Альфа линоленовая кислота для чего
Альфа линоленовая кислота для чего
Альфа-линоленовая кислота
α-линоленовая кислота (ALA) относится к незаменимым жирным кислотам, она жизненно важна для здоровья человека, но не синтезируется в организме. Для восполнения запасов ALA необходимо получать ее с пищей. Содержится она в семенах (чиа, льна, конопли и многих других растительных источниках), орехах и во многих распространенных растительных маслах. По своей структуре ALA названа all-cis-9,12,15-октадекатриеновой кислотой.
α-линоленовая кислота является карбоновой кислотой с цепью, состоящей из 18-углеродов и тремя двойными связями в цис-конфигурации. На третьем углероде из метильного конца (известной как n-конец) цепи жирных кислот располагается первая двойная связь. В связи с этим α-линоленовая кислота относится к полиненасыщенной n-3 (омега-3) жирной кислоте. ALA является изомером гамма-линоленовой кислоты (GLA) и полиненасыщенной н-6 (омега-6) жирной кислоты.
Альфа-линоленовая кислота похожа на омега-3 жирные кислоты, которые находятся в рыбьем жире, называемые эйкозапентаеновой кислотой (EPA) и докозагексаеновой кислотой (DHA). В организме человека альфа-линоленовая кислота превращается в EPA и DHA. Однако некоторые исследователи полагают, что менее 1% ALA превращается в физиологически эффективные соединения EPA и DHA.
Потребление альфа-линоленовой кислоты (или омега-3 жирных кислот) может снизить риск сердечно-сосудистых заболеваний, связанных с аритмиями, тромбозом, повышенным уровнем триглециридов, атеросклерозом, высоким уровнем кровяного давления, воспаления стенок сосудов и др. Недостаточное количеством ALA может привести к различным проблемам, например, к сенсорной невропатии, патологии со стороны сетчатки глаза. Также могут развиться чешуйчатые и геморрагические воспаления кожи. Поэтому существует множество пищевых добавок для приема человеком и животным с целью улучшения состояния здоровья. Препараты выпускают в виде расфасованных капсул, порошков, масел. Альфа-линоленовая кислота также входит в состав кормов для домашних животных.
За счет воздействия в комбинации с омега-3 и омега-6 жирными кислотами альфа-линоленовая кислота проявляет ряд регидратационных, укрепляющих и антиинфламаторных свойств, что позволяет ее применять в косметологии. Она входит в состав антисеборейных, противоатопических и противовоспалительных кремов, средств, используемых при экземе, повреждениях кожи различной этиологии, шампуней, бальзамов, защищающих кожу головы и волосы. Кроме того альфа-линоленовая кислота способна укрепить сосудистую стенку капилляров кожи и придать ей эластичность.
Действие на организм:
Метаболизм α-линоленовой кислоты у людей изучен. После приема α-линоленовой кислоты организм превращает ее в полиненасыщенные жирные кислоты с очень длинной цепью: быстро до эйкозапентаеновой кислоты (20: 5n-3) и более медленно до докозагексаеновой кислоты (22: 6n-3). Превращение α-линоленовой кислоты в эйкозапентаеновую кислоту происходит довольно быстро, ее в организме можно обнаружить уже спустя нескольких дней после приема пищи. Дальнейший путь метаболизма альфа-линоленовой кислотой состоит из десатурации, удлинения и дальнейшей десатурации.
Основным следствием дефицита α-линоленовой кислоты является то, что ее главный синтетический конечный продукт, докозагексаеновая кислота, не производится адекватно. Поскольку докозагексаеновая кислота является основным компонентом фосфолипидных мембран головного мозга и сетчатки, ее дефицит в этих органах приводит к патологиям. n-3 дефицит жирной кислоты усиливается при одновременном высоком содержании линолевой кислоты (относится уже к Омега-6 жирным кислотам) в рационе, что имеет тенденцию ингибировать синтез докозагексаеновой кислоты из линоленовой. Таким образом, диеты, богатые маслами кукурузы, подсолнечника и арахиса, в которых высоко содержание линолевой кислоты и низко α-линоленовой кислоты, могут приводить к дефициту жирных кислот n-3.
Токсичность для животных: острая токсичность при оральном применении (LD50): 3200 мг / кг [крыса].
Токсичные эффекты на людей:
Опасно при проглатывании. Немного опасен при контакте с кожей (раздражитель) и при вдыхании.
Линоленовая кислота
Линоленовая кислота (более строгое название α-линоленовая кислота; англ. α-Linolenic acid) — полиненасыщенная незаменимая ω-3 жирная кислота. Распространённые аббревиатуры и обозначения в разных системах: АЛК (англ. ALA), 18:3ω3, 18:3n-3, 18:3Δ9,12,15.
Играет важную роль в физиологии человека. Незаменимыми (эссенциальными) называют соединения, которые не синтезируется в организме человека и, таким образом, должны находиться в потребляемых человеком продуктах питания.
Линоленовая кислота в организме человека преобразуется в длинноцепочечные омега-3 кислоты: эйкозапентаеновую и докозагексаеновую, играющие большую роль в регуляции уровня липидов, тромбообразовании, вазодилатации, воспаления.
α-линоленовая кислота — химическое вещество
Суточные нормы потребления линоленовой
кислоты
Согласно Методическим рекомендациям МР 2.3.1.2432-08 «Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации», утверждённых Роспотребнадзором 18.12.2008 г., для организма человека такие полиненасыщенные жирные кислоты как линоленовая, линолевая, являющиеся структурными элементами клеточных мембран и обеспечивающие нормальное развитие и адаптацию организма человека к неблагоприятным факторам окружающей среды, имеют особое значение. Полиненасыщенные жирные кислоты являются предшественниками образующихся из них биорегуляторов — эйкозаноидов. Физиологическая потребность для взрослых составляет 0,8-1,6 г/сутки омега-3 жирных кислот, или 1-2% от калорийности суточного рациона. Оптимальное соотношение в суточном рационе омега-6 к омега-3 жирных кислот должно составлять 5-10:1.
