превосходить солнечный радиус в 500-700 раз. Также у них огромная площадь поверхности, которая в 100-120 раз больше Солнца. Именно невысокая температура и огромные размеры являются основными характеристиками красных гигантов.
Температура поверхности у таких светил невысокая и поэтому их красный свет имеет яркий желтоватый оттенок. К характерным особенностям этих звёзд можно отнести наличие металлов в излучаемом спектре. Также в нём присутствуют устойчивые молекулы.
Красный гигант имеет небольшую плотность. Иногда она в миллионы раз меньше, чем у Солнца. Ядро у таких звёзд, наоборот, очень плотное. Оно покрыто обширной горячей оболочкой. В некоторых случаях вес ядра составляет десятую часть от общей массы светила. Это приводит к истечению вещества из звёздного ядра. Этот процесс может начаться и из-за других обстоятельств:
После истечения вещества у звёзд начинает формироваться гелиевое ядро. Оно не участвует в термоядерных реакциях, что приводит к увеличению температуры до 2*10 8 К. Под воздействием высоких температурных показателей гелий начинает сливаться с углеродом. У звезды образуется новое углеродно-кислородное ядро. В результате описанных изменений температура, размер и масса ядра начинают постепенно увеличиваться. При этом само светило начинает сжиматься и угасать. На финальной стадии эволюции красный гигант становится белым карликом.
Что случится, когда Солнце станет красным гигантом?
Сейчас возраст Солнца составляет 4,5 миллиарда лет. Учёные сходятся во мнении, что ещё примерно столько же времени осталось до начала трансформации Солнца в красного гиганта. Через каждые 70-80 миллионов лет светимость звезды будет возрастать на 1%. Сейчас это никак не сказывается на жизни людей. Однако в будущем это станет серьёзной проблемой для человечества.
Вместе со светимостью возрастает и количество выделяемой тепловой энергии Солнца. Это приведёт к появлению парникового эффекта, который серьёзно повлияет на климат. Со временем у звезды выгорит водород и образуется ядро из гелия. Такие изменения приведут к тому, что Солнце увеличится в несколько раз и поглотит Меркурий с Венерой. По подсчётам учёных после выгорания водорода размер светила должен увеличиться в 250 раз.
Увеличение размеров будет сопровождаться стремительным уменьшением массы. Ежегодно Солнце будет терять 5000 тонн. Из-за этого Сатурн и Нептун лишатся всех лун. С неприятными изменениями столкнётся и наша планета. Жизнь на Земле станет невозможной. На ней исчезнет атмосфера, а все существующие сегодня океаны выкипят. Несмотря на такие изменения Земля сможет просуществовать ещё миллиард лет, после чего её поглотит Солнце.
Последний вздох Ученые назвали срок гибели всего живого на Земле. Как именно это произойдет?
В будущем, примерно через семь миллиардов лет, Солнце станет горячее и превратится в красный гигант, который, скорее всего, поглотит Землю. Но планета перестанет быть пригодной для обитания живых организмов намного раньше. Это произойдет не только из-за испарения океанов, но и из-за серьезных изменений в составе атмосферы. «Лента.ру» подробно рассказывает о новой научной работе ученых из США и Японии, которые считают, что максимальный срок существования сложной жизни на Земле — около одного миллиарда лет.
Тысячи судеб
В настоящее время биосфера Земли поддерживает долю кислорода в атмосфере на уровне 20 процентов за счет фотосинтезирующих организмов. Известно, что большую часть истории Земли уровень кислорода был ниже, чем в наши дни, а его концентрация в атмосфере начала повышаться только после появления наземных растений. Эволюция биосферы ускорила геохимические циклы таких важных для жизни химических элементов, как фосфор. Однако фотосинтеза самого по себе недостаточно для поддержания высокого уровня кислорода на планете.
Предыдущие исследования, посвященные обитаемости Земли в будущем, были сосредоточены на взаимосвязи между разогреванием Солнца при его превращении в красного гиганта, карбонат-силикатным геохимическим циклом и потерями воды. С течением времени, по мере того как Солнце становится ярче, концентрация углекислого газа будет падать, что нарушит важные для биосферы геохимические циклы. Ряд теоретических моделей предполагает, что климат Земли в ближайшие два миллиарда лет станет влажным из-за мощного парникового эффекта, в результате чего большое количество воды начнет улетучиваться из стратосферы в космос.
