Аллотропия что это такое
Аллотропия
Полезное
Смотреть что такое «Аллотропия» в других словарях:
аллотропия — аллотропия … Орфографический словарь-справочник
АЛЛОТРОПИЯ — (от греч. allos иной, и trepein обращать). Свойство некоторых химических веществ принимать различные формы, вместе с различными свойствами; напр., углерод, являющийся в виде алмаза, графита, угля. Словарь иностранных слов, вошедших в состав… … Словарь иностранных слов русского языка
АЛЛОТРОПИЯ — (от алло. и греч. tropos поворот свойство), существование химических элементов в виде двух или более простых веществ. Может быть обусловлена образованием молекул с различным числом атомов (напр., кислород O2 и озон O3) либо кристаллов различных … Большой Энциклопедический словарь
АЛЛОТРОПИЯ — АЛЛОТРОПИЯ, свойство некоторых химических элементов, позволяющее им существовать в двух или более различных физических формах. Каждая форма (называемая аллотропом) может иметь различные химические свойства, но способна превратиться и в другой… … Научно-технический энциклопедический словарь
АЛЛОТРОПИЯ — полиморфизм элементов (углерод, сера и др.). Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия
АЛЛОТРОПИЯ — (от греч. allos иной и tropos образ), свойство некоторых хим. элементов существовать в нескольких видоизменениях, различных по физ. и хим. свойствам. Причины А.: полимерия (см.) различное число атомов в молекуле (напр., у О, S, Р), различное… … Большая медицинская энциклопедия
аллотропия — Существование одного и того же химич. элемента в виде двух или нескольких простых вещ в, разных по строению и свойствам, т.н. аллотропич. модификаций. А. м. б. результатом образования разных кристаллич. форм (напр., фа фит и алмаз, a Fe и y Fe)… … Справочник технического переводчика
АЛЛОТРОПИЯ — свойство некоторых хим. элементов в свободном виде существовать в нескольких видоизменениях (модификациях), различных по строению кристаллической решетки, физ. и хим. свойствам, напр. углерод существует в виде угля, графита и алмаза … Большая политехническая энциклопедия
Аллотропия — Алмаз и графит аллотропические формы углерода, отличающиеся строением кристаллической решётки Аллотропия (от др. греч … Википедия
аллотропия — и; ж. [от греч. allos другой и tropos поворот, направление]. Существование одного и того же химического элемента в виде двух или нескольких простых веществ, различных по строению и свойствам. ◁ Аллотропический, ая, ое. Графит и алмаз являются… … Энциклопедический словарь
АЛЛОТРОПИЯ — существование химических элементов в двух или более молекулярных либо кристаллических формах. Например, аллотропами являются обычный кислород O2 и озон O3; в этом случае аллотропия обусловлена образованием молекул с разным числом атомов. Чаще… … Энциклопедия Кольера
Простые и сложные вещества. Аллотропия. Химические соединения и смеси
Все вещества делятся на простые и сложные.
Простые вещества — это вещества, которые состоят из атомов одного элемента.
В некоторых простых веществах атомы одного элемента соединяются друг с другом и образуют молекулы. Такие простые вещества имеют молекулярное строение. К ним относятся: водород H2, кислород O2, азот N2, фтор F2, хлор Cl2, бром Br2, йод I2. Все эти вещества состоят из двухатомных молекул. (Обратите внимание, что названия простых веществ совпадают с названиями элементов!)
Другие простые вещества имеют атомное строение, т. е. состоят из атомов, между которыми существуют определенные связи. Примерами таких простых веществ являются все металлы (железо Fe, медь Сu, натрий Na и т. д.) и некоторые неметаллы (углерод С, кремний Si и др.). Не только названия, но и формулы этих простых веществ совпадают с символами элементов.
Существует также группа простых веществ, которые называются благородными газами. К ним относятся: гелий Не, неон Ne, аргон Аr, криптон Kr, ксенон Хе, радон Rn. Эти простые вещества состоят из не связанных друг с другом атомов.
Каждый элемент образует как минимум одно простое вещество. Некоторые элементы могут образовывать не одно, а два или несколько простых веществ. Это явление называется аллотропией.
Аллотропия — это явление образования нескольких простых веществ одним элементом.
Разные простые вещества, которые образуются одним и тем же химическим элементом, называются аллотропными видоизменениями (модификациями).