Содержание линоленовой кислоты в различных продуктах
Линоленовая кислота в женском молоке
Общая информация
Линоленовая кислота входит в состав так называемого «витамина F».
У линоленовой кислоты имеются противопоказания, побочные действия и особенности применения, при систематическом употреблении в целях оздоровления необходима консультация со специалистом.
Жирные кислоты омега-3 и 6
Возможно, вы слышали, что рыбий жир полезен для организма из-за содержания омега-3. Однако это не единственная жирная кислота, которая важна для здоровья человека.
Рассказываем, чем отличаются между собой эти жирные кислоты, какие функции они выполняют и где содержатся.
Омега-3
Омега-3 — самая популярная из жирных кислот, и часто ее принимают в виде биологически активных добавок. Существует несколько видов омега-3 жирных кислот, но исследования сосредоточены на главных трех: альфа-линоленовой (ALA), эйкозапентаеновой (EPA) и докозагексаеновой кислоте (DHA).
Омега-3 жирные кислоты содержатся в клеточной мембране всех клеток тела человека.
Докозагексаеновой кислоты много в мембране клеток сетчатки, мозга и спермы. Эйкозапентаеновая и докозагексаеновая кислоты помогают коже нормально функционировать и поддерживают структуры клеточных мембран.
Омега-3 обеспечивают организм энергией и используются для образования сигнальных молекул, которые поддерживают работу сердечно-сосудистой, легочной, иммунной и эндокринной системы. Также они могут регулировать работу генов, отвечающих за реакцию на оксидативный стресс, которая повышает риск воспалительных процессов в мозге и связанных с ними заболеваний, например депрессии.
Как наше питание вляет на мозгОмега-6 обладают провоспалительными функциями, о которых мы напишем ниже, а омега-3 (эйкозапентаеновая и докозагексаеновая кислота) конкурируют с ними за включение в клеточные мембраны. Из-за этого омега-3 имеют противовоспалительные свойства.
Недостаток омега-3 в организме и избыток омега-6 ведет к дисбалансу и увеличивает риск различных воспалительных процессов.
В каких продуктах содержатся омега-3 жирные кислоты?
Всё, что нужно знать о жирах
Эйкозапентаеновая и докозагексаеновой кислота участвуют в противовоспалительных процессах, и они необходимы организму человека больше, чем альфа-линоленовая кислота. Чтобы получать необходимое их количество, рекомендуется несколько раз в неделю включать в рацион жирную рыбу.
Организм человека умеет создавать из альфа-линоленовой докозагексаеновую и эйкозапентаеновую кислоты, но этого недостаточно, чтобы поддерживать противовоспалительные функции.
Биологически активные добавки не дают той же пользы, что и сбалансированный рацион, богатый омега-3 жирными кислотами. Однако они могут помочь, если по каким-то причинам вы не можете есть продукты-источники омега-3.
Жирные кислоты омега-3 и генетика
Уровень жирных кислот омега-3 в организме человека зависит от вариантов некоторых генов. Ген FADS1 кодирует фермент, который регулирует образование ненасыщеных жирных кислот из других полиненасыщенных жирных кислот в организме.
От варианта гена FADS1 зависит, как хорошо и плохо ваш организм будет производить эйкозапентаеновую и докозагексаеновую кислоту из растительных источников.
Развитие сельского хозяйства среди людей 10 тысяч лет назад и увеличение растительной пищи в рационе привело к распространению варианта гена FADS1, который помогает синтезировать жирные кислоты при отсутствии мясной пищи. У древних же предков, которые проводили свое основное время за охотой, был распространен другой вариант.
Ученые предполагают, что жители Европы таким образом эволюционно адаптировались к растительной диете. Жители Африки, Индии и Южной Азии тоже генетически склонны эффективнее производить омега-3 жирные кислоты. Скорее всего, это связано с преобладанием растительной пищи в рационе.
Исследования показывают, что у вегетарианцев и веганов организм лучше синтезирует докозагексаеновую и эйкозапентаеновую кислоты из растительных продуктов, чем у других, что тоже говорит об адаптации организма к диете.
С Генетическим тестом Атлас вы узнаете свою предрасположенность к низкому или высокому уровню омега-3 жирных кислот.
Мы исследуем варианты следующих генов:
Кислота | Гены |
---|---|
Альфа-линоленовая | FADS1 |
Докозагексаеновая | FADS1, ELOVL2 и GCKR |
Эйкозапентаеновая | FADS1 и ELOVL2 |
Если Генетический тест Атлас покажет генетическую предрасположенность к низкому уровню той или иной омега-3 жирной кислоте, мы порекомендуем употреблять больше жирной рыбы или добавки с омега-3. Однако перед любым приемом добавок следует проконсультироваться с врачом. Генетический тест показывает только предрасположенность, а специалист оценит ситуацию целиком.
Чтобы узнать, есть ли у вас предрасположенность к хорошему синтезу омега-3 жирных кислот из растительной диеты, откройте признак по любой из них и проверьте данные по варианту гена FADS1. Вариант Т связан с более активной работой фермента и синтезом омега-3.
Омега-6
Как мы писали выше омега-6 обладают провоспалительными функциями. Сейчас объясним, что это значит. Под воспалением часто понимают острую фазу заболевания.
На самом деле, воспаление — реакция иммунитета. Она может быть вызвана патогеном, травмой или нарушением работы иммунной системы.