Круговорот углерода на Земле
В новом исследовании ученые спрогнозировали обитаемость Земли в будущем на основе подробной модели, отслеживающей влияние Солнца на такие геохимические циклы, как цикл углерода, кислорода, фосфора и серы. Специалисты добавили к этому цикл метана, включающий метаболизм живых организмов, а также окислительно-восстановительный обмен между корой и мантией, позволяющий отследить процессы, контролирующие уровень кислорода в атмосфере в геологических масштабах времени. Такая модель способна охватить миллиарды лет истории планеты в будущем.
Исследователи использовали стохастический подход, случайным образом подбирая значения параметров для модели, включая изменения в скорости дегазации мантии Земли, а также ускорения эрозии. Они задали начальные условия (этап инициализации) для Земли 600 миллионов лет назад, а затем прогнали модель приблизительно 400 тысяч раз, охватив эволюцию планеты до настоящего времени. Из всей выборки прогонов лишь около пяти тысяч воспроизвели условия на Земле, приближенные к современным. Именно они были использованы для прогнозирования будущего.
Все плохо
Несмотря на некоторую неопределенность, ни по одному из сценариев обогащенная кислородом атмосфера не будет существовать дольше 1,5 миллиарда лет. Это реализуется лишь в заведомо невозможном сценарии, где Солнце не увеличивает свою яркость.
Именно уменьшение количества поступающего в атмосферу углекислого газа приведет к фотохимической дестабилизации атмосферы и резкому падению уровня кислорода. Это происходит как за счет геохимического цикла углерода, затрагивающего цикл кислорода, так и из-за снижения биосферной активности, то есть глобального фотосинтеза. Так, растения с С3-фотосинтезом (большинство растений используют именно этот тип фотосинтеза) исчезнут примерно через 500 миллионов лет, что ударит по атмосферной оксигенации.
Сравнительные размеры Солнца в настоящее время и красного гиганта
Из-за исчезновения растений подавляется химическое выветривание и связанный с ним цикл фосфора, при котором важное минеральное вещество попадает с суши в океан. Уровень активности морских экосистем со временем тоже уменьшится.
Биосфера на Земле станет похожа на ту, что существовала во времена архея, до Великого кислородного события 2,45 миллиарда лет назад. В частности, уровень атмосферного кислорода при новом равновесном состоянии окажется на много порядков ниже, чем в настоящее время, а уровень метана резко возрастет. В то же время будет одно существенное отличие: снижение уровня углекислого газа, что увеличивает соотношение CH4 и CO2 и приводит к появлению органической дымки.
После того как глобальная температура поверхности Земли превысит 300 кельвинов, дальнейшее потепление начнет подавлять остаточную наземную и морскую биосферную активность. В любом случае на планете не сможет жить никто, кроме микроорганизмов.
Другие миры
Как пишут авторы работы, органическая дымка может послужить биосигнатурой (признаком существования жизни) на планетах типа Земли, находящихся в системе звезд главной последовательности. Такой потенциальной планетой считается, например, Kepler-452b, вращающаяся вокруг звезды G2, чей возраст достигает примерно шесть миллиардов лет. В настоящее время этот мир получает от родительской звезды на 10 процентов больше тепла, чем Земля от Солнца. Органическая дымка также способна обеспечить долгосрочную стабильность нового типа климата в будущем.
Представление художника о гибели Земли
Использованные учеными модели включали влияние биосферы Земли, однако планеты могут иметь и совершенно непохожие биосферы — например, лишенные растительного покрова. Чтобы изучить, насколько существенно это влияние, ученые исключили земную биосферу из модели. Как и ожидалось, отсутствие наземных растений приводит к более низким уровням атмосферного O2 на протяжении всей планетарной эволюции. Однако кислорода все равно останется достаточно в течение миллиарда лет, чтобы его можно было обнаружить с помощью астрономических инструментов. Такой результат предполагает, что наличие или отсутствие земной биосферы (но не биосферы вообще) оказывает лишь вторичное влияние на деоксигенацию воздушной оболочки.
Работа исследователей поможет поиску потенциально пригодных для жизни планет, поскольку время, когда существует кислородная атмосфера, сильно ограничено, и лишь часть истории Земли будет характеризоваться надежно обнаруживаемыми уровнями кислорода. Прямое обнаружение O2 в видимом диапазоне длин волн будет сложной задачей на протяжении большей части времени существования планеты типа Земли за исключением 1,5-2 миллиарда лет. Это примерно соответствует 20-30 процентам времени существования Земли как обитаемого мира, включая эпоху микробов. В то же время наблюдения за следами озона в ультрафиолетовых волнах могут расширить это «окно».
