Адгезия лейкоцитов что это
Адгезия лейкоцитов что это
Введение. Термин «эндотелий» впервые был придуман в 1865 году швейцарским анатомом Вильгельмом Гизом [3,9]. До начала 1970-х годов этот монослой считался простым диффузионным барьером, препятствующим доступу клеток крови к сосудистому матриксу, но теперь он признан доминирующим игроком в контроле крови, агрегации тромбоцитов и сосудистого тонуса, основного субъекта в регуляции иммунологии, воспаления и ангиогенеза, а также метаболизма [1].
Как известно, стенка сосудов организма человека состоит из трех оболочек: наружная, средняя и внутренняя. Эндотелий сосудов является клеточным элементом внутренней оболочки, состоящим из эндотелиоцитов, и представляет собой однослойный плоский эпителий мезодермального происхождения [20]. Он выстилает просвет различных сосудов, таких как артерии, вены, сосуды микроциркуляторного звена, лимфатические сосуды и капилляры, кроме этого эндотелий выстилает камеры сердца. Таким образом, эндотелий находится в непосредственном контакте с кровью и в связи с этим выполняет ряд специфических функций. Особый интерес представляет эндокринная функция эндотелия. Он непрерывно вырабатывает огромное количество различных митогенов, ингибиторов, факторов роста и цитокинов, являясь, таким образом, гигантским паракринным органом, распределённым по всем органам и тканям человеческого организма.
Эндотелиальные клетки прикреплены к базальной мембране толщиной 80 нм. Базальная мембрана представляет из себя важный компонент кровеносного сосуда, так как она является основой каждой артерии, вены или капилляра. Внутренняя часть этого каркаса выстилается эндотелиальными клетками, а снаружи покрыта гладкомышечными клетками или перицитами. Эндотелиальные клетки могут синтезировать практически все белки, составляющие базальную мембрану, и продуцировать соответствующие ферменты, участвующие в ее ремоделировании, такие как матриксные металлопротеиназы, которые деградируют этот внеклеточный матрикс, это свойство обеспечивает пластичность кровеносных сосудов и делает возможным ангиогенез [8,12].
Форма эндотелиальных клеток различна по всему сосудистому руслу, но они обычно тонкие и слегка удлиненные, их размер составляет примерно 50-70 мкм в длину, 10-30 мкм в ширину, а толщина их составляет 0,1-10 мкм. В стенке кровеносного сосуда эндотелиальные клетки ориентированы вдоль оси сосуда, что сводит к минимуму величину сдвигового усилия, оказываемое циркулирующей кровью. Предполагается, что общая масса эндотелиальных клеток в организме достаточно велика и составляет 1,5–1,8 кг (сопоставимо с весом печени), а длина непрерывного монослоя эндотелиальных клеток достигает 7 км. Эндотелиальные клетки покрывают всю сосудистую сеть позвоночных и, таким образом, образуют гемокапитализированный контейнер для крови с большой поверхностью, которая, по оценкам, варьирует от 700 до 4000 м2 [11,14,18]. Эти морфологические данные показывают, что эндотелиальные клетки являются привилегированным сайтом для обмена и передачи различных веществ и клеток. Однако сосудистые эндотелиалиоциты не везде одинаковы, и между ними в разных частях артериального дерева, а также между артериями и венами существуют важные морфологические, физиологические и фенотипические различия [2,3].
В настоящее время эндотелий рассматривается в качестве эндокринного органа, широко исследуется роль эндотелиоцитов в процессах гемостаза, в том числе миграции лейкоцитов [6,13].
Миграция лейкоцитов. Взаимодействие между лейкоцитами и сосудистым эндотелием может быть как физиологическим, так и патофизиологическим процессом. Эти взаимодействия сопутствуют иммунной реакции, заживлению ран, а также миграции лейкоцитов при воспалительных реакциях. Прохождение лейкоцитов из кровеносного русла в окружающие ткани требует адгезии лейкоцита к поверхности эндотелиальных клеток, многоступенчатого каскада (рис.1) с участием захвата (или привязки), качения и остановки лейкоцитов, а затем их переселения (или диапедеза) [19]. Эти стадии, часто связанные с воспалением, происходят преимущественно, но не исключительно в посткапиллярных венулах, поскольку их можно наблюдать в больших венах, капиллярах и артериолах [3,15].