Аллотропные модификации могут отличаться друг от друга составом молекул. Например, элемент кислород образует два простых вещества. Одно из них состоит из двухатомных молекул О2 и имеет такое же название, как и элемент— кислород. Другое простое вещество состоит из трехатомных молекул О3 и имеет собственное название — озон.
Кислород О2 и озон О3 имеют различные физические и химические свойства.
Аллотропные модификации могут представлять собой твердые вещества, которые имеют различное строение кристаллов. Примером являются аллотропные модификации углерода С — алмаз и графит.
Число известных простых веществ (примерно 400) значительно больше, чем число химических элементов, так как многие элементы могут образовывать две или несколько аллотропных модификаций.
Сложные вещества — это вещества, которые состоят из атомов разных элементов.
Примеры сложных веществ: НCl, Н2O, NaCl, СО2, H2SO4 и т. д.
Сложные вещества часто называют химическими соединениями. В химических соединениях свойства простых веществ, из которых образуются эти соединения, не сохраняются. Свойства сложного вещества отличаются от свойств простых веществ, из которых оно образуется.
Например, хлорид натрия NaCl может образоваться из простых веществ — металлического натрия Na и газообразного хлора Сl Физические и химические свойства NaCl отличаются от свойств Na и Cl2.
В природе, как правило, встречаются не чистые вещества, а смеси веществ. В практической деятельности мы также обычно используем смеси веществ. Любая смесь состоит из двух или большего числа веществ, которые называются компонентами смеси.
Например, воздух представляет собой смесь нескольких газообразных веществ: кислорода О2 (21 % по объему), азота N2 (78%), углекислого газа СО2 и др. Смесями являются растворы многих веществ, сплавы некоторых металлов и т. д.
Смеси веществ бывают гомогенными (однородными) и гетерогенными (неоднородными).
Гомогенные смеси — это смеси, в которых между компонентами нет поверхности раздела.
Гомогенными являются смеси газов (в частности, воздух), жидкие растворы (например, раствор сахара в воде).
Гетерогенные смеси — это смеси, в которых компоненты разделяются поверхностью раздела.
К гетерогенным относятся смеси твердых веществ (песок + порошок мела), смеси нерастворимых друг в друге жидкостей (вода + масло), смеси жидкостей и нерастворимых в нем твердых веществ (вода + мел).
Важнейшие отличия смесей от химических соединений:
аллотропия
Полезное
Смотреть что такое «аллотропия» в других словарях:
аллотропия — аллотропия … Орфографический словарь-справочник
АЛЛОТРОПИЯ — (от греч. allos иной, и trepein обращать). Свойство некоторых химических веществ принимать различные формы, вместе с различными свойствами; напр., углерод, являющийся в виде алмаза, графита, угля. Словарь иностранных слов, вошедших в состав… … Словарь иностранных слов русского языка
АЛЛОТРОПИЯ — (от алло. и греч. tropos поворот свойство), существование химических элементов в виде двух или более простых веществ. Может быть обусловлена образованием молекул с различным числом атомов (напр., кислород O2 и озон O3) либо кристаллов различных … Большой Энциклопедический словарь
АЛЛОТРОПИЯ — АЛЛОТРОПИЯ, свойство некоторых химических элементов, позволяющее им существовать в двух или более различных физических формах. Каждая форма (называемая аллотропом) может иметь различные химические свойства, но способна превратиться и в другой… … Научно-технический энциклопедический словарь
АЛЛОТРОПИЯ — полиморфизм элементов (углерод, сера и др.). Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия
АЛЛОТРОПИЯ — (от греч. allos иной и tropos образ), свойство некоторых хим. элементов существовать в нескольких видоизменениях, различных по физ. и хим. свойствам. Причины А.: полимерия (см.) различное число атомов в молекуле (напр., у О, S, Р), различное… … Большая медицинская энциклопедия
аллотропия — Существование одного и того же химич. элемента в виде двух или нескольких простых вещ в, разных по строению и свойствам, т.н. аллотропич. модификаций. А. м. б. результатом образования разных кристаллич. форм (напр., фа фит и алмаз, a Fe и y Fe)… … Справочник технического переводчика
АЛЛОТРОПИЯ — свойство некоторых хим. элементов в свободном виде существовать в нескольких видоизменениях (модификациях), различных по строению кристаллической решетки, физ. и хим. свойствам, напр. углерод существует в виде угля, графита и алмаза … Большая политехническая энциклопедия
Аллотропия — Алмаз и графит аллотропические формы углерода, отличающиеся строением кристаллической решётки Аллотропия (от др. греч … Википедия
АЛЛОТРОПИЯ — существование химических элементов в двух или более молекулярных либо кристаллических формах. Например, аллотропами являются обычный кислород O2 и озон O3; в этом случае аллотропия обусловлена образованием молекул с разным числом атомов. Чаще… … Энциклопедия Кольера
Что такое аллотропия и почему она важна
Каждый химический элемент в таблице Менделеева — это определенный вид атомов со своими уникальными свойствами. Однако в природе существует не так много веществ, которые состоят из скоплений атомов. Кислород, углекислый газ, вода и множество другие соединений представляют собой молекулы.
