Атомная энергетика что это

АТОМНАЯ ЭНЕРГЕТИКА

Полезное

Смотреть что такое «АТОМНАЯ ЭНЕРГЕТИКА» в других словарях:

атомная энергетика — Отрасль энергетики, использующая ядерную энергию для целей электрификации и теплофикации. Как область науки и техники, разрабатывает методы и средства преобразования ядерной энергии в электрическую и тепловую. [http://pripyat.forumbb.ru/viewtopic … Справочник технического переводчика

Атомная энергетика — Nuclear power отрасль энергетики, использующая ядерную энергию для целей электрификации и теплофикации. Как область науки и техники, разрабатывает методы и средства преобразования ядерной энергии в электрическую и тепловую. Термины атомной… … Термины атомной энергетики

атомная энергетика — atominė energetika statusas T sritis fizika atitikmenys: angl. atomic power engineering vok. atomische Energetik, f rus. атомная энергетика, f pranc. énergétique atomique, f … Fizikos terminų žodynas

атомная энергетика — (ядерная энергетика), комплекс отраслей, связанных с использованием энергии ядерных реакций. Атомная энергия – это энергия внутриядерных связей в атомах. Первый тип реакций для выделения данного вида энергии в целях практического её применения… … Географическая энциклопедия

Атомная энергетика — … Википедия

Атомная энергетика Украины — Запорожская АЭС Атомная энергетика Украины отрасль украинской энергетики. По кол … Википедия

Атомная энергетика Индии — Индия одной из первых среди развивающихся стран приступила к практическому применению ядерной энергии в мирных целях. В области атомной технологии был создан полный цикл, включающий разведку, добычу, очистку и переработку ядерных материалов,… … Википедия

Атомная энергетика Китая — По состоянию на 2010 год, Китайская Народная Республика (не включая Тайвань) имеет 11 реакторов ядерной энергетики, было построено 4 отдельных АЭС: Дэй Бэйская АЭС, Циньшанская АЭС, Тяньваньская АЭС и Линг Ао; так же 25 станций находятся в стадии … Википедия

Источник

Ядерная энергетика

Ядерная энергетика (Атомная энергетика) — отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.

Атомная энергетика что это. Смотреть фото Атомная энергетика что это. Смотреть картинку Атомная энергетика что это. Картинка про Атомная энергетика что это. Фото Атомная энергетика что это

АЭС Пало-Верде — крупнейшая в США атомная электростанция, расположена в пустыне, одна из немногих атомных станций в мире, не расположенных около большого водоёма.

Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер плутония-239 или урана-235. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.

Содержание

Технология [ ]

Топливный цикл [ ]

В ходе эксплуатации в процессах технического обслуживания удаляются образующиеся низкорадиоактивные отходы. С окончанием срока службы производится вывод из эксплуатации самого реактора, демонтаж сопровождается дезактивацией и удалением в отходы деталей реактора.

Ядерный реактор [ ]

Ядерный реактор — устройство, предназначенное для организации управляемой самоподдерживающейся цепной реакции деления, которая всегда сопровождается выделением энергии.

Существуют разные типы реакторов, основные отличия в них обусловлены используемым топливом и теплоносителем, применяемым для поддержания нужной температуры активной зоны, и замедлителем, используемым для снижения скорости нейтронов, которые выделяются в результате распада ядер, для поддержания нужной скорости цепной реакции.

История [ ]

Атомная энергетика что это. Смотреть фото Атомная энергетика что это. Смотреть картинку Атомная энергетика что это. Картинка про Атомная энергетика что это. Фото Атомная энергетика что это

Исторический обзор статистики строительства атомных электростанций

Впервые цепная реакция ядерного распада была осуществлена 2 декабря 1942 года в Чикагском университете с использованием урана в качестве топлива и графита в качестве замедлителя. Первая электроэнергия из энергии ядерного распада была получена 20 декабря 1951 года в Национальной лаборатории Айдахо с помощью реактора на быстрых нейтронах EBR-I (Experimental Breeder Reactor-I). Произведённая мощность составляла около 100 кВт.