Рис.1 Стадии миграции лейкоцитов
Захват и качение. В нормальных условиях лейкоциты не прилипают к эндотелиальным клеткам. После активации лейкоцит сначала связывается с поверхностью эндотелия, затем начинается процесс качения, сопровождающийся формированием новых границ эндотелиоцитов [17]. Этот процесс активации в основном зависит от экспрессии селектинового семейства молекул адгезии как в эндотелиальных клетках, так и лейкоцитах. Селектины представляют собой трансмембранные гликопротеины типа I, которые обладают значительной структурной гомологией (> 50%) и были названы в честь клеток, в которых были впервые обнаружены: E-селектин, L-селектин и P-селектин для эндотелия, лейкоцитов и тромбоцитов соответственно. Селективный внеклеточный домен участвует в связывании лейкоцитов, тогда как цитоплазматический домен имеет сигнальные функции, например, через MAP-киназы и ERK-пути [15].
В покоящихся эндотелиальных клетках P-селектин хранится в телах Вейбеля-Паладе и после активации (под действием воспалительных медиаторов, при травмах) быстро экспрессируется на поверхности клетки, преимущественно в посткапиллярных венулах. E-селектин относится к числу немногих генов, которые сильно ограничены эндотелиальными клетками. В условиях физиологической нормы этот ген очень слабо экспрессируется, но после активации уровень его экспрессии повышается, опять же преимущественно в эндотелиальных клетках посткапиллярных венул. E- и P-селектин опосредуют адгезию лейкоцитов и качение их в месте воспаления. Мыши с дефицитом либо E-селектина, либо P-селектина показывают только умеренный фенотип, тогда как в модели, где наблюдается недостаток сразу двух селектинов, адгезия лейкоцитов сильно нарушена, что указывает на избыточность между двумя путями [4]. В лейкоцитах были идентифицированы различные лиганды селектина, но наиболее важным для P-селектина и E-селектина, по-видимому, является гликопротеиновый лиганд-1 (PSGL-1) [10].
Во вторичных лимфоидных органах имеет место иная форма миграции лейкоцитов. Специализированные посткапиллярные венулы (высокоэндотелиальными венулы) участвуют в непрерывном невоспалительном хоуминге, а также рециркуляции лейкоцитов. В этих сосудистых пластах периферического лимфатического узла захват и качение лейкоцитов опосредуется взаимодействием L-селектина, который экспрессируется в большинстве лейкоцитов, с его эндотелиальным лигандом [1, 15].
Качение лейкоцитов на поверхности эндотелия обеспечивает тесный контакт между двумя типами клеток, который приводит к устойчивой адгезии и остановка – это две более поздние стадии с участием другого семейства молекул адгезии.
Устойчивая адгезия и остановка. Медленно протаскивающиеся лейкоциты активируются эндотелиальными хемокинами, что приводит к конформационным изменениям в интегринах (суперсемейству адгезионных рецепторов, экспрессируемых лейкоцитами). До сих пор было идентифицировано по меньшей мере 25 αβ-гетеродимеров, каждый из которых имеет различную функцию в зависимости от типа клетки, в которой они экспрессируются, и лиганда, к которому они привязаны (рис.2). Интегрины взаимодействуют со своими лигандами на эндотелиальных клетках, принадлежащих к семейству иммуноглобулинов, таким как молекула адгезии тромбоцитарно-эндотелиальных клеток (PECAM-1), молекула адгезии сосудов (VCAM-1), молекула межклеточной адгезии (ICAM-1) или связывающие молекулы адгезии (JAM).