Красный гигант или как стареют небесные звезды
Наблюдателю с Земли все звезды кажутся одинаковыми мерцающими точками, которые отличаются друг от друга только своей яркостью. В действительности небо устроено гораздо сложнее. Сегодня ученым известно множество типов звезд, отличающихся размером, температурой и излучаемым светом. Они рождаются, проживают интересную и долгую жизнь, длящуюся миллиарды лет, а затем умирают или превращаются в черные дыры. Однако перед окончательным угасанием светила, проходят удивительные метаморфозы — они кардинально меняют свой облик.
На завершающих стадиях своей эволюции звезды превращаются в красных гигантов или сверхгигантов — объекты, чей радиус в сотни раз превышает солнечный. Примерами таких «престарелых» звезд могут служить Мира, Арктур, Альдебаран и Гакрукс. На диаграмме Герцшпрунга — Рассела большинство звезд данного класса находятся на ветви красных гигантов. Они имеют значительную светимость, а также очень протяженные и обширные оболочки.
Солнце также превратится в красного гиганта, после чего жизнь на нашей планете станет невозможной. Но произойдет это через несколько миллиардов лет, так что у человечества есть время основательно подготовиться и найти себе новый дом во Вселенной.
Как появляются звезды-гиганты или немного о небесной эволюции
Астрономам известно множество звезд различных типов: горячих и холодных, больших и маленьких. Для классификации этих небесных объектов используются их абсолютные величины и спектральные характеристики. Спектр дает представление не только о температуре, но и о химическом составе небесного объекта.
В 1910 году ученые Эйнар Герцшпрунг и Генри Рассел, независимо друг от друга разработали диаграмму, значительно упрощающую классификацию звездных объектов и дающую четкое представление об этапах их развития. Кроме того, она наглядно демонстрирует взаимную зависимость спектрального класса, звездной величины и светимости.
Звезды расположены на данной диаграмме не хаотично, а образуют четко выраженные участки. 90% от их общего количества находятся в области, которую называют главной последовательностью. Кроме нее, на диаграмме существует область красных гигантов и сверхгигантов, в которой расположены светила, находящиеся на завершающем этапе своей эволюции.
Данный феномен очень просто объяснить: большую часть жизни звезда получает энергию от реакций, протекающих в ее центральной области. Это протон-протонный цикл, а для массивных звезд — CNO-цикл. После прекращения термоядерных реакций формируется гелиевое ядро, и звезда становится красным гигантом.
Дальнейшая судьба светила зависит от его массы. Если она меньше десяти солнечных, то звезда превращается в красного гиганта, а затем в сверхгиганта, но если больше, то сразу в сверхгиганта. Существует и промежуточный этап – стадия субгиганта, во время которой горение гелия еще не началось, а слияние в ядре водорода уже не происходит.
Но и это еще не финал. Стадия красного гиганта относительно коротка: она занимает примерно десятую часть от общего времени существования светила.
«Юные» гиганты
Объекты в процессе звездной эволюции могут достигать поздних спектральных классов не только на завершающих этапах своей жизни. Образование красного гиганта возможно и в начальный период звездообразования. На этом этапе излучение происходит за счет энергии гравитации, которая образуется при сжатии объекта. Продолжительность данной фазы находится в прямой зависимости от размера и массы звезды: если она больше десяти солнечных масс, то стадия красного гиганта продолжается примерно 103 лет, а для небольших звезд он составляет приблизительно 108 года.
Сжатие уменьшает площадь и повышает ее температуру, что существенно снижает светимость. В конце концов, в недрах объекта зажигаются термоядерные реакции, и молодая звезда выходит на главную последовательность. Несмотря на большое сходство между «юными» и «пожилыми» гигантами, астрономы обычно применяют подобное обозначение для объектов, которые в процессе своей эволюции дошли до поздних этапов. Объекты в период звездообразования обобщенно называются протозвездами. Примером может служить Т Тельца.
Описание и общие характеристики
Температура оболочки звезд этого класса приблизительно равна уровню нагрева нити лампы накаливания, поэтому их свет ближе не к красному, а к желтому или охристому цвету. Характерной особенностью является присутствие в спектре излучений металлов и молекулярных полос: сравнительно небольшая температура фотосферы позволяет молекулам сохранять устойчивость.