Когда вы в очередной раз ударяетесь мизинцем о мебель, организм синтезирует простагландины — сигнальные молекулы, которые запускают реакцию воспаления и отвечают за боль в месте ушиба. Для синтеза этих молекул организм использует омега-6 или омега-3 (эйкозапентаеновую) жирные кислоты, которые содержатся в клетках.
Воспалительная реакция будет зависеть от соотношения разных типов кислот, так как простагландины, полученные из омега-6, действуют гораздо эффективнее простагландинов, полученных из омега-3 жирных кислот. Получается, чем больше в клетке омега-3 и меньше омега-6 — тем ниже вероятность запуска слишком сильной воспалительной реакции, которая может навредить организму.
Без реакции воспаления наш организм не мог бы справиться с инфекциями, порезами и ушибами. С другой стороны, когда иммунная система чрезмерно активна, а организм склонен к воспалениям — повышается риск различных хронических заболеваний, например сахарного диабета 2 типа, атеросклероза и ожирения.
Провоспалительные жирные кислоты омега-6 нужны организму, но в небольшом количестве, чтобы запускать реакцию воспаления в нужное время и в нужном месте. Иначе организм будет страдать либо от системного воспаления, либо от неспособности защитить себя от инфекций.
Существует 5 основных видов кислот, относящихся к омега-6:
В каких продуктах содержатся омега-6 жирные кислоты?
Что такое масляная кислота и зачем она нужна
Омега-6 жирные кислоты содержатся в сое, кукурузе, подсолнечном масле, орехах и семенах, мясе, рыбе и яйцах, а также в составе жирных соусов на основе майонеза и выпечке на маргарине.
Омега-6 жирные кислоты и генетика
Уровень омега-6 жирных кислот также зависит от вариантов генов. Например, ген NTAN1 кодирует фермент, который принимает участие в процессе деградации белка в организме, что связан с метаболизмом омега-6 жирных кислот.
Кислота | Гены |
---|---|
Арахидоновая | FADS1 и NTAN1 |
Гамма-линоленовая | FADS1 и NTAN1 |
Дигомо-гамма-линоленовая | FADS1 и NTAN1 |
Докозатетраеновая | FADS1 |
Линоленовая | FADS1, NTAN1 и NRBF2 |
Если Генетический тест Атлас покажет генетическую предрасположенность к высокому уровню той или иной жирной кислоте, мы порекомендуем ограничить продукты с высоким содержанием омега-6.
Чтобы узнать, как ваши варианты генов влияют на уровень жирных кислот в организме, закажите Генетический тест Атлас. Помимо этих признаков в тест входят риски заболеваний и спортивных травм, склонность к непереносимости лактозы и глютена, отчеты по некоторым витаминам и гормонам, а также информация о происхождении.
Альфа линоленовая кислота для чего
Омега-3: топ-5 продуктов
Жирные кислоты необходимы нашему организму, и одну из важнейших групп представляют кислоты омега-3. Рассказываем, почему они незаменимы и где содержатся.
Комплекс омега-3 относится к полиненасыщенным жирным кислотам (ПНЖК). Он нужен нам для поддержания жизненно важных функций. Без омега-3 кислот не могут нормально функционировать нервная и иммунная системы; из них синтезируются гормоноподобные вещества, регулирующие течение воспалительных процессов, свертываемость крови, сокращение и расслабление стенок артерий. Кроме того, доказана важная роль омеги-3 в процессе интеллектуального развития ребенка.
Сейчас известно 11 кислот, входящих в группу омега-3, однако наиболее ценными считаются три: эйкозапентаеновая (ЭПК), доко-загексаеновая (ДГК) и альфа-линоленовая (АЛК). ЭПК способствует ослаблению хронических воспалительных процессов, ДГК поддерживает работу нервной системы, АЛК используется как источник энергии, а также защищает сердце.
Наш организм не способен самостоятельно синтезировать кислоты омега-3 из более простых веществ (условным исключением считается АЛК, о которой будет сказано ниже). Получать их мы можем только извне, с пищей, поэтому очень важно включать в свой рацион продукты, содержащие этот комплекс. Сегодня в питании большинства людей, к сожалению, наблюдается нехватка омеги-3, а между тем норма составляет 0,8–1,6 г/сутки, или 1–2% от калорийности суточного рациона.
Кислоты этой группы содержатся в основном в растительных маслах и семенах, рыбе и морепродуктах, а также некоторых орехах. Мы выделили пять продуктов, наиболее богатых омега-3 ПНЖК.
Льняное масло
Среди доступных на нашем рынке продуктов льняное масло занимает одну из лидирующих позиций по содержанию омега-3 жирных кислот. На 100 г приходится 53 368 г. Это альфа-линоленовая кислота, которая помимо прочего ценна тем, что, попадая в организм, может превращаться в другие важные формы омеги-3: эйкозапентаеновую и докозагексаеновую кислоты. Льняное масло также богато витаминами Е и К, в нем есть и другие ненасыщенные жирные кислоты (омега-6 и омега-9).
Сейчас в продаже можно найти несколько видов льняного масла, и выбирать лучше нерафинированное холодного отжима. Только помните, что хранить его долго нельзя, масло быстро окисляется. Жарить пищу на нем тоже нежелательно. Лучше просто заправлять салаты, каши, смешивать с кефиром или йогуртом.
Омега-3 кислоты в достаточном количестве встречаются также в рыжиковом, конопляном, соевом, рапсовом, горчичном маслах.
Семена чиа
На нашем рынке эти семена появились недавно, зато в Южной Америке, на их родине, чиа были известны задолго до появления Колумба. Индейцы готовили из них масло и лекарства.
Сейчас семена стали популярны и у нас, что неудивительно, ведь они очень полезны. Содержание омеги-3 в чиа довольно высоко – 17,83 г на 100 г. Кроме того, в них есть витамины (В1, В2, РР) и целый комплекс микро- и макроэлементов: кальций, калий, магний, фосфор, железо, марганец, медь, селен, цинк. Чиа благотворно влияют на пищеварительную систему, укрепляют кости, регулируют уровень сахара в крови, улучшают состояние кожи и волос.