Рис. 2 Миграция лейкоцитов и молекулы адгезии с их лигандами
ICAM-1 (CD 54) экспрессируется в покоящихся эндотелиальных клетках и опосредует как качение, так и прочную адгезию лейкоцитов, преимущественно взаимодействует с лимфоцитарным функционально-ассоциированным антигеном-1 (LFA-1) и антигеном-1 дифференцировки макрофагов (Mac-1). VCAM-1 (CD106) очень слабо выражен в покоящихся эндотелиальных клетках, но быстро индуцируется воспалительными медиаторами. VCAM-1 взаимодействует преимущественно с лейкоцитарным поздним антигеном-4 (VLA-4), и также опосредует качение и адгезию, что указывает на перекрывающиеся функции между двумя путями (рис. 3) [15].
Рис. 3 Молекулярные механизмы адгезии лейкоцитов на эндотелиальных клетках
Диапедез. Диапедез – процесс прохождения клеток крови через неповрежденные стенки капилляров, обычно сопровождающий воспаление. Трансэндотелиальная миграция происходит преимущественно через межэндотелиальные соединения (Рис. 4 парацеллюлярный путь), хотя также наблюдался трансцеллюлярный путь [7]. Парацеллюлярный путь диапедеза находится под контролем молекул адгезии, некоторые из которых сильно выражены в межэндотелиальных соединениях. Интегрины лейкоцитов могут играть роль не только в миграции через эндотелий, но и в инфильтрации через субэндотелиальную базальную мембрану [15].
Рис. 4 Парацеллюлярная миграция лейкоцитов
Миграция через межэндотелиальные соединения должна включать разрыв селектиновых связей на поверхности эндотелия и установление новых связей на краю эндотелиальных клеток. Активация лейкоцитов уменьшает связывание селектина и способствует опосредованную интегринами ассоциацию. В эндотелиальных клетках PECAM-1, CD99, JAM чаще всего расположены в межэндотелиальных соединениях и способствуют парацеллюлярной миграции. Аналогично, ICAM-1 и VCAM-1 сильно выражены в участках, участвующих в трансклеточной миграции лейкоцитов, – трансмиграционных чашках [15, 5].
Миграция лейкоцитов необходима в физиологии для развития иммунного ответа в Т-клетках (лимфоидных органах) и для гемопоэтического гомеостаза (поддержание числа циркулирующих лейкоцитов). Однако нарушения регуляции этого механизма приводит к многочисленным патофизиологическим состояниям, связанными с воспалительными реакциями, включая атеросклероз, где остановка лейкоцитов в стенке сосуда является ранним этапом в развитии заболевания [16].
Благодаря своему стратегическому положению на границе между кровью и тканями эндотелий контролирует текучесть крови и перфузию тканей, в то же время он направляет группы воспалительных клеток в районы, нуждающиеся в защите или восстановлении. Эндотелиоциты различной локализации осуществляют тонкую регуляцию процессов тромбообразования и воспаления, адаптируя их к существующим условиям. Однако, их регуляторный баланс может быть нарушен под действием генетических, иммунологических факторов и хронического воспаления. В связи с этим, понимание эндотелий-зависимых механизмов регуляции процессов воспаления, может способствовать эффективному лечению.
Молекула адгезии активированных лейкоцитов и прогноз при остром ишемическом инсульте
Острый ишемический инсульт (ОИИ) является одной из ведущих причин смерти и тяжелой инвалидизации у взрослых [1]. В настоящее время доступны эффективные методы лечения, но их эффективность во многом зависит от ранней диагностики и оценки тяжести инсульта [1, 2]. Таким образом, четкое выявление пациентов с повышенным риском развития неблагоприятного исхода после ишемического инсульта может иметь особую значимость для лиц, у которых проведение вмешательств будет наиболее эффективным. В этом контексте очень важно определение уровня биомаркеров, прогнозирующих развитие летального исхода и возможные функциональные исходы при инсульте [3].
Хотя патогенез ОИИ достаточно сложен, несколько прогностически значимых аспектов можно объективно оценить с помощью биомаркеров. Например, воспаление, как полагают, играет важную роль в некоторых патофизиологических механизмах и усугублении тяжести ОИИ [4–6]. Воспаление может способствовать дестабилизации бляшек при атеросклеротическом поражении сонных артерий, приводящей к эмболии и последующему развитию инсульт. Кроме того, воспаление может развиваться в очаге свежего инфаркта головного мозга, что приводит к дальнейшему повреждению тканей.