Атом кислорода и молекула кислорода сильно отличаются друг от друга по своим свойствам. Так или иначе, в природе атомы кислорода склонны объединяться и образовывать молекулы, потому что это энергетически более выгодно. Но один химический элемент может образовывать сразу несколько видов молекул. Например, если соединить два атома кислорода, можно получить молекулу O2, а если соединить три атома, то получится уже озон O3.
Явление образования множества химических веществ из одного химического элемента называется аллотропией, а эти вещества — аллотропными модификациями. Самый известный пример, иллюстрирующий это явление — углерод. Этот элемент может принимать форму не только «беспорядочного» угля и уложенного в слои графита, но и графена, нанотрубок и фуллеренов, похожих на футбольные мячи.
Аллотропия позволяет сильно увеличить количество доступных человеку соединений. Многие модификации углерода сегодня используются в исследованиях для создания сенсоров, средств адресной доставки лекарств, а также упрочнения существующих конструкционных материалов.
Общее понятие
Аллотропия проявляется, благодаря разному составу микрочастиц простой материи и координируется вариантом размещения молекул и атомов в кристаллической решетке. Вещество кристаллизуется в нескольких модификациях, при этом два параметра простой ячейки совпадают. Изменение состояния происходит из-за отличия третьего показателя, который учитывает расстояние между сопредельными слоями.
Явление часто обнаруживается в структурах, которые равнозначны гексагональному и кубическому расположению атомов. Соседняя атомная среда представляет эквивалентное окружение, а различия проявляются на удаленных сферах. Энергетические характеристики решеток приблизительно равны, поэтому физические свойства разных состояний одного элемента остаются похожими.
Первые примеры аллотропных модификаций показал шведский минералог и химик Берцелиус середине XIX века для выделения различных форм нахождения элемента. Через 2 десятка лет была принята гипотеза итальянского химика А. Авогадро о многоатомных молекулах и стало видно, что от строения частиц зависит проявление элемента в материи. Например, О3 — озон, а О2 — кислород.
В 1912 году ученые определили, что различия в структуре простых элементов, например, фосфора или углерода, относятся к первопричинам существования двух и более состояний. В настоящее время аллотропией называется видоизменение простых материй, независимо от агрегатного вида. Изменения в твердых состояниях сложных и простых веществ имеет название полиморфизма. Два определения совпадают, если речь идет о простых материалах в твердом виде (железо, сера в кристаллах, фосфор).
Реорганизация веществ
Продолжаются открытия видов простых материалов, способных к аллотропии, несмотря на то, что список образовательных веществ уже превышает 400 материалов. Типы химических связей в элементарных частицах зависят от строения атома, вместе эти характеристики определяют возможность вещества образовывать разные аллотропные формы.
Компоненты, которые могут изменять показатель координационного числа и стадии окисления, образовывают большее количество аллотропных состояний. Важным фактором разнообразия форм является способность элемента к образованию гомоцепных решеток (состоящих из однотипных атомов).
Преобразование простых элементов
Более выраженными являются аллотропные модификации неметаллов, но среди веществ этой группы имеются исключения, например, благородные газы и галогены. Некоторые состояния отличаются температурной стабильностью, другие характеризуются фазовой динамикой. Такие различия объясняются затратами некоторой энергии при изменении кристаллической решетки в результате плавления.
Примеры реорганизации неметаллов:
Разные состояния одного компонента обозначаются строчными литерами греческой латиницы для написания в формулах. Низкотемпературные формы отмечаются буквой α, следующие состояния по показателям обозначаются β и дальше по такому принципу.