Добавлять зерна можно куда угодно: в каши, салаты, пудинги, смузи. Полезно также смешивать их с йогуртом, кефиром, молоком.
Печень трески
Печень трески нам хорошо знакома, в России ее традиционно использовали в кулинарии. Это невероятно ценный продукт. По количеству омега-3 жирных кислот он превосходит мясо красных и белых рыб – на 100 г приходится 16,51 г. Кроме того, печень трески богата витаминами и другими полезными элементами. Например, в ней много А, D, E, В2, В6, В9, РР, меди, кобальта, натрия, хлора, фосфора, молибдена, магния.
Однако следует помнить, что это довольно калорийный продукт, поэтому есть его надо в умеренных количествах. И сочетать желательно с отварным картофелем, цельнозерновым хлебом, крупами и овощами.
Сейчас в магазине большой выбор консервированной печени трески. Покупать лучше ту, которая изготовлена из свежего, а не замороженного сырья. Идеальный вариант, когда на этикетке написано «изготовлено в море из свежей печени» или «изготовлено на корабле». Лучшая печень у нас делается в Мурманске и Архангельске. Также обращайте внимание на состав, там должно быть всего три ингредиента: тресковая печень, соль и специи, никакого жира и растительных масел.
Лосось атлантический (семга)
Рыба – оптимальный источник омега-3 кислот, она обязательно должна быть на вашем столе. Один из лидеров среди морских видов, атлантический лосось, содержит 2,684 г омеги-3 на 100 г. В нем также есть витамины группы В, витамины D, Е, РР, калий, кобальт, медь, селен, хром и другие элементы. Рыба усваивается организмом на 98%, в состав входит много белка и жира, поэтому она чрезвычайно питательная. Регулярное употребление лосося улучшает состояние кожи, волос и ногтей, он невероятно полезен для нервной системы, в частности, повышает устойчивость организма к стрессам, стимулирует мозговую деятельность, полезен для здоровья глаз и пищеварительной системы. Всех ценных качеств этого продукта не перечесть.
Вообще, чтобы пополнять запас омега-3 кислот (прежде всего эйкозапентаеновой и докозагексаеновой) в организме, нужно включать в рацион различную рыбу. Помимо лосося, в топ-3 входят атлантическая скумбрия и сельдь. Также богаты омегой-3 анчоусы, кижуч, мойва, сардины, тунец, форель, барабулька и другие виды.
Не забывайте и про морепродукты: икру, кальмары, устрицы, мидии, моллюски.
Грецкий орех
Из всех орехов у грецкого самый высокий уровень содержания омеги-3 – 9,08 г на 100 г. В нем также есть омега-6 и омега-9, комплекс витаминов (группа В, Е, РР, К) и других необходимых элементов (калий, кальций, магний, фосфор, железо, марганец, медь, селен, цинк). Так что грецкие орехи чрезвычайно полезны. Они хорошо влияют на работу мозга, снижают уровень «плохого» холестерина, укрепляют кости и сосуды, улучшают сон, нормализуют микрофлору в кишечнике.
Однако этот продукт очень калорийный, поэтому злоупотреблять им не стоит. Избыток может перегрузить печень и негативно сказаться на работе желудочно-кишечного тракта и поджелудочной железы. 30 г (5–7 ядрышек) в день вполне достаточно для здорового человека; максимальное количество – 50 г (7–10 ядрышек).
Вообще, при планировании рациона не забывайте одно из главных правил здорового питания – все хорошо в меру. Помимо комплекса омега-3 необходимо пополнять запас и других жирных кислот, в частности, омеги-6. Так, согласно рекомендациям экспертов, соотношение омеги-6 к омеге-3 должно быть 5–10:1. И конечно, не перебарщивайте. Избыток полиненасыщенных жирных кислот может привести к проблемам в организме.
Комментарий эксперта Центра молекулярной диагностики CMD ЦННИ Эпидемиологии Роспотребнадзора Юлии Зотовой:
В России оптимальным уровнем потребления Омега-3 жирных кислот считается 1 грамм в сутки, максимальный – 3 грамма. В среднем врачи рекомендуют употреблять 1,5-2 г.
Приведем примеры морской рыбы, где Омега-3 больше всего (из расчета на 100 грамм):
Взрослому человеку достаточно употреблять такую пищу два раза в неделю, чтобы восполнить дефицит питательных веществ.
Морепродукты также богаты Омега-3.
В растительные масла вы также найдете Омега-3. В 100 граммах продукта показатели следующие:
Еще один продукт с большим количеством Омега-3 – это семена чиа. Это растение из рода Шалфей, распространено в странах Латинской Америки. Его семена часто добавляют в салаты, йогурт и даже в соки и десерты. Также зерна можно употреблять в пищу самостоятельно. В 100 граммах семян содержится 17,5 грамм Омега-3.
Среди орехов самый богатый на Омега-3 – грецкий. Чтобы получить суточную дозу жирных кислот, достаточно съедать 5 штук в день. В 100 граммах орехов – 2,72 грамм полезных веществ.
Из овощей содержанием Омега-3 отличаются брюссельская и цветная капуста – содержат по 0,16 грамм, а также шпинат – в нем 0,13 гр на 100 грамм продукта.
Альфа-липоевая кислота — спектр клинического применения
О. В. Воробьева
Профессор кафедры нервных болезней факультета послевузовского профессионального образования ГОУ ВПО «Московская медицинская академия им. И. М. Сеченова» Росздрава РФ
Резюме
Альфа-липоевая кислота (АЛК) — естественный антиоксидант, представляет собой кислоту жирного ряда, которая находится в каждой клетке человеческого тела. С лечебными целями АЛК используется с середины двадцатого века. В работе приведен обзор клинических исследований эффективности АЛК при различных клинических состояниях, ассоциированных с оксидантным стрессом.