Молекулы клеточной адгезии участвуют в привлечении и миграции лейкоцитов в очаг воспаления и повреждении тканей, способствуя трансэндотелиальной миграции, включающей ряд четко скоординированных взаимодействий между воспаленным эндотелием и активированными лейкоцитами [5, 7]. Прочная адгезия лейкоцитов к эндотелиальным клеткам, а также активация лейкоцитов происходят опосредовано через рецепторы к суперсемейству гена иммуноглобулинов. Учитывая участие молекул клеточной адгезии в атерогенезе и реакции в ответ на повреждение ткани, а также высокий уровень циркуляции их растворимых изоформ, считают, что уровень растворимых молекул клеточной адгезии ассоциирован с тяжестью заболевания и исходами при различных сердечно-сосудистых заболеваниях (ССЗ), включая инсульт [8, 9]. Таким образом, у пациентов с ишемическим инсультом обнаружили высокий уровень растворимой молекулы внутриклеточной адгезии-1 и сосудистой молекулы клеточной адгезии-1. В частности, содержание молекулы внутриклеточной адгезии-1 при поступлении было ассоциировано с неблагоприятным исходом у этих пациентов [9–13].
К суперсемейству гена иммуноглобулинов относится также молекула адгезии активированных лейкоцитов (ALCAM), обозначаемая как CD166. При нейровоспалении ALCAM избыточно продуцируется и заменяет сосудистую молекулу адгезии клеток-1 при миграции лейкоцитов через гематоэнцефалический барьер [14]. Было показано, что ALCAM является подходящим прогностическим маркером для всех видов рака [15], но в настоящее время нет данных о том, что уровень ALCAM является биомаркером ССЗ. В связи с ее ролью в нейровоспалении, провели проспективное исследование с участием пациентов с ОИИ с целью (1) описания динамики изменения уровня ALCAM в остром периоде ишемического инсульта, (2) изучения вопроса о связи уровня ALCAM и риском развития летального исхода в отдаленном периоде после ишемического инсульта.
ПАЦИЕНТЫ И МЕТОДЫ
С августа 2003 по октябрь 2004 г. провели последовательный скрининг 790 пациентов с ОИИ, поступивших в отделение неврологии Оденской университетской клиники (Оденс, Дания), на предмет включения в исследование [16]. Пациентов с явными признаками ишемической болезни сердца, т.е. любой перенесенный инфаркт миокарда, стабильная или нестабильная стенокардия, патологические зубцы Q на исходных ЭКГ, ранее перенесенные коронарная ангиопластика или коронарное шунтирование (n=177)); пациентов с фибрилляцией предсердий на момент зачисления в исследование (n=132); пациентов, у которых от момента появления симптомов инсульта до госпитализации прошло более 7 дней (n=75), исключили. Кроме того, 115 пациентов исключили по техническим причинам или в связи с несоблюдением рекомендаций по лечению, 47 пациентов отказались от участия в исследовании, в результате остались 244 пациента, соответствующих критериям включения в исследование.
Обследование каждого участника исследования проводил ведущий невролог, ослепленный относительно данных об уровнях биомаркеров. Наличие внутримозгового или субарахноидального кровоизлияний исключили по результатам КТ при поступлении. Демографические данные пациентов, а также данные об анамнезе заболевания, в т.ч. о принимаемых лекарственных препаратах, получили в ходе опроса. Критерием почечной недостаточности был уровень креатинина плазмы >120 мкмоль/л. Критерием сердечной недостаточности считали фракцию выброса левого желудочка
Дефекты адгезии лейкоцитов
Весь контент iLive проверяется медицинскими экспертами, чтобы обеспечить максимально возможную точность и соответствие фактам.
У нас есть строгие правила по выбору источников информации и мы ссылаемся только на авторитетные сайты, академические исследовательские институты и, по возможности, доказанные медицинские исследования. Обратите внимание, что цифры в скобках ([1], [2] и т. д.) являются интерактивными ссылками на такие исследования.
Если вы считаете, что какой-либо из наших материалов является неточным, устаревшим или иным образом сомнительным, выберите его и нажмите Ctrl + Enter.
Патогенез дефектов адгезии лейкоцитов
Симптомы дефектов адгезии лейкоцитов
К настоящему времени описано более 600 случаев заболевания. Инфекции в основном поражают кожу и слизистые. У больных отмечаются параректальные абсцессы, пиодермии, отиты, язвенные стоматиты, гингивиты, парадонтиты, ведущие к выпадению зубов. Также больные страдают инфекциями дыхательных путей, асептическим менингитом, сепсисом. Первым проявлением заболевания часто является позднее отпадение пуповинного остатка (более 21 дня) и омфалит. Поверхностные инфекции часто ведут к некрозу, при этом характерным признаком заболевания является отсутствие формирования гноя при выраженном нейтрофилезе в периферической крови. Нередко формируются хронические, длительно не заживающие язвенные очаги. Основными возбудителями являются S. aureus и грамотрицательные бактерии. У некоторых больных отмечаются тяжелые грибковые поражения. Частота вирусных инфекций не увеличена.
Выраженность клинических проявлений значительно меньше у больных с некоторыми миссенc-мутациями, при которых отмечается небольшая экспрессия CD18 (2,5-10%). Эти больные, как правило, бывают диагностированы позже и могут не страдать жизнеугрожающими инфекциями. Тем не менее, даже в легких случаях отмечается лейкоцитоз, плохое заживление ран и тяжелый парадонтоз.
У носителей мутации отмечается 50% экспрессия CD18, которая не проявляется клинически.
Диагностика дефектов адгезии лейкоцитов
Флоуцитометрическое исследование нейтрофилов позволяет выявить отсутствие или значительное снижение экспрессии CD18 и ассоциированных с ним молекул CD11a, CD11b и CD11c на нейтрофилах и других лейкоцитах. Однако описано несколько случаев нормальной экспрессии CD18 при его полной дисфункции.
Лечение дефектов адгезии лейкоцитов
Проведение генной терапии у двух больных не увенчалось успехом.
В отсутствие ТГСК, 75% детей с тяжелой формой LAD I не доживают до пятилетнего возраста.
[1], [2], [3], [4]
Научная электронная библиотека
Сологуб Т. В., Романцова М. Г., Кремень Н. В., Александрова Л. М., Аникина О. В., Суханов Д. С., Коваленко А. Л., Петров А. Ю., Ледванов М. Ю., Стукова Н. Ю., Чеснокова Н. П., Бизенкова М. Н., Понукалина Е. В., Невважай Т. А.,
3.5. Общая характеристика и механизмы развития сосудистых реакций в очаге острого воспаления
Как известно, острое воспаление характеризуется определенной последовательностью сосудистых изменений, проявляющихся развитием спазма сосудов, артериальной, венозной гиперемии и стаза.
Венозная гиперемия характеризуется дальнейшим расширением сосудов, снижением скорости кровотока, полнокровием ткани, феноменом краевого стояния лейкоцитов и их эмиграцией, нарушением реологических свойств крови, усилением процессов экссудации.
Факторы, влияющие на переход артериальной гиперемии в венозную, можно разделить на две группы: внутрисосудистые и внесосудистые [50].
К внутрисосудистым факторам, вызывающим развитие венозной гиперемии, относятся набухание эндотелиальных клеток, краевое стояние лейкоцитов, активация системы гемостаза, сладжирование эритроцитов, сгущение крови, повышение ее вязкости, образование микротромбов.
Из внесосудистых факторов наибольшее значение имеют отек ткани и сдавление венул, мелких вен, лимфатических сосудов экссудатом. Усиливают венозную гиперемию избыточное накопление в очаге воспаления медиаторов с сосудорасширяющим действием, ферментов лизосом и ионов водорода, а также нарушение околокапиллярного соединительнотканного скелета и десмосом в зоне первичной и вторичной альтерации.
Ограничение кровотока в участке венозной гиперемии и образование барьеров способствуют уменьшению резорбции из очага воспаления продуктов распада, токсических факторов, а также снижают риск распространения инфекционных агентов. Однако при развитии воспаления в паренхиматозных органах длительная венозная гиперемия может привести к снижению их специализированных функций и развитию склерозирования клеток [7, 8].
Механизмы эмиграции лейкоцитов. Роль лейкоцитов в очаге воспаления
Как уже было отмечено, важнейшим признаком венозной гиперемии является эмиграция лейкоцитов из сосудов в воспаленную ткань. Последовательность выхода лейкоцитов получила название закона Мечникова, согласно которому спустя несколько часов (1, 5-2 часа) с момента действия альтерирующего фактора интенсивно эмигрируют нейтрофилы и другие сегментоядерные лейкоциты, а затем моноциты и лимфоциты.
В настоящее время известно несколько классов молекул клеточной адгезии:
5. Хрящевые соединительные белки. Экспрессируются всеми видами лейкоцитов, распознают гиалуроновую кислоту, что обеспечивает перемещение лейкоцитов в основном веществе соединительной ткани [16, 18].
При недостаточном образовании селектинов и интегринов или выработке антител к мембранным рецепторам снижаются адгезивные свойства лейкоцитов, нарушается их способность к эмиграции, накоплению в очаге воспаления и фагоцитозу, что может способствовать частым гнойным инфекциям и развитию сепсиса.
После адгезии происходят перемещение лейкоцита по поверхности эндотелиоцита к межэндотелиальной щели, которая в очаге воспаления значительно расширена, а затем и образование ложноножки и передвижение лейкоцита через межэндотелиальную щель в подэндотелиальное пространство и базальную мембрану сосуда. Таким образом лейкоциты оказываются за пределами сосуда.
В большинстве случаев острого воспаления внутрисосудистые перемещения лейкоцитов и их эмиграция занимают несколько часов. Как правило, первыми в очаг воспаления выходят нейтрофилы, они обнаруживаются в воспаленной ткани уже через 6-24 часа. Несколько позднее эмигрируют моноциты и лимфоциты (24-48 часов). Такая асинхронность эмиграции клеток обусловлена неодновременным появлением молекул адгезии и хемотаксических факторов, специфичных для разных лейкоцитов.
Нужно отметить, что временные интервалы эмиграции лейкоцитов и последовательность их выхода весьма относительны и определяются типом сосуда, видом воспаления и стадией воспаления.
Направленное движение лейкоцитов обеспечивается хемоаттрактантами, концентрация которых по мере развития вторичной альтерации в очаге воспаления нарастает, а также наличием рецепторов к различным хемоаттрактантам на поверхности лейкоцитов.
При взаимодействии рецепторов и хемоаттрактантов возникает гиперполяризация мембраны лейкоцита, увеличивается ее проницаемость для ионов Са, инициируется синтез функционально активных фосфолипидов и циклических нуклеотидов, растет число внутриклеточных органелл, функционирование которых обеспечивает перемещение лейкоцита и секрецию содержимого гранул. Помимо ориентированного движения лейкоцитов, хемоаттрактанты индуцируют адгезию лейкоцитов к эндотелию, способствуют краевому стоянию лейкоцитов и их агрегации в просвете микрососудов. Хемотаксис опосредуется различными группами веществ:
1. Цитотаксигенами, которые, не являясь хемоаттрактантами, генерируют факторы хемотаксиса.
Хемоаттрактанты могут иметь эндогенное и экзогенное происхождение. Экзогенными хемоаттрактантами являются пептиды бактерий, особенно содержащие N-формиловые группы. Свойствами эндогенных хемоаттрактантов обладают компоненты комплемента, иммуноглобулины, иммунные комплексы, лимфокины и монокины, кинины, лейкотриен В4, продукты липоксигеназного пути превращения арахидоновой кислоты, фактор, активирующий тромбоциты, фактор Хагемана, лизосомальные ферменты и другие.
