Степень икс как найти

Степенные или показательные уравнения.

Для начала вспомним основные формулы степеней и их свойства.

Произведение числа a само на себя происходит n раз, это выражение мы можем записать как a•a•…•a=a n

3. a n • a m = a n + m

Степенные или показательные уравнения – это уравнения в которых переменные находятся в степенях (или показателях), а основанием является число.

Примеры показательных уравнений:

В данном примере число 6 является основанием оно всегда стоит внизу, а переменная x степенью или показателем.

Приведем еще примеры показательных уравнений.
2 x *5=10
16 x — 4 x — 6=0

Теперь разберем как решаются показательные уравнения?

Возьмем простое уравнение:

Такой пример можно решить даже в уме. Видно, что x=3. Ведь чтобы левая и правая часть были равны нужно вместо x поставить число 3.
А теперь посмотрим как нужно это решение оформить:

Для того, чтобы решить такое уравнение, мы убрали одинаковые основания (то есть двойки) и записали то что осталось, это степени. Получили искомый ответ.

Теперь подведем итоги нашего решения.

Алгоритм решения показательного уравнения:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания не одинаковые ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Теперь прорешаем несколько примеров:

Основания в левой и правой части равны числу 2, значит мы можем основание отбросить и приравнять их степени.

x+2=4 Получилось простейшее уравнение.
x=4 — 2
x=2
Ответ: x=2

В следующем примере видно, что основания разные это 3 и 9.

Для начала переносим девятку в правую сторону, получаем:

Получим 9 х+8 =(3 2 ) х+8 =3 2х+16

3 3х = 3 2х+16 теперь видно что в левой и правой стороне основания одинаковые и равные тройке, значит мы их можем отбросить и приравнять степени.

3x=2x+16 получили простейшее уравнение
3x — 2x=16
x=16
Ответ: x=16.

Смотрим следующий пример:

И еще используем одну формулу a n • a m = a n + m :

Добавляем в уравнение:

2 2х •2 4 — 10•2 2х = 24

Посчитаем выражение в скобках:

2 4 — 10 = 16 — 10 = 6

Все уравнение делим на 6:

2 2х = 2 2 основания одинаковые, отбрасываем их и приравниваем степени.
2х = 2 получилось простейшее уравнение. Делим его на 2 получаем
х = 1
Ответ: х = 1.

Преобразуем:
9 х = (3 2 ) х = 3 2х

Получаем уравнение:
3 2х — 12•3 х +27 = 0

Основания у нас одинаковы равны трем.В данном примере видно, что у первой тройки степень в два раза (2x) больше, чем у второй (просто x). В таком случаем можно решить методом замены. Число с наименьшей степенью заменяем:

Тогда 3 2х = (3 х ) 2 = t 2

Заменяем в уравнении все степени с иксами на t:

t 2 — 12t+27 = 0
Получаем квадратное уравнение. Решаем через дискриминант, получаем:
D=144-108=36
t1 = 9
t2 = 3

Возвращаемся к переменной x.

3 х = 9
3 х = 3 2
х1 = 2

Один корень нашли. Ищем второй, из t2:
t2 = 3 = 3 х
3 х = 3 1
х2 = 1
Ответ: х1 = 2; х2 = 1.

На сайте Вы можете в разделе ПОМОГИТЕ РЕШИТЬ задавать интересующие вопросы мы Вам обязательно ответим.

Источник

Степень икс как найти

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень. »
И для тех, кто «очень даже. » )

Что такое показательное уравнение? Это уравнение, в котором неизвестные (иксы) и выражения с ними находятся в показателях каких-то степеней. И только там! Это важно.

Вот вам примеры показательных уравнений:

это будет уже уравнение смешанного типа. Такие уравнения не имеют чётких правил решения. Мы их пока рассматривать не будем. Здесь мы будем разбираться с решением показательных уравнений в чистом виде.

Вообще-то, даже чистые показательные уравнения чётко решаются далеко не всегда. Но существуют определённые типы показательных уравнений, которые решать можно и нужно. Вот эти типы мы и рассмотрим.

Решение простейших показательных уравнений.

Для начала решим что-нибудь совсем элементарное. Например:

Даже безо всяких теорий, по простому подбору ясно, что х=2. Больше-то никак, верно!? Никакое другое значение икса не катит. А теперь глянем на запись решения этого хитрого показательного уравнения:

Что мы сделали? Мы, фактически, просто выкинули одинаковые основания (тройки). Совсем выкинули. И, что радует, попали в точку!

Действительно, если в показательном уравнении слева и справа стоят одинаковые числа в каких угодно степенях, эти числа можно убрать и приравнять показатели степеней. Математика позволяет. Остаётся дорешать куда более простое уравнение. Здорово, правда?)

Однако, запомним железно: убирать основания можно только тогда, когда слева и справа числа-основания находятся в гордом одиночестве! Безо всяких соседей и коэффициентов. Скажем, в уравнениях:

двойки убирать нельзя!

Ну вот, самое главное мы и освоили. Как переходить от злых показательных выражений к более простым уравнениям.

Рассмотрим примеры, которые требуют некоторых дополнительных усилий для приведения их к простейшим. Назовём их простыми показательными уравнениями.

Решение простых показательных уравнений. Примеры.

К действиям со степенями надо добавить личную наблюдательность и смекалку. Нам требуются одинаковые числа-основания? Вот и ищем их в примере в явном или зашифрованном виде.

Посмотрим, как это делается на практике?

Пусть нам дан пример:

Если вспомнить формулку из действий со степенями:

то вообще отлично получается:

8 х+1 = (2 3 ) х+1 = 2 3(х+1)

Исходный пример стал выглядеть вот так:

Переносим 2 3 (х+1) вправо (элементарных действий математики никто не отменял!), получаем:

Вот, практически, и всё. Убираем основания:

Решаем этого монстра и получаем

Это правильный ответ.

Степени некоторых чисел надо знать в лицо, да. Потренируемся?

Определить, какими степенями и каких чисел являются числа:

2; 8; 16; 27; 32; 64; 81; 100; 125; 128; 216; 243; 256; 343; 512; 625; 729, 1024.

Ответы (в беспорядке, естественно!):

Предположим, что вы приняли к сведению информацию о знакомстве с числами.) Напомню ещё, что для решения показательных уравнений применим весь запас математических знаний. В том числе и из младших-средних классов. Вы же не сразу в старшие классы пошли, верно?)

Например, при решении показательных уравнений очень часто помогает вынесение общего множителя за скобки (привет 7 классу!). Смотрим примерчик:

По тем же правилам действий со степенями:

Вот и отлично, можно записать:

Мы привели пример к одинаковым основаниям. И что дальше!? Тройки-то нельзя выкидывать. Тупик?

Вовсе нет. Запоминаем самое универсальное и мощное правило решения всех математических заданий:

Глядишь, всё и образуется).

Что в этом показательном уравнении можно сделать? Да в левой части прямо просится вынесение за скобки! Общий множитель 3 2х явно намекает на это. Попробуем, а дальше видно будет:

Что ещё можно сделать? Посчитать выражение в скобках:

Пример становится всё лучше и лучше!

Вспоминаем, что для ликвидации оснований нам необходима чистая степень, безо всяких коэффициентов. Нам число 70 мешает. Вот и делим обе части уравнения на 70, получаем:

Оп-па! Всё и наладилось!

Это окончательный ответ.

Замена переменной в решении показательных уравнений. Примеры.

А вот тут и зависнем. Предыдущие приёмы не сработают, как ни крутись. Придётся доставать из арсенала ещё один могучий и универсальный способ. Называется он замена переменной.

Ввели ограничение на значение переменной (действительно, число 2 в любой степени будет числом положительным. Решив уравнение относительно переменной t, отбросим корни, которые не будут соответствовать этому условию)

Тогда 2 2х = 2 х2 = (2 х ) 2 = t 2

Заменяем в нашем уравнении все степени с иксами на t:

Ну что, осеняет?) Квадратные уравнения не забыли ещё? Решаем через дискриминант, получаем:

Тут, главное, не останавливаться, как бывает. Это ещё не ответ, нам икс нужен, а не t. Возвращаемся к иксам, т.е. делаем обратную замену. Сначала для t1:

Один корень нашли. Ищем второй, из t2:

Вот теперь всё. Получили 2 корня:

При решении показательных уравнений в конце иногда получается какое-то неудобное выражение. Типа:

Из семёрки двойка через простую степень не получается. Не родственники они. Как тут быть? Кто-то, может и растеряется. А вот человек, который прочитал на этом сайте тему «Что такое логарифм?», только скупо улыбнётся и запишет твёрдой рукой совершенно верный ответ:

В этом уроке приведены примеры решения самых распространённых показательных уравнений. Выделим основное.