Плотность красных гигантов относительно мала – иногда она меньше в несколько миллионов раз, чем у солнечного вещества. Звезды этого класса имеют горячее плотное ядро и очень обширную оболочку. На небольшое ядро приходится приблизительно 10% от общего веса объекта. Такое строение приводит к значительному истечению вещества и стремительному уменьшению массы. В год она может достигать 10−6—10−5 M☉.
Данному процессу способствует ряд обстоятельств:
На первом этапе после исчерпания водорода формируется гелиевое ядро, которое не принимает участия в термоядерных реакциях – горение водорода продолжается в слое, окружающем его. Когда температура достигает значения 2*108 К, стартует слияние гелия (тройной альфа-процесс) с образованием углерода. После выгорания гелия, в недрах звезды формируется кислородно-углеродное ядро с вырожденным веществом и двумя неустойчивыми слоями горения: гелия, который находится ближе к центру, и водорода, расположенного в более внешней оболочке ядра. У небольших звезд горение гелия может происходить очень активно.
В результате вышеописанных метаморфоз масса звездного ядра увеличивается, повышается его температура, оно сжимается. У красных гигантов с небольшими массами, ядра не доходят до стадии возгорания углерода, и в конце своей эволюции они превращаются в белые карлики. В ядрах более тяжелых объектов проходят стадии выгорания целого ряда элементов. У них процессы нуклеосинтеза завершаются формированием ядер из железа.
Среди красных гигантов и сверхгигантов имеются переменные звезды, которые под действием тех или иных физических процессов меняют яркость. Причем эти изменения могут носить как периодический, так и непериодический характер. В качестве примера можно привести мириды, период пульсаций которых составляет от нескольких суток до двух-трех лет.
Что будет, когда Солнце превратится в красного гиганта
А что ожидает нашу звезду? Когда Солнце станет красным гигантом, и какие последствия это будет иметь для Земли и остальных планет?
Сейчас Солнце находится в «расцвете лет» – его возраст можно назвать средним. Он составляет примерно 4,57 млрд лет, и до финальной стадии нашей звезде еще очень далеко. Еще минимум 5 млрд лет она будет радовать нас теплом и светом, постепенно выжигая водородное топливо.
Каждые 100 миллионов лет его светимость будет увеличиваться на один процент. В будущем это, скорее всего, станет серьезной проблемой, так как вместе со светимостью будет расти и поток тепловой энергии, выделяемый нашим светилом. Вероятно, перед нашими далекими потомками встанет проблема парникового эффекта, аналогичного тому, что действует на Венере в наши дни.
После выгорания водорода, в центре звезды образуется ядро из гелия, который позже начнет сливаться в углерод. Для планет и других объектов нашей системы эти метаморфозы будут иметь самые печальные последствия: звезда увеличится практически до орбиты нашей планеты (в двести раз), поглотив Венеру и Меркурий. Астероиды оплавятся и потеряют свои летучие компоненты. В момент своего максимального расширения Солнце будет иметь радиус в 256 раз больше, чем сегодня. При этом оно будет стремительно терять массу из-за «звездного ветра». К моменту достижения земной орбиты наша звезда ежегодно будет лишаться 4,9 х 1020 тонн всего веса. За счет этого вещества могут значительно «набрать вес» планеты — газовые гиганты: Юпитер, Нептун и Сатурн. Правда, при этом они гарантированно лишатся колец и лун.
Земля, вероятно, окажется за пределами фотосферы, но мощные гравитационные силы звезды, скорее всего, захватят ее и бросят в недра Солнца. Часть ученых считает, что Земля и другие планеты, наоборот, будут отброшены дальше в глубокий космос. Но даже если наша планета избежит поглощения, любая жизнь на ней станет невозможной из-за экстремально высоких температур. За миллиард лет до гибели Земля лишится атмосферы, а океаны просто выкипят.
Любопытные метаморфозы ожидают Солнечную систему. Расширение звезды не только поглотит ближайшие к ней планеты, но и сдвинет зону обитаемости – теперь она будет простираться вплоть до пояса Койпера. Его объекты будут получать столько света и тепла, сколько сегодня достается нашей планете. Миры, скованные льдом на протяжении миллиардов лет, наконец-то дождутся тепла. Жидкая вода появится даже за орбитой Плутона, однако, до нее все превратится в безжизненную и выжженную пустыню.
Продлится все это буйство недолго – в стадии гиганта Солнце пробудет всего сто миллионов лет. После этого на его месте образуется туманность, в центре которой будет находиться белый карлик. Его притяжение уже не сможет удерживать планеты на их орбитах, что приведет к их столкновениям и образованию огромного количества астероидов.