Атомная энергетика что это. Смотреть фото Атомная энергетика что это. Смотреть картинку Атомная энергетика что это. Картинка про Атомная энергетика что это. Фото Атомная энергетика что это

Военные корабли США — атомные крейсера «Бейнбридж» и «Лонг Бич», и первый в мире авианосец с ядерным реактором «Энтерпрайз», самое длинное в мире военное судно, в 1964 году во время рекордного кругосветного путешествия, в течение которого они преодолели 49,190 км за 65 дней без дозаправки

В 1956 году в Великобритании начала работу пятидесятимегаваттная АЭС «Calder Hall-1». Далее последовали в 1957 году АЭС Шиппингпорт в США — 60 МВт и в 1959 году АЭС Маркуль во Франции — 37 МВт. В 1958 начала выдавать электроэнергию первая очередь второй советской АЭС — Сибирской, мощностью 100 МВт, полная проектная мощность которой составляла 600 МВт. В 1959 году в СССР спущено на воду первое в мире невоенное атомное судно — ледокол «Ленин».

Ядерная энергетика, как новое направление в энергетике, получила признание на проходившей в Женеве в августе 1955 года 1-й Международной научно-технической конференции по мирному использованию атомной энергии, положившей начало международному сотрудничеству в области мирного использования ядерной энергии и ослабившей завесу секретности над ядерными исследованиями, существовавшей со времён Второй мировой войны.

В 1960-х годах в США происходил перевод ядерной энергетики на коммерческую основу. Первой коммерческой АЭС стала «Yankee Rowe» мощностью 250 МВТ, проработавшая с 1960 до 1992 года. Первой атомной станцией в США, строительство которой финансировалось из частных источников, стала АЭС Дрезден.

В СССР в 1964 году вступили в строй Белоярская АЭС (первый блок 100 МВт) и Нововоронежская АЭС (первый блок 240 МВт). В 1973 году на Ленинградской АЭС в городе Сосновый бор был запущен первый высокомощный энергоблок (1000 МВт). Энергия пущенного в 1972 году в Казахстане первого промышленного реактора на быстрых нейтронах (150 МВт) использовалась для производства электроэнергии и опреснения воды из Каспийского моря.

В начале 1970-х годов существовали видимые предпосылки для развития ядерной энергетики. Потребность в электроэнергии росла, гидроэнергетические ресурсы большинства развитых стран были практически полностью задействованы, соответственно росли цены на основные виды топлива. Ситуацию усугубляло введение эмбарго на поставки нефти арабскими странами в 1973—1974 годах. Предполагалось снижение стоимости строительства АЭС.

Тем не менее, к началу 1980-х годов обозначились серьёзные экономические трудности, причинами которых стали стабилизация спроса на электроэнергию, прекращение роста цен на природное топливо, удорожание, вместо прогнозируемого удешевления, строительства новых АЭС.

Экономическое значение [ ]

Атомная энергетика что это. Смотреть фото Атомная энергетика что это. Смотреть картинку Атомная энергетика что это. Картинка про Атомная энергетика что это. Фото Атомная энергетика что это

Доля атомной энергетики в общем производстве электроэнергии в различных странах.

В 2013 году мировое производство ядерной энергии выросло впервые с 2010 года — по сравнению с 2012 годом произошёл рост на 0,5 % — до 6,55 млрд МВт ч (562,9 млн тонн нефтяного эквивалента). Наибольшее потребление энергии атомных станций в 2013 году составило в США — 187,9 млн тонн нефтяного эквивалента. В России потребление составило 39,1 млн тонн нефтяного эквивалента, в Китае — 25 млн тонн нефтяного эквивалента, в Индии — 7,5 млн тонн.

Согласно отчёту Международного агентства по атомной энергии (МАГАТЭ), на 2019 год насчитывалось 449 действующих ядерных энергетических (то есть производящих утилизируемую электрическую и/или тепловую энергию) реакторов в 34 стране мира; на середину 2019 года 54 реактора строились

Примерно половина мирового производства электроэнергии на АЭС приходится на две страны — США и Францию. США на АЭС производят только 1/8 своей электроэнергии, однако это составляет около 20 % мирового производства.