Ключевые слова: альфа-липоевая кислота, оксидантный стресс, диабетическая невропатия.
Summary
Alpha lipoic acid (ALA) is a natural antioxidant, a fatty acid that is found in every cell of human body. ALA is used for treatment since the mid-twentieth century. The article provides an overview of the clinical studies of ALA effectiveness in different clinical conditions associated with oxidative stress.
Key words: alpha-lipoic acid, oxidative stress, diabetic neuropathy.
История открытия АЛК
Альфа-липоевая кислота (АЛК) была открыта Snell et al. в 1937 году, когда он обнаружил что определенные бактерии нуждаются для роста в экстракте картофеля [1]. В 1951 году Reed et al. выделили так называемый картофельный фактор роста (АЛК), и вскоре было показано участие АЛК как коэнзима в цикле Кребса и в элиминации свободных радикалов [2, 3]. Изначально АЛК была известна как незаменимый биохимический кофактор для митохондриальных ферментов. Однако в последнее десятилетие было обнаружено, что АЛК и промежуточный продукт ее обмена дигидролипоевая кислота являются мощными антиоксидантами. Приблизительно с 1980-х годов большинством исследователей АЛК признается одним из самых мощных антиоксидантов.
Индуцированный гипергликемией оксидантный стресс и АЛК
Роль оксидантного стресса глубоко изучена на модели экспериментального диабета и у больных, страдающих сахарным диабетом. Повышение уровня глюкозы у лиц, страдающих сахарным диабетом, приводит к нарастанию конечных продуктов гликирования (AGE). Этот процесс, определяемый как аутоокислительная гликолизация, рассматривается как главная причина повышения продукции свободных радикалов у больных диабетом [4]. Кроме того, ауто-окислительная гликолизация может быть ответственна за снижение доступности и активности антиоксидантных энзимов. Дополнительно фруктоза, уровень которой повышается из-за активации полиолого пути метаболизма, служит источником предшественников AGE. Повреждающий эффект аккумулированных конечных продуктов гликирования (AGE) осуществляется благодаря их связыванию со специфическими рецепторами оболочки нервного волокна и активации нуклеарного фактора кВ (NF-kB). Одним из эффектов NF-kB является стимулирование выделения субстанций, ухудшающих кровоток, например, эндотелина-1 [5, 6]. Напротив, антиоксиданты ингибируют NF-kB. Индуцированный гипергликемией оксидантный стресс способствует программированной гибели швановских клеток, что является дополнительным патогенетическим фактором развития диабетической нейропатии. Например, при добавлении глюкозы в культуру клеток ганглия заднего корешка повышается частота программированной гибели швановских клеток [7]. Свободные радикалы нарушают деятельность клеточных структур, в том числе и эндотелия, вызывая эндоневральную гипоксию и ускоряя развитие невропатии.
АЛК — естественный антиоксидант, представляет собой кислоту жирного ряда, которая находится в каждой клетке человеческого тела. АЛК образуется в организме естественным путем и по химическому строению определяется как 1,2-дитиолан-3-пентаноевая кислота (С8 Н14 02S2). У людей АЛК синтезируется в печени и других тканях. Дополнительным источником АЛК являются пищевые продукты. Она содержится в следующих продуктах: красное мясо, печень, зеленые овощи, картофель, дрожжи. Эндогенный уровень АЛК у здоровых лиц составляет 1-25 нг/мл [8]. Но ее синтез снижается с возрастом, а также у лиц с хроническими заболеваниями, включая сахарный диабет и его осложнения, такие как диабетическая нейропатия.
Эта кислота играет важнейшую роль в процессе преобразования глюкозы в энергию. В то же время АЛК — мощный липофильный антиоксидант, эффективность которого доказана как в лабораторных условиях, так и в организме [9]. Основной эффект кислоты — поглощение различных реактивных окисленных субстанций. АЛК — универсальный антиоксидант, поскольку является как водо-, так и жирорастворимой субстанцией. Это свойство обеспечивает преимущество АЛК в протекции различных форм оксидантного стресса, в частности, внутрикле точную защиту. Дополнительным преимуществом АЛК является синергичное взаимодействие с другими антиоксидантами, в том числе витаминами С и Е. Кроме того, АЛК участвует в рециркуляции других антиоксидантов, таких как витамин С, Е и глутатион. Например, АЛК может участвовать в реакциях регенерироции витамина С и глутатиона [10]. Глутатион является одним из основных неферментных механизмов защиты, который может как напрямую реагировать со свободными радикалами, уничтожая их, так и входит в состав ферментной системы глутатионпероксидазы. Совместно с АЛК глутатион играет важную роль в различных клеточных восстановительно-окислительных реакциях. Дополнительным эффектом АЛК является стимуляция фактора роста нерва и соответственно регенерации волокна [11]. Естественная форма АЛК состоит из R-изомера, но синтетическая форма представляет собой рацемическую смесь двух изомеров R-формы и S-формы. Оба изомера имеют различный потенциал. R-форма обладает большими возможностями в утилизации глюкозы. С другой стороны, S-форма демонстрирует лучший аффинитет с глутатион редуктазой.
Анализ вышеизложенных фактов демонстрирует, что оксидантный стресс — конечный путь в повреждении нервного волокна. Поэтому антиоксиданты могут предохранять от индуцированной гликимией дисфункции нервного волокна или улучшать течение диабетической нейропатии. Уникальность АЛК как антиоксиданта заключается в следующих свойствах:
1) способность напрямую элиминировать свободные радикалы;
2) способность к регенерации эндогенных антиоксидантов, таких как глтатион, витамины Е и С;
3) способность редуцировать продукцию свободных радикалов, благодаря метал-хелатной активности.