1. Первым делом смотрим на основания степеней. Соображаем, нельзя ли их сделать одинаковыми. Пробуем это сделать, активно используя действия со степенями. Не забываем, что числа без иксов тоже можно превращать в степени!

4. Для успешного решения показательных уравнений надо степени некоторых чисел знать «в лицо».

Итак, решение самых простых показательных уравнений усвоили. А теперь разберем решение еще некоторых типов уравнений – посложнее.

Запишем левую часть уравнения как дробь в степени и сократим дробь в правой части уравнения. После всех преобразований имеем вот такое простое уравнение:

Теперь имеем право приравнять показатели степени. И получаем самое простое уравнение

Левая часть уравнения равна правой части, основания степеней равны, следовательно, равны и показатели степени

В левой части уравнения поделим степени с основанием 2 (напоминаю, что при делении степени на степень с одинаковыми основаниями показатели степеней вычитаются, ), а в правой части уравнения сократим дробь. После этих преобразований уравнение вот так будет выглядеть

Правую часть уравнения представим в виде обыкновенной дроби

Получаем уравнение нужного нам вида (слева и справа одинаковые основания в каких-то степенях):

И финал решения – приравниваем показатели степени

Решить показательные уравнения:

Найти произведение корней:

Ну, тогда сложнейший пример (решается, правда, в уме. ):

Что, уже интереснее? Тогда вот вам злой пример. Вполне тянет на повышенную трудность. Намекну, что в этом примере спасает смекалка и самое универсальное правило решения всех математических заданий.)

2 5х-1 · 3 3х-1 · 5 2х-1 = 720 х

Пример попроще, для отдыха):

И на десерт. Найти сумму корней уравнения:

Да-да! Это уравнение смешанного типа! Которые мы в этом уроке не рассматривали. А что их рассматривать, их решать надо!) Этого урока вполне достаточно для решения уравнения. Ну и, смекалка нужна. И да поможет вам седьмой класс (это подсказка!).

Ответы (в беспорядке, через точку с запятой):

Всё удачно? Отлично.

Есть проблемы? Не вопрос! В Особом разделе 555 все эти показательные уравнения решаются с подробными объяснениями. Что, зачем, и почему. Ну и, конечно, там имеется дополнительная ценная информация по работе со всякими показательными уравнениями. Не только с этими.)

Если Вам нравится этот сайт.

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

А вот здесь можно познакомиться с функциями и производными.

Источник

Показательные уравнения — 32 примера (ЕГЭ 2022)

Сегодня мы будем заниматься показательными уравнениями.

Как элементарными, так и такими, которые обычно дают в ЕГЭ «на засыпку». Прямо с прошлых вариантов ЕГЭ.

Впрочем, после прочтения этой статьи все они станут для тебя элементарными.

Потому что ты сможешь проследить шаг за шагом, как я думаю, когда я их решаю, и научиться решать их сам! И потому что мы разберем в этой статье целых 32 примера!

Показательные уравнения — коротко о главном

Показательное уравнение:

1\) называется простейшим показательным уравнением.

Свойства степеней:

Произведение степеней\( <^>\cdot <^>=<^>\)
\( <^>\cdot <^>=<<\left( a\cdot b \right)>^>\)
Деление степеней\( \frac<<^>><<^>>=<^>\)
\( \frac<<^>><<^>>=<<\left( \frac \right)>^>\)
Возведение степени в степень\( <<\left( <^> \right)>^>=<^>\)

Подходы к решению:

Что такое показательные уравнения

Если ты забыл следующие темы, то для получения наилучшего результата, пожалуйста, повтори:

Тогда тебе не составит труда заметить, что корнем уравнения \( 3x+5=2 -1\) является число \( x=-6\).

Ты точно понял, как я это сделал? Правда? Тогда продолжаем. Теперь ответь мне на вопрос, чему равно \( 5\) в третьей степени? Ты абсолютно прав:

А восьмерка – это какая степень двойки? Правильно – третья! Потому что:

Ну вот, теперь давай попробуем решить следующую задачку: Пусть я \( x\) раз умножаю само на себя число \( 2\) и получаю в результате \( 16\).