Роль лейкоцитов в очаге воспаления
Кроме вновь синтезирующихся факторов оксидантной системы, в гранулах нейтрофилов содержатся лизоцим, лактоферрин, катионные белки, щелочная и кислая фосфатазы, рибонуклеаза, дезоксирибонуклеаза, гиалуронидаза, b-глюкуронидаза, эластаза, коллагеназа, ФАТ, кинины, лейкоцитарный пироген, хемотаксические факторы.
Таким образом, накопление нейтрофилов в очаге воспаления и освобождение ими указанных биологически активных веществ вызывают гибель или ограничение жизнедеятельности микроорганизмов, разрушение и лизис омертвевших тканей, очищение зоны повреждения [57]. За счет нейтрофилов вокруг очага воспаления формируется нейтрофильный защитный барьер, который отграничивает зону повреждения (совместно с моноцитарным и фибробластическим) от здоровой ткани и препятствует распространению инфекции и токсических повреждающих факторов.
Высокоактивные медиаторы нейтрофилов участвуют в развитии вторичной альтерации, стимулируют выход биологически активных веществ из других клеток, способствуют расширению сосудов, увеличению их проницаемости, экссудации плазмы и эмиграции лейкоцитов. Поступая в системный кровоток, они вызывают проявление некоторых системных эффектов воспалительного процесса.
В очаге воспаления эозинофилы выполняют две основные функции: они становятся модуляторами реакций гиперчувствительности и главным механизмом защиты от личиночных стадий паразитарных инфекций.
Основными факторами, стимулирующими процесс дегрануляции эозинофилов, являются иммуноглобулины, иммунные комплексы, комплемент. Продукты секреции эозинофилов ингибируют выделение лаброцитами гистамина и участвуют в его инактивации за счет гистаминазы, эозинофильный катионный протеин связывает и нейтрализует гепарин, высокие концентрации арилсульфатазы инактивируют хемотаксические белки и медленно реагирующую субстанцию анафилаксии, фосфолипазы В и D инактивируют тромбоцитактивирующий фактор. Под влиянием эндотоксинов и в процессе фагоцитоза эозинофилы продуцируют и выделяют эндогенный пироген, обеспечивающий развитие лихорадочной реакции, сопровождающей воспалительный процесс.
Медиаторы эозинофилов, так же как и нейтрофилов, могут участвовать в реакциях повреждения ткани и распространении вторичной альтерации.
Вслед за гранулоцитами в очаге воспаления накапливаются мононуклеары. Моноциты, эмигрировавшие в ткани, превращаются в тканевые макрофаги. В зоне воспаления происходит накопление макрофагов за счет эмиграции моноцитов из кровеносного русла, а также за счет мобилизации тканевых макрофагов. Макрофаги обеспечивают фагоцитоз не только инфекционных возбудителей воспалительного процесса, но и клеточный детрит, тем самым очищая зону альтерации и подготавливая ее к последующей регенерации и репарации. Мононуклеарные фагоциты участвуют в обеспечении неспецифической защиты организма посредством фагоцитоза, секреции гуморальных факторов, таких как лизоцим, a-интерферон, ФНО, компоненты комплемента. В очаге воспаления макрофаги приобретают более выраженные антимикробные свойства благодаря фагоцитозу антимикробных компонентов, продуцируемых нейтрофилами (миелопероксидазы и катионных белков). Таким образом, макрофаги приобретают способность галоидировать белки. Микробицидная функция макрофагов реализуется через продукты «респираторного взрыва», секреции монокинов, лизосомальных ферментов. Окислительные реакции сопровождаются накоплением в очаге воспаления высокотоксичных продуктов ПОЛ, вызывающим дальнейшую деструкцию клеток, сосудов и элементов соединительной ткани.
Под действием пусковых медиаторов макрофагов в очаге воспаления происходит активация различных типов лейкоцитов, клеток соединительной ткани, эндотелия сосудов, паренхиматозных клеток, что приводит к синтезу и секреции биологически активных соединений, оказывающих повреждающие, защитные и системные эффекты.
Все лейкоциты в зоне воспаления довольно быстро подвергаются жировой дегенерации, превращаются в гнойные тельца и удаляются вместе с гноем. В очаге воспаления возможны два пути гибели лейкоцитов.