АЛК в клинической практике
С лечебными целями АЛК впервые начали использовать в 1966 году клиницисты Германии для лечения диабетической полиневропатии и цирроза печени, потому что имелись наблюдения о низком уровне АЛК у этой категории пациентов [12]. На животных моделях экспериментального диабета было доказано, что АЛК улучшает невральное кровообращение и проводимость сигнала по нерву [13]. Эти позитивные результаты способствовали немедленному проведению клинических исследований эффективности АЛК в лечении диабет-индуцированной полиневропатии. За десятилетия использования АЛК накоплены многочисленные доказательства эффективности данного препарата в отношении симптомов диабетической полинейропатии. Препарат хорошо переносится больными, терапия им безопасна.
АЛК — препарат выбора для лечения диабетической невропатии.
В 1990-х годах проведены основополагающие исследования эффективности и безопасности АЛК для лечения диабетической невропатии с соблюдением требований доказательной медицины. В первом крупном исследовании ALADIN оценивались три дозы АЛК. Исследование включало 328 больных со вторым типом сахарного диабета. Пациенты получали внутривенно 1 200 мг, 600 мг, 100 мг или плацебо в течение трех недель. Улучшение симптоматики на 30 % и более наблюдалось у 71 % пациента, получавших 1 200 мг АЛК в сутки; у 82 % пациентов, получавших 600 мг АЛК в сутки; у 65 % пациентов, получавших 100 мг АЛК в сутки; у 58 % пациентов, получавших плацебо. Во втором исследовании, названном ALADIN II, анализировались результаты лечения 65 пациентов, получавших две дозы таблетированной АЛК (600 мг/день или 1 200 мг/день) или плацебо свыше двух лет. В исследовании были получены убедительные доказательства клинического улучшения симптомов невропатии. Основным показателем выраженности ДПН служили баллы по шкале Total Symptom Score (TSS), которая позволяла оценить интенсивность и частоту в течение последних 24 часов основных позитивных невропатических симптомов, таких как стреляющая боль, жжение, онемение и парестезии. На основании этих позитивных результатов был разработан дизайн исследования ALADIN III, в котором проверялась гипотеза об эффективности короткого курса интервенозного введения АЛК с последующим длительным курсом таблетированного приема АЛК для лечения диабетической нейропатии [14]. В этом исследовании пациенты получали 600 или 1 200 мг АЛК в день в течение трех недель с последующим приемом таблетированной формы 1 800 мг/день в течение шести месяцев. Результаты продемонстрировали устойчивую тенденцию улучшения болевого синдрома, но не достигли статистической достоверности. Но исследование ORPIL, в котором пациенты с сахарным диабетом второго типа получали 1 800 мг/день, показало достоверное улучшение эндоневральной функции после трех недель лечения [15]. Кроме того, благодаря исследованию SYDNEY было доказано влияние АЛК на сенсорные симптомы диабетической полиневропатии. В исследовании SYDNEY участвовали пациенты со стабильным диабетом, осложненным сенсомоторной невропатией, которые получали интравенозно 600 мг АЛК или плацебо пять дней в неделю, в целом 14 вливаний [16]. После лечения наблюдалось значимое улучшение по шкале Total Symptom Score (TSS, оценивает основные позитивные невропатические симптомы) на 5,7 пунктов в группе активного лечения по сравнению с группой плацебо на 1,8 пунктов (P 0,05) тенденция к более выраженному увеличению скорости проведения импульса по чувствительным и двигательным нервам, а также амплитуд моторных и сенсорных ответов в основной группе.
Дополнительные клинические возможности использования АЛК
Конечно, основное показание для использования АЛК — это сахарный диабет и связанные с нарушением обмена глюкозы осложнения, включая в первую очередь нейропатию и катаракту. Дополнительно АЛК улучшает возможности организма для утилизации глюкозы, что способствует снижению зависимости от инсулина. Но благодаря своим свойствам АЛК обеспечивает высокую протекцию против окислительных процессов, что позволяет использовать АЛК в лечебных целях при широком спектре заболеваний.
АЛК и компрессионно-ишемическая радикулопатия
На животных моделях (сдавление седалищного нерва крысы) доказан протективный эффект АЛК в отношении редукции оксидантного стресса при травматическом повреждении нервного волокна [23]. Эти находки позволяют обсуждать использование АЛК для лечения боли в спине, ассоциированной с радикулопатией. Наиболее частой причиной радикулопатии и радикулярной боли является поясничные грыжи межпозвонкового диска. Повреждение нервного волокна зависит от длительности сдавления. Последовательный паттерн аксональной дегенерации и деградации миелина и последующей быстрой регенерации характерен для повреждения периферического нерва. Неоспоримым фактом является повышение свободных радикалов после повреждения ткани [23]. Повышенная продукция свободных радикалов в условиях неэффективного баланса клеточных антиоксидантных систем приводит к дополнительному прямому повреждению фосфолипидов мембран клетки, митохондрий, а также клеточных белков. Пероксид дисмутаза — одна из протективных систем, защищающая клетки от повреждения, связанного со свободными радикалами. Пероксид дисмутаза принадлежит к семейству метаталлопротеиназ. Она катализирует дисмутацию свободных радикалов, конечными продуктами которой являются вода и пероксид водорода, последний нейтрализуется благодаря активности каталазы. На экспериментальной модели поврежденного нервного волокна показано повышение активности пероксид дисмутазы и каталазы, что может быть ответом, нивелирующим оксидантный стресс. Несмотря на отсутствие полного понимания тонких механизмов повреждения нервного волокна, имеющихся на сегодняшний день фактов достаточно для предположения, что АЛК может повышать антиоксидантную защиту поврежденного волокна. Действительно, недавние исследования показали эффективность АЛК в отношении таких клинических симптомов как боль, парестезии, гипостезия у пациентов с компрессионной радикулопатией, вследствие диско-радикулярного конфликта [24]. Эти данные Senoglu et al. (2009) коррелируют с другим исследованием, в котором оценивалась эффективность дополнительного использования комбинации АЛК и гамма-линоленовой кислоты в шестинедельной реабилитационной программе у пациентов с дискогенной радикулопатией по сравнению с аналогичной группой пациентов, получавших только реабилитационную программу [25]. Дополнительные преимущества антиоксидантной терапии были продемонстрированы в отношении редукции боли и связанными с ней функциональными нарушениями (Visual Analogue Scale, Oswestry Low Back Pain Disability Questionnaire, Aberdeen Back Pain Scale, Revised Leeds Disability Questionnaire, Roland and Morris Disability Questionnaire), а также в отношении улучшения качества жизни (Short Form Health Survey [36].
АЛК и алкогольная невропатия
Антиоксидантная терапия рассматривается как один возможных путей лечения токсических эффектов алкоголя на нервную систему. Однако, хотя имеется масса публикаций о доказанном терапевтическом действии АЛК при диабетической полиневропатии, работы по изучению эффективности АЛК при АП пока единичны. Показано, что АЛК эффективна у 70 % пациентов с АП, влияя на сенсорные и моторные симптомы и оказывая также положительный эффект на мучительные для больных болевые и парестетические проявления АП [26]. При анализе эффективности и переносимости АЛК в сравнении с тиамином было обнаружено, что АЛК достоверно эффективнее витамина В1 по клиническим и электрофизиологическим показателям и рекомендована для широкого применения для терапии АП [27]. Лечение АЛК можно считать этиотропным, так как препарат влияет на один из основных этиологических факторов формирования полиневропатии при хроническом алкоголизме — оксидантный стресс. Кроме того, имеются доказательства прямого эффективного действия АЛК при этанол-обусловленной нейротоксичности in vivo [28].
АЛК и вибрационная болезнь
К числу основных симптомов вибрационной болезни относят сосудистые расстройства, проявляющиеся нарушениями периферического кровообращения, изменением тонуса капилляров, нарушением общей гемодинамики, а также развитием вегетативно-сенсорной полинейропатии конечностей. Ишемия эндоневрия запускает процессы оксидантного стресса, играющие важную роль в повреждении нервного волокна. Этот факт открывает новые возможности использования антиоксидантной терапии для лечения вибрационной болезни. На кафедре профессиональных заболеваний Санкт-Петербургской государственной медицинской академии им. И. И. Мечникова было проведено сравнительное, открытое рандомизированное исследование эффективности «Тиолепты» в дозе 600 мг/сут. (длительность курса 21 день) для лечения вибрационной болезни с вегетативно-сенсорной полинейропатией [29]. Дополнительное введение в терапию «Тиолепты» привело к снижению частоты субъективных жалоб пациентов, к стойкому уменьшению рецидивов болевого синдрома в конечностях, урежению частоты приступов ангиоспазмов. В группе пациентов, получавших «Тиолепту», имелась значимая позитивная динамика (р ЛИТЕРАТУРА
1. Snell EE, Strong FM, Peterson WH. Growth factors for bacteria. VI: Fractionation and properties of an accessory factor for lactic acid bacteria. Biochem J 1937. 31 (10):1789-1799.
2. Reed LJ, DeBusk BG, Gunsalus IC, Hornberger CSJr. Cristalline alpha-lipoic acid: a catalytic agent associated with pyruvate dehydrogenase. Science 1951. 114 (2952):93-94.
3. Reed LJ. The chemistry and function of lipoic acid. Adv Enzymol 1957. 18:319-347.
4. Sen CK. Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochem Pharmacol 1998.55 (11): 1747-1758.
5. Kihara M, Low P A Impaired vasoreactivity to nitric oxide in experimental diabetic neuropathy Experimental Neurology, 1995, v 132, 180-185.
6. Kowluru RA. Effect of advanced glycation end products on accelerated apoptosis of retinal capillary cells under in vitro conditions. Life Sci. 2005 Jan 14;76 (9):1051-60.
7. Miinea C, Eichberg J. Antioxidant protection mechanisms and arachidonic acid synthesis are altered in Schwann cells grown in elevated glucose. Fifth Diabetic Neuropathy Satellite Symposium 2000. 32.
8. Teichert J, Preiss R. HPLC-methods for determination of lipoic acid and its reduced form in human plasma. Int J Clin Pharmacol Ther Toxicol. 1992;30:511-512.
9. Packer L, Tritschler HJ, Wessel K. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med. 1997;22:359-378.
10. Packer L, Witt EH, Tritschler HJ. „ Alpha-Lipoic acid as a biological antioxidant. “ Free Radic Biol Med 1995 Aug;19 (2):227-50.
11. Murase K, Hattori A, Kohno M, Hayashi K. Stimulation of nerve growth factor synthesis/secretion in mouse astroglial cells by coenzymes. Biochem Mol Biol Int 1993.30:615-621.
12. Biewenga GP, Haenen GR, Bast A. The pharmacology of the antioxidant lipoic acid.//Gen Pharmacol 1997;29:315-331.
13. Coppey LJ, Gellett JS, Davidson EP, et al. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes. 2001;50:1927-1937.
14. Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diabetes Care. 1999;22:1296-1301.
15. Ruhnau KJ, Meissner HP, Finn JR, et al. Effects of 3-week oral treatment with the antioxidant thioctic acid (alpha-lipoic acid) in symptomatic diabetic polyneuropathy. Diabet Med. 1999;16:1040-1043.
16. Ametov AS, Barinov A, Dyck PJ, et al. SYDNEY Trial Study Group. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: the SYDNEY trial. Diabetes Care. 2003;26:770-776.
17. Yadav V, Marracci G, Lovera J, et al. Lipoic acid in multiple sclerosis: a pilot study. Mult Scler. 2005;11:159-165.
18. Ziegler D, Nowak H, Kempler P, Vargha P, Low PA. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis.//Diabet Med 2004;21 (2):114-121.
19. Ziegler D, Ametov A, Barinov A, Dyck PJ, GurievaI, Low PA, Munzel U, Yakhno N, Raz I, Novosadova M, et al. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy. The SYDNEY 2 trial. Diabetes Care 2006. 29:2365-2370.
20. Ziegler D. Thioctic acid for patients with symptomatic diabetic neuropathy: a critical review. Treat Endocrinol 2004.3 (3):173-189.
21. Строков И. А., Ахметжанова Л. Т., Солоха О. А. Эффективность лечения диабетической полиневропатии таблетированной формой альфа-липоевой кислоты. Трудный пациент 2010; 8 № 3:17-21.
22. Баранцевич Е. Р., Посохина О. В. Подходы к терапии неврологических проявлений сахарного диабета. Журнал неврол. и психиатр им. С. С. Корсакова 2010;110 № 4:63-66.
23. Senoglu M, Nacitarhan V, Kurutas EB, Senoglu N, Altun I, Atli Y, Ozbag D. Intraperitoneal Alpha-Lipoic Acid to prevent neural damage after crush injury to the rat sciatic nerve. J Brachial Plex Peripher Nerve Inj. 2009;4:22.
24. Ranieri M, Sciuscio M, Cortese AM, Santamato A, Di Teo L, Ianieri G, Bellomo RG, Stasi M, Megna M. The use of alpha-lipoic acid (ALA), gamma linolenic acid (GLA) and rehabilitation in the treatment of back pain: effect on health-related quality of life. Int J Immunopathol Pharmacol. 2009;22 (3 Suppl):45-50.
25. Ranieri M, Sciuscio M, Cortese AM, Santamato A, Di Teo L, Ianieri G, Bellomo RG, Stasi M, Megna M. The use of alpha-lipoic acid (ALA), gamma linolenic acid (GLA) and rehabilitation in the treatment of back pain: effect on health-related quality of life. Int J Immunopathol Pharmacol. 2009;22 (3 Suppl):45-50.
26. Скляр И. А., Воробьева О. В., Шаряпова Р. Б., Садеков Р. К. Тиоктацид в лечении алкогольной полиневропатии. Лечение нервных болезней 2001; 2: 39-41.
27. Ковражкина Е. А., Айриян Н. Ю., Серкин Г. В., Глушков К. С., Павлов Н. А., Гехт А. Б., Стаховская Л. В., Скворцова В. И. Возможности и перспективы применения берлитиона для лечения алкогольной полиневропатии. Журн Неврол и психиатр им. С. С. Корсакова 2004; 104: 2: 33-37.
28. Pirlich M, Kiok K, Sandig G, Lochs H, Grune T. Alpha-lipoic acid prevents ethanol-induced protein oxidation in mouse hippocampal HT22 cells. Neurosci Lett. 2002 Aug 9;328 (2):93-6.
29. Артамонова В. Г. Лашина Е. Л. Применение препарата тиолепта (тиоктовая кислота), в комбинированной терапии вибрационной болезни. Журн Неврол и психиатр им. С. С. Корсакова 2011; 111: 1: 82-85.
30. Han D, Tritschler HJ, Packer L. Alpha-lipoic acid increases intracellular glutathione in a human T-lymphocyte Jurkat cell line. Biochem Biophys Res Commun 1995 Feb 6;207 (1):258-64.
31. Baur A et al., Alpha lipoic acid is an effective inhibitor of human immuno-deficiency virus (HIV-1) replication, Klin Wochenschr 69 (1991): 722-4.
32. Perricione N. The Wrinkle Cure, Chapter 6 «Alpha Lipoic Acid» pp.71-72. Warner Books., 2000.
33. Cao X and Phillis JW. Free Radical Research 1995; 23:365.
34. Marracci GH, Jones RE, McKeon GP, Bourdette DN. «Alpha Lipoic Acid inhibits T cell migration into the spinal cord and suppresses and treats experimental autoimmune encephalomyelitis.» Journal of Neuroimmunololgy, October2002;131 (1-2):104-14.
35. Hummel T, Heilmann S, Huttenbriuk KB., «Lipoic acid in the treatment of smell dysfunction following viral infection of the upper respiratory tract.» Laryngoscope 2002 Nov;112 (11):2076-80.
36. Logan AC, Wong C. «Chronic fatigue syndrome: oxidative stress and dietary modifications.» Alternative Medicine Review Oct 2001;6 (5):450-9.
37. Peltier AC, Russell JW. Advances in understanding drug-induced neuropathies. Drug Saf 2006;29 (1):23-30.
38. Gedlicka C, Kornek GV, Schmid K, Scheithauer W. Amelioration of docetaxel/cisplatin induced polyneuropathy by alpha-lipoic acid. Annals of Oncology 2003;14:339-340.
39. Phase III Randomized Study of Alpha-Lipoic Acid in Preventing Platinum-Induced Peripheral Neuropathy in Cancer Patients Receiving a Cisplatin- or Oxaliplatin-Containing Chemotherapy Regimen (MDA-CCC-0327).
40. Al-Majed, AA. Gado, AM, Al-Shabanah, OA, and Mansour, AM. «Alpha-lipoic Acid Ameliorates Myocardial Toxicity Induced by Doxorubicin.» Pharmacol Res December 2002;46 (6):499-503.
41. Mijnhout G. S., Alkhalaf A., Kleefstra N., Bilo H. J. G. The Netherlands Journal of Medicine 2010; 68 (4): 158-162.