Спрашивается, сколько раз я умножил \( 2\) само на себя? Ты, конечно, можешь проверить это непосредственно:

\( \begin & 2=2 \\ & 2\cdot 2=4 \\ & 2\cdot 2\cdot 2=8 \\ & 2\cdot 2\cdot 2\cdot 2=16 \\ \end \)

Тогда ты можешь сделать вывод, что \( 2\) само на себя я умножал \( \displaystyle 4\) раза.

Как еще это можно проверить?

А вот как: непосредственно по определению степени: \( \displaystyle <<2>^<4>>=16\).

Но, согласись, если бы я спрашивал, сколько раз два нужно умножить само на себя, чтобы получить, скажем \( \displaystyle 1024\), ты бы сказал мне: я не буду морочить себе голову и умножать \( \displaystyle 2\) само на себя до посинения.

И был бы абсолютно прав. Потому как ты можешь записать все действия кратко (а краткость – сестра таланта)

где \( \displaystyle x\) – это и есть те самые «разы», когда ты умножаешь \( \displaystyle 2\) само на себя.

Я думаю, что ты знаешь ( а если не знаешь, срочно, очень срочно повторяй степени!), что \( \displaystyle 1024=<<2>^<10>>\), тогда моя задачка запишется в виде:

\( \displaystyle <<2>^>=<<2>^<10>>\), откуда ты можешь сделать вполне оправданный вывод, что:

Вот так вот незаметно я записал простейшее показательное уравнение:

И даже нашел его корень \( x=10\). Тебе не кажется, что все совсем тривиально? Вот и я думаю именно так же.

Вот тебе еще один пример:

Ведь \( 100\) нельзя записать в виде степени (разумной) числа \( 1000\).

Давай не будем отчаиваться и заметим, что оба этих числа прекрасно выражаются через степень одного и того же числа.

Тогда исходное уравнение преобразуется к виду:

откуда, как ты уже понял, \( 3x=2,

Давай более не будем тянуть и запишем определение:

Показательные уравнения — уравнения, которые содержат неизвестное в показателе степени.

1\) называется простейшим показательным уравнением.

В нашем с тобой случае: \( \displaystyle <<1000>^>=100,a=1000,b=100\).

Решаются эти уравнения сведением их к виду:

\)c последующим решением уравнения \( f(x)=g(x).\)

Мы, собственно, в предыдущем примере это и делали: у нас получилось, что \( C=10,

И мы решали с тобой простейшее уравнение \( 3x=2\).

Вроде бы ничего сложного, правда? Давай вначале потренируемся на самых простых примерах.

Тренировка на простых примерах

Мы опять видим, что правую и левую часть уравнения нужно представить в виде степени одного числа.

Правда слева это уже сделано, а вот справа стоит число \( 81\).

Но ничего страшного, ведь \( 81=<<3>^<4>>\), и мое уравнение чудесным образом преобразится вот в такое:

Чем мне пришлось здесь воспользоваться? Каким правилом?

Правило «степени в степени», которое гласит:

Теперь все в порядке, можно переходить к равносильному уравнению:

Теперь у меня есть глупый вопрос, как нам быть, например, с таким уравнением?

Конечно, ты верно заметил, что ничего пугаться тут не стоит, ведь:

для любого положительного числа \( \displaystyle a\) выполняется:

поэтому уравнение \( <<2>^>=1\)

Прежде чем ответить на этот вопрос, давай мы с тобой заполним вот такую табличку:

Нам не представляет труда заметить, что чем меньше \( x\), тем меньше значение \( <<2>^>\), но тем не менее, все эти значения больше нуля.

И ТАК БУДЕТ ВСЕГДА.

Это же свойство справедливо ДЛЯ ЛЮБОГО ОСНОВАНИЯ С ЛЮБЫМ ПОКАЗАТЕЛЕМ!! \( <^<(x)>>>0\) (для любых \( a>0\ \) и \( x\)).

Тогда какой мы можем сделать вывод об уравнении \( <<2>^>=-0.000001\)?

А вот какой: оно корней не имеет! Как не имеет корней и любое уравнение \( <^>=b,

Теперь давай потренируемся и еще порешаем простые примерчики:

Давай сверяться:

1. Здесь от тебя ничего не потребуется, кроме знания свойств степеней (которые, кстати, я просил тебя повторить!)

Тогда исходное уравнение будет равносильно следующему: \( \frac<<<3>^<2x+1>><<3>^<2(x+2)>>><<<3>^<3x>>>=<<3>^<5>>.\)

Все, что мне нужно – это воспользоваться свойствами степеней:

При умножении чисел с одинаковыми основаниями степени складываются, а при делении – вычитаются.

Ну а теперь со спокойной совестью перейду от показательного уравнения к линейному:

2. Во втором примере надо быть внимательнее: беда вся в том, что в левой части у нас ну никак не получится представить \( <<4>^<(3x+1)>>\) и \( <<625>^<(x/2)>>\) в виде степени одного и того же числа.

В таком случае иногда полезно представлять числа в виде произведения степеней с разными основаниями, но одинаковыми показателями:

Левая часть уравнения примет вид: \( 4\cdot <<64>^><<25>^>\)

Что же нам это дало? А вот что:

Числа с разными основаниями, но одинаковыми показателями можно перемножать. При этом основания перемножаются, а показатель не меняется:

Применительно к моей ситуации это даст:

3. Я не люблю, когда у меня без особой нужды с одной стороны уравнения стоят два слагаемых, а с другой – ни одного (иногда, конечно, это оправданно, но сейчас не такой случай).

Перенесу слагаемое с минусом вправо:

Теперь, как и раньше, запишу все через степени тройки:

Сложу степени слева и получу равносильное уравнение

Ты без труда найдешь его корень:

4. Как и в примере три, слагаемому с минусом – место в правой части!

Слева у меня почти что все хорошо, кроме чего?

Да, мне мешает «неправильная степень» у двойки. Но я могу без труда это исправить, записав:

Эврика – слева все основания разные, но все степени – одинаковые! Срочно перемножаем!

Источник

Показательные уравнения (с неизвестной в показателе степени)

Показательное уравнение – уравнение, содержащее переменную \(x\) в показателе степени.

\(\blacktriangleright\) Выражение \(a^n\) называется степенью, \(a\) – основанием степени, \(n\) – показателем степени.

\(\blacktriangleright\) Стандартное показательное уравнение:

\(\blacktriangleright\) Основные формулы:

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

ОДЗ: \(x\) – произвольное. Решим на ОДЗ:

На этапе подготовки к заключительному тестированию учащимся старших классов необходимо подтянуть знания по теме «Показательные уравнения». Опыт прошлых лет свидетельствует о том, что подобные задания вызывают у школьников определенные затруднения. Поэтому старшеклассникам, независимо от уровня их подготовки, необходимо тщательно усвоить теорию, запомнить формулы и понять принцип решения таких уравнений. Научившись справляться с данным видом задач, выпускники смогут рассчитывать на высокие баллы при сдаче ЕГЭ по математике.

Готовьтесь к экзаменационному тестированию вместе со «Школково»!

При повторении пройденных материалов многие учащиеся сталкиваются с проблемой поиска нужных для решения уравнений формул. Школьный учебник не всегда находится под рукой, а отбор необходимой информации по теме в Интернете занимает долгое время.

Образовательный портал «Школково» предлагает ученикам воспользоваться нашей базой знаний. Мы реализуем совершенно новый метод подготовки к итоговому тестированию. Занимаясь на нашем сайте, вы сможете выявить пробелы в знаниях и уделить внимание именно тем заданиям, которые вызывают наибольшие затруднения.

Преподаватели «Школково» собрали, систематизировали и изложили весь необходимый для успешной сдачи ЕГЭ материал в максимально простой и доступной форме.

Основные определения и формулы представлены в разделе «Теоретическая справка».

Для лучшего усвоения материала рекомендуем попрактиковаться в выполнении заданий. Внимательно просмотрите представленные на данной странице примеры показательных уравнений с решением, чтобы понять алгоритм вычисления. После этого приступайте к выполнению задач в разделе «Каталоги». Вы можете начать с самых легких заданий или сразу перейти к решению сложных показательных уравнений с несколькими неизвестными или иррациональным уравнениям со знаком корня. База упражнений на нашем сайте постоянно дополняется и обновляется.

Те примеры с показателями, которые вызвали у вас затруднения, можно добавить в «Избранное». Так вы можете быстро найти их и обсудить решение с преподавателем.

Чтобы успешно сдать ЕГЭ, занимайтесь на портале «Школково» каждый день!

Источник

Как решать
показательные уравнения?

Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Это поможет решить задания №5, 13 и 15 из профильного уровня математики.