Модификации полупроводников
К этой группе относятся элементы, располагающиеся в таблице на переходе от металлов к неметаллам. У материалов присутствует кристаллическая ковалентная решетка, чаще они характеризуются проводимостью по типу металлов. Иногда материалы работают как полупроводники.
Примеры трансформации неметаллов:
К особенностям относится слабое сочетание зоны проводимости и валентной области. Это обеспечивает электропроводность до того времени, пока температура не снизится до 0ºС. Нагревание способствует увеличению электронных дырок (обладателей тока), но видоизменение идет слабо. Положительные квазичастицы в полуметаллах активно двигаются при малой полезной массе. По этой причине материалы больше других веществ подходят для изготовления фазовых переходов в магнитных полях большой силы, наблюдения квантовых и классических размерных эффектов.
Особенности видоизменения металлов
Металлы образовывают различные состояния при увеличении давления или в случае технологической обработки. Аллотропной модификацией металлов называется возможность материала в твердой форме образовывать различные виды кристаллических решеток. Процесс перехода от одной структуры к другой рассматривается в виде превращения.
Обследование структуры производится способом микроанализа, делается ультразвуковая, магнитная и рентгеновская дефектоскопия.
Микроанализ проводится на основе снятия микрошлифов, которые перед исследованием полируются до блеска. Вывод о структуре делается после рассмотрения срезов под микроскопом после травления. Шлифы показывают границы зерен из-за неодинаковой обработки основного слоя и рельефных выступов. Анализ выявляет форму и размеры частиц, инородные включения.
Рентген дает понятие об атомном строении материала, типе кристаллической структуры, дефектах решеток. Для исследования используется свойство рядов отражать гамма-лучи. При магнитном способе поверхность металла намагничивается и покрывается железным порошком. После размагничивания слой показывает очертания решетки.
Ультразвук применяется для эффективного обнаружения качественного преобразования металла в требуемую аллотропную модификацию. Волновое излучение распространяется внутрь и отражается от элементов решетки.
Примеры аллотропии
При нагревании металлов в процессе превращения поглощается тепло, при этом изменение решеточной конструкции происходит при одной и той же температуре. Аллотропным модификациям подвергаются многие металлы, например, титан, железо, олово и др. Железо при нагревании до +1390ºС характеризуется гранецентрированной решеткой. Повышение температуры до +1540ºС ведет к перестройке до центрировано-кубической структуры.
Аллотропные модификации металлов:
Определенные свойства твердых элементов зависят не только от строения решетки и дефектов, но и от структуры микрочастиц, их состава, размера и формы. Конструкция кристаллов оказывает влияние на физические характеристики тела и предопределяет пределы деформационной пластики, твердость материала.
Обратимые и непоправимые переходы
В случае изменения температурных показателей и параметров давления твердые материалы переходят из одной структуры в другую без перемены количественного состава элементов. Предпосылками является подвижность частиц решетки и перенос некоторого количества вещества, вызванный дефектами строения твердого состояния.
Примеры переходов:
Проводят разработанную методику трехфазной реакции для направленного получения требуемой решеточной структуры. Выбор нагревательного режима и продолжительность повышения температуры ускоряет рост кристаллов до больших зерен, что улучшает качество. Изменение способа обработки направляется иногда на снижение активности катализаторов в результате процесса рекристаллизации.
Энантиотропное видоизменение возникает при нулевой температуре и выбранном давлении. Иногда аллотропное преобразование относится к необратимым и одно из состояний материала является неустойчивым в термическом плане. Эта фаза сохраняется на всем температурном интервале от абсолютного нуля и называется монотропным. При получении серого олова из белого происходит обратимое преобразование, а превращение алмаза в графит становится необратимым.
Отличие этих типов превращений — в технологических особенностях проведения. Энантиотропные переходы модификации А чаще получаются методом постепенного охлаждения сплава. Сначала масса кристаллизуется в виде состояния Б, которое затем видоизменяется в устойчивую фазу к низким температурам.
При монотропном переходе в случае охлаждения сплава образуется только вещество в состоянии А. Требуется особый технологический режим со строгим дозированием понижения температуры и давления для получения модификации Б. Примером служит получение стабильного черного фосфора из белого путем нагревания до + 200ºС и повышения давления до 1,25 ГПа. После помещения полученного образца в нормальные условия обратного преобразования не происходит.