Абсолютным лидером по использованию ядерной энергии являлась Литва. Единственная Игналинская АЭС, расположенная на её территории, вырабатывала электрической энергии больше, чем потребляла вся республика (например, в 2003 году в Литве всего было выработано 19,2 млрд кВт⋅ч, из них — 15,5 Игналинской АЭС). Обладая её избытком (а в Литве есть и другие электростанции), «лишнюю» энергию отправляли на экспорт.

Однако, под давлением ЕС (из-за сомнений в её безопасности — ИАЭС использовала энергоблоки того же типа, что и Чернобыльская АЭС ), с 1 января 2010 года эта АЭС была окончательно закрыта (предпринимались попытки добиться продолжения эксплуатации станции и после 2009 года, но они не увенчались успехом [источник не указан 1636 дней] ), сейчас [когда?] решается вопрос о строительстве на той же площадке АЭС современного типа.

Объёмы производства ядерной электроэнергии по странам [ ]

Основная статья: Атомная энергетика по странам

Атомная энергетика что это. Смотреть фото Атомная энергетика что это. Смотреть картинку Атомная энергетика что это. Картинка про Атомная энергетика что это. Фото Атомная энергетика что это

Доля атомной энергетики в общем производстве электроэнергии в различных странах.

За 2016 год суммарно АЭС мира выработали 2477 млрд кВт⋅ч энергии, что составило 10,8 % всемирной генерации электричества.

Мировыми лидерами в производстве ядерной электроэнергии на 2017 год являются:

Примерно половина всемирной выработки электроэнергии на АЭС приходится на США и Францию.

По данным Всемирной Ядерной Ассоциации («World Nuclear Association), на конец 2017 года установленная мощность 488 действующих ядерных реакторов в мире составила 392 ГВт (что на 2 ГВт больше, чем в 2016 году). За 2017 год было введено в эксплуатацию (подключены к сети) 4 новых реактора, общей установленной мощностью 3373 МВт (один в Пакистане — АЭС «Чашма-4» и три в Китае — АЭС «Тайвань-3», АЭС «Фуцин-4» и АЭС «Янзянь-4»). Из эксплуатации были выведены пять реакторов (установленной мощностью 3025 МВт). По одному реактору закрыли в Германии, Швеции, Испании, Японии, Южной Корее.

Строятся на конец 2017 года 59 ядерных реакторов, строительство четырёх из них начато в 2017 году. Из этих четырёх энергоблоков — три строятся по российскому типу реактора ВВЭР — 3-й и 4-й блоки АЭС «Куданкулам» в Индии и 1-й блок АЭС «Руппур» в Индии. 5-й энергоблок южнокорейской АЭС «Син-Кари» будет на реакторах производства KEPCO. Отчет Агентства отмечает, что средний строй строительства энергоблока в странах в 2017 году составил 58 месяцев против 74 месяцев в 2016 году (в 1996—2000 годах этот срок был 120 месяцев).

По данным Всемирной Ядерной Ассоциации, по итогам 2017 года регионы распределились по выработке ядерной электроэнергии следующим образом:

Проблемы [ ]

Безопасность [ ]

Основная статья: Ядерная безопасность

Атомная энергетика что это. Смотреть фото Атомная энергетика что это. Смотреть картинку Атомная энергетика что это. Картинка про Атомная энергетика что это. Фото Атомная энергетика что это

АЭС Лайбштадт — последняя атомная станция, построенная в Швейцарии

Рентабельность [ ]

Рентабельность ядерной энергетики зависит от проекта реактора, тарифов на электроэнергию и стоимости альтернативных источников энергии. Поэтому периодически в разных странах высказываются сомнения в рентабельности ядерной энергетики. Например, для замещения 1 ГВт установленной мощности АЭС нужно потратить примерно 2,5 млрд куб. природного газа, стоимость которого в разных странах очень сильно отличается.

В США производство электричества на АЭС дорожает, а цена некоторых других источников электричества снижается, в условиях свободного рынка ядерные станции становятся убыточными. Так в США по причине нерентабельности были закрыты два реактора: АЭС Вермонт Янки и АЭС Кевони.

Стоимость строительства новых реакторов AR1000 поколения III+ по состоянию на 2018 год составляет:

В Великобритании