Одна из их разновидностей – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие переменной \(х\) не в основании степени, а в самом показателе. Как это выглядит:

Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:

Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение \(х\). Познакомиться с понятием степени и ее свойствами можно тут и тут.

И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:

И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением. Кроме самой показательной функции в уравнении могут быть любые другие математические конструкции – тригонометрические функции, логарифмы, корни, дроби и т.д. Если вы видите степень, значит перед вам показательное уравнение.

Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.

Простейшие показательные уравнения

Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:

Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо \(х\) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:

Значит, если \(х=3\), то мы получим верное равенство, а значит мы решили уравнение.

Решим что-нибудь посложнее.

Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:

Мы применили свойство отрицательной степени по формуле:

Теперь наше уравнение будет выглядеть так:

Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны \(3\), только вот степени разные – слева степень \((4х-1)\), а справа \((-2)\). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:

Такое мы решать умеем, ведь это обыкновенное линейное уравнение.

Поздравляю, мы нашли корень нашего показательного уравнения.

Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что \(125=5*5*5=5^3\), а \(25=5*5=5^2\), подставим:

Воспользуемся одним из свойств степеней \((a^n)^m=a^\):

И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:

Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить \(2\) в различную степень, вы никогда не сможете получить отрицательное число.

Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.

Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.

Общий метод решения показательных уравнений

Пусть у нас есть вот такой пример:

Где \(a,b\) какие-то положительные числа. (\(a>0, \; b>0\).

Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.

Слева у нас уже стоит \(a^x\), с этим ничего делать не будем, а вот справа у нас стоит загадочное число \(b\), которое нужно попытаться представить в виде \(b=a^m\). Тогда уравнение принимает вид:

Раз основания одинаковые, то мы можем просто приравнять степени:

Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:

Замечаем, что \(16=2*2*2*2=2^4\) это степень двойки:

Основания одинаковые, значит можно приравнять степени:

Здесь мы заметили, что \(9=3^2\) и \(81=3^4\) являются степенями \(3\).

Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:

\(3\) и \(2\) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число \(b>0\), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице \(a>0, \; a \neq 1\):

Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим \(2\) в виде \(3\) в какой-то степени, где \(a=3\), а \(b=2\):

Подставим данное преобразование в наш пример:

Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:

Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.

Кто забыл, что такое логарифм, можно посмотреть здесь.

Рассмотрим еще несколько аналогичных примеров.

Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:

Все эти варианты ответа верные, их можно смело писать в ответ.

И так, мы с вами научились решать любые показательные уравнения вот такого вида: \(a^x=b\), где \(a>0; \; b>0\).

Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа \(a^x=b\), где \(a>0; \; b>0\). Рассмотрим типы сложных уравнений, которые могут попасться:

Решение показательных уравнений при помощи замены

Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.

Здесь это сделать легко, замечаем, что \(9=3^2\), тогда \(9^x=(3^2)^x=3^<2x>=(3^x)^2\). Здесь мы воспользовались свойством степеней: \((a^n)^m=a^\). Подставим:

Квадратное уравнение, которое решается через дискриминант:

Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:

И еще один пример на замену:

Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание \(3\). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Но если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член \(3=2+1\) и вынести общий множитель \(2\):

Подставим в исходное уравнение:

Теперь показательные функции одинаковы и можно сделать замену:

Обратная замена, и наше уравнение сводится к простейшему:

И второе значение \(t\):

Тут у нас две показательные функции с основаниями \(7\) и \(3\), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на \(3^x\):

Здесь нам придется воспользоваться свойствами степеней:

Разберем каждое слагаемое:

Теперь подставим получившееся преобразования в исходное уравнение:

Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену \(t=(\frac<7><3>)^x\):

Сделаем обратную замену:

И последний пример на замену:

Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:

Разберем каждое слагаемое нашего уравнения:

И последнее слагаемое со степенью:

Подставим все наши преобразования в исходное уравнение:

Теперь можно сделать замену \(t=2^x\) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель \(2^x\)):

Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера. Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.

И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут

Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании \(2\), \(5\) и \(10\). Очевидно, что \(10=2*5\). Воспользуемся этим и подставим в наше уравнение:

Воспользуемся формулой \((a*b)^n=a^n*b^n\):

И перекинем все показательные функции с основанием \(2\) влево, а с основанием \(5\) вправо:

Сокращаем и воспользуемся формулами \(a^n*a^m=a^\) и \(\frac=a^\):

Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.

Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *