Степени как складывать умножать
Свойства степеней. Действия со степенями
Что такое степень числа
В учебниках по математике можно встретить такое определение:
«Степенью n числа а является произведение множителей величиной а n раз подряд»
a — основание степени;
n — показатель степени.
Читается такое выражение, как a в степени n
Если говорить проще то, степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить это число (основание степени) само на себя.
А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например, число 2 в третью степень, то она решается довольно просто:
2 — основание степени;
3 — показатель степени.
Если вам нужно быстро возвести число в степень, можно использовать наш онлайн-калькулятор. Но чтобы не упасть в грязь лицом на контрольной по математике, придется все-таки разобраться с теорией.
Рассмотрим пример из жизни, чтобы было понятно, для чего можно использовать возведение чисел в степень на практике.
Задачка про миллион: представьте, что у вас есть миллион рублей. За один год вы заработали на нем еще два. Еще через год каждый миллион принес еще два и т. д. Получается, что миллион каждый год утраивается. Был один, а стало три — и так каждый год. Здорово, правда? А теперь посчитаем, какая сумма у вас будет через 4 года.
Как решаем: один миллион умножаем на три (1·3), затем результат умножаем на три, потом еще на три. Наверное, вам уже стало стало скучно, потому что вы поняли, что три нужно умножить само на себя четыре раза. Так и сделаем:
Математики заскучали и решили все упростить:
Ответ: через четыре года у вас будет 81 миллион.
Таблица степеней
Здесь мы приведем результаты возведения в степень натуральных чисел от 1 до 10 в квадрат (показатель степени 2) и куб (показатель степени 3).
Сложение, вычитание, умножение, и деление степеней
Сложение и вычитание степеней
Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками.
Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.
Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.
Но степени различных переменных и различные степени одинаковых переменных, должны слагаться их сложением с их знаками.
Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.
Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.
Умножение степеней
Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.
Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.
Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.
Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.
Если умножается сумма и разница двух чисел, возведённых в квадрат, результат будет равен сумме или разнице этих чисел в четвёртой степени.
Деление степеней
Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.
При делении степеней с одинаковым основанием их показатели вычитаются..
Делимое | y 2m | 8a n+m | 12(b + y) n |
Делитель | y m | 4a m | 3(b + y) 3 |
Результат | y m | 2a n | 4(b +y) n-3 |
Или:
y 2m : y m = y m
8a n+m : 4a m = 2a n
12(b + y) n : 3(b + y) 3 = 4(b +y) n-3
Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.
Примеры решения примеров с дробями, содержащими числа со степенями
Сложение и вычитание степеней
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Что такое степень числа
В учебниках по математике можно встретить такое определение:
«Степенью n числа а является произведение множителей величиной а n-раз подряд»
a — основание степени
n — показатель степени
Соответственно, a n = a·a·a·a. ·a
Читается такое выражение, как a в степени n.
Если говорить проще то, степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить данное число (основание степени) на само себя. А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например число 2, то решается она довольно просто:
2 — основание степени
3 — показатель степени
Действия, конечно, можно выполнять и в онлайн калькуляторе — вот несколько подходящих:
Таблица степеней
Здесь мы приведем результаты возведения в степень натуральных чисел от 1 до 10 в квадрат (показатель степени два) и куб (показатель степени 3).
Число
Вторая степень
Третья степень
Свойства степеней: когда складывать, а когда вычитать
Степень в математике с натуральным показателем имеет несколько важных свойств, которые позволяют упрощать вычисления. Всего их пять штук — давайте их рассмотрим.
Свойство 1: произведение степеней
При умножении степеней с одинаковыми основаниями, основание мы оставляем без изменений, а показатели степеней складываем:
a — основание степени
m, n — показатели степени, любые натуральные числа.
Свойство 2: частное степеней
Когда мы делим степени с одинаковыми основаниями, то основание остается без изменений, а из показателя степени делимого вычитают показатель степени делителя.
a — любое число, не равное нулю
m, n — любые натуральные числа такие, что m > n
Свойство 3: возведение степени в квадрат
Когда возводим степень в степень, то основание степени остается неизмененным, а показатели степеней умножаются друг на друга.
a — основание степени (не равное нулю)
m, n — показатели степени, натуральное число
Свойство 4: степень возведения
При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.
a, b — основание степени (не равное нулю)
n — показатели степени, натуральное число
Записывайтесь на курсы обучения математике для школьников с 1 по 11 классы!
Свойство 5: степень частного
Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.
a, b — основание степени (не равное нулю), любые рациональные числа, b ≠ 0,
n — показатель степени, натуральное число
Сложение и вычитание степеней
Как складывать числа со степенями и как вычитать степени — очень просто. Основной принцип такой: выполняется сначала возведение в степень, а уже потом действия сложения и вычитания. Примеры:
И еще несколько правил:
Сложение степеней с разными показателями
В таком случае действуем согласно общему правилу: сначала выполняем возведение в степень каждого числа, затем — производим сложение.
Сложение степеней с разными основаниями
В целом, это ничем не отличается от предыдущего пункта. Могут быть разные основания, но одинаковые степени. А могут быть и разные основания, и разные показатели. Поэтому сначала выполняем возведение в степень каждого числа, затем — производим сложение.
Как складывать числа с одинаковыми степенями
Точно также, как и в предыдущем примере. Если степени одинаковые, а основания разные, то нельзя сложить основания и затем эту сумму возводить в степень.
Сначала возводим каждое число в степень и затем выполняем сложение.
2, 3, 5 — коэффициенты
Если перед переменной в уравнении нет коэффициента, это значит, что он равен 1.
Вычитание степеней с одинаковым основанием
Здесь принцип тот же, что и со сложением: возводим в степень числа и только потом вычитаем их.
Вычитание степеней с разными основаниями
Вычитание чисел с одинаковыми степенями
Все точно также, как и со сложением. Если степени одинаковые, а основания разные, то нельзя вычесть основания и затем эту разницу возводить в степень. Сначала возводим каждое число в степень и затем выполняем вычитание.
6 и 3 — коэффициенты
Если перед переменной в уравнении нет коэффициента, это значит, что он равен 1.
Степенные выражения (выражения со степенями) и их преобразование
Рассмотрим тему преобразования выражений со степенями, но прежде остановимся на ряде преобразований, которые можно проводить с любыми выражениями, в том числе со степенными. Мы научимся раскрывать скобки, приводить подобные слагаемые, работать с основанием и показателем степени, использовать свойства степеней.
Что представляют собой степенные выражения?
В школьном курсе мало кто использует словосочетание «степенные выражения», зато этот термин постоянно встречается в сборниках для подготовки к ЕГЭ. В большинства случаев словосочетанием обозначаются выражения, которые содержат в своих записях степени. Это мы и отразим в нашем определении.
Степенное выражение – это выражение, которое содержит степени.
Приведем несколько примеров степенных выражений, начиная со степени с натуральным показателем и заканчивая степенью с действительным показателем.
С вопросом о том, что такое степенные выражения, мы разобрались. Теперь займемся их преобразованием.
Основные виды преобразований степенных выражений
В первую очередь мы рассмотрим основные тождественные преобразования выражений, которые можно выполнять со степенными выражениями.
Решение
Решение
Решение
Представим число 9 как степень 3 2 и применим формулу сокращенного умножения:
А теперь перейдем к разбору тождественных преобразований, которые могут применяться именно в отношении степенных выражений.
Работа с основанием и показателем степени
Проводятся преобразования степени и показателя по известным нам правилам отдельно друг от друга. Самое главное, чтобы в результате преобразований получилось выражение, тождественное исходному.
Использование свойств степеней
Применять свойства степеней без ограничений можно в тех случаях, когда основания степеней положительные или содержат переменные, область допустимых значений которых такова, что на ней основания принимают лишь положительные значения. Фактически, в рамках школьной программы по математике задачей учащегося является выбор подходящего свойства и правильное его применение.
При подготовке к поступлению в Вузы могут встречаться задачи, в которых неаккуратное применение свойств будет приводить к сужению ОДЗ и другим сложностям с решением. В данном разделе мы разберем всего два таких случая. Больше информации по вопросу можно найти в теме «Преобразование выражений с использованием свойств степеней».
Решение
Преобразование степенных выражений согласно свойству степеней может производиться как слева направо, так и в обратном направлении.
Решение
Есть еще один способ провести преобразования:
3 1 3 · 7 1 3 · 21 2 3 = 3 1 3 · 7 1 3 · ( 3 · 7 ) 2 3 = 3 1 3 · 7 1 3 · 3 2 3 · 7 2 3 = = 3 1 3 · 3 2 3 · 7 1 3 · 7 2 3 = 3 1 3 + 2 3 · 7 1 3 + 2 3 = 3 1 · 7 1 = 21
Ответ: 3 1 3 · 7 1 3 · 21 2 3 = 3 1 · 7 1 = 21
Решение
Преобразование дробей, содержащих степени
Обычно мы имеем дело с двумя вариантами степенных выражений с дробями: выражение представляет собой дробь со степенью или содержит такую дробь. К таким выражениям применимы все основные преобразования дробей без ограничений. Их можно сокращать, приводить к новому знаменателю, работать отдельно с числителем и знаменателем. Проиллюстрируем это примерами.
Решение
Мы имеем дело с дробью, поэтому проведем преобразования и в числителе, и в знаменателе:
Дроби, содержащие степени, приводятся к новому знаменателю точно также, как и рациональные дроби. Для этого необходимо найти дополнительный множитель и умножить на него числитель и знаменатель дроби. Подбирать дополнительный множитель необходимо таким образом, чтобы он не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.
Решение
б) Обратим внимание на знаменатель:
Решение
б) Здесь наличие одинаковых множителей неочевидно. Придется выполнить некоторые преобразования для того, чтобы получить одинаковые множители в числителе и знаменателе. Для этого разложим знаменатель, используя формулу разности квадратов:
К числу основных действий с дробями относится приведение к новому знаменателю и сокращение дробей. Оба действия выполняют с соблюдением ряда правил. При сложении и вычитании дробей сначала дроби приводятся к общему знаменателю, после чего проводятся действия (сложение или вычитание) с числителями. Знаменатель остается прежним. Результатом наших действий является новая дробь, числитель которой является произведением числителей, а знаменатель есть произведение знаменателей.
Решение
Начнем с вычитания дробей, которые располагаются в скобках. Приведем их к общему знаменателю:
Теперь умножаем дроби:
Преобразование выражений с корнями и степенями
В задачах встречаются степенные выражения, которые содержат не только степени с дробными показателями, но и корни. Такие выражения желательно привести только к корням или только к степеням. Переход к степеням предпочтительнее, так как с ними проще работать. Такой переход является особенно предпочтительным, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков.
Представьте выражение x 1 9 · x · x 3 6 в виде степени.
Решение
На этом множестве мы имеем право перейти от корней к степеням:
x 1 9 · x · x 3 6 = x 1 9 · x · x 1 3 1 6
Используя свойства степеней, упростим полученное степенное выражение.
x 1 9 · x · x 1 3 1 6 = x 1 9 · x 1 6 · x 1 3 1 6 = x 1 9 · x 1 6 · x 1 · 1 3 · 6 = = x 1 9 · x 1 6 · x 1 18 = x 1 9 + 1 6 + 1 18 = x 1 3
Преобразование степеней с переменными в показателе
Мы можем заменить произведением степени, в показателях которых находится сумма некоторой переменной и числа. В левой части это можно проделать с первым и последним слагаемыми левой части выражения:
Преобразование выражений со степенями и логарифмами
Правила умножения и деления степеней
Что представляют собой степенные выражения
Степенью n для числа а является произведение множителей, которые по величине равны а, взятое n раз.
здесь а представляет собой основание степени, n определяет ее показатель.
Таким образом, можно составить формулу:
Запись можно прочитать, как «a в степени n».
Степенное выражение представляет собой такое выражение, в состав которого входит степень.
Перед тем, как рассмотреть действия со степенными выражениями, полезно вспомнить свойства степени:
Правила умножения, что происходит
Если степени имеют одинаковые показатели, то в процессе их перемножения следует умножить между собой основания, а показатель записать без изменений:
где а и b являются основаниями степени, n — это показатель степени в виде какого-либо натурального числа.
В качестве примера решим несколько простых уравнений:
a 5 × b 5 = ( a × a × a × a × a ) × ( b × b × b × b × b ) = ( a × b ) n = ( a b ) × ( a b ) × ( a b ) × ( a b ) × ( a b ) = ( a b ) 5
3 5 × 4 5 = ( 3 × 4 ) 5 = 12 5 = 248832
16 a 2 = 4 2 × a 2 = ( 4 a ) 2
Когда требуется найти произведение степеней, которые обладают одинаковыми основаниями, следует сложить показатели степеней:
В качестве примеров рассмотрим несколько вычислений:
3 5 × 3 2 = 3 5 + 3 = 3 8 = 6561
2 8 × 8 1 = 2 8 · 2 3 = 2 11 = 2048
При умножении чисел, которые имеют разные степени, но схожи по основаниям, необходимо руководствоваться правилом, рассмотренным в предыдущем примере. То есть:
где а и b являются основаниями степени, n — это показатель степени в виде какого-либо натурального числа.
Бывают ситуации, когда числа отличаются по степеням и по основаниям, а также какое-то из оснований невозможно преобразовать в число с аналогичной степенью, как у второго числа. В этом случае нужно возвести в степень каждое число, а на втором шаге выполнить умножение.
3 3 × 5 2 = 27 × 25 = 675
Правила деления
Когда требуется выполнить деление степеней, которые имеют разные основания, но схожи по показателям, нужно найти разность показателей и оставить основание без изменений:
где а является основанием степени, n и m — это показатели степени в виде каких-либо натуральных чисел, m>n.
В качестве примеров рассмотрим несколько выражений:
Деление степеней, которые имеют одинаковые показатели, подразумевает возведение результата частного данных чисел в степень:
где а и b являются основаниями степени в виде любых рациональных чисел, не равных нулю, n — это показатель степени в виде какого-либо натурального числа.
5 12 ÷ 3 12 = ( 5 ÷ 3 ) 12 = ( 1 2 3 ) 12
Предположим, что требуется выполнить деление чисел со степенями. При этом степени не одинаковые, а основания идентичные. Тогда следует руководствоваться правилом, рассмотренным в предыдущем примере:
В том случае, когда отличаются не только степени, но и основания, необходимо возвести в степень каждое из чисел, а затем выполнить умножение. Например:
Примеры решения заданий для 7 класса
Воспользуемся правилом умножения степеней, имеющих одинаковое основание:
Воспользуемся правилом умножения степеней, имеющих одинаковое основание, чтобы избавиться от необходимости возводить число в большую степень:
2 7 = 2 3 × 2 4 = 8 × 16 = 128
Воспользуемся правилом умножения степеней, имеющих разные основания, но одинаковые показатели:
3 2 × 2 2 = ( 3 × 2 ) 2 = 6 2 = 36
Здесь можно применить правило деления степеней с одинаковым основанием и разными показателями:
Здесь можно применить правило деления степеней с одинаковым основанием и разными показателями:
Воспользуемся свойством деления степеней, когда основания отличаются, а показатели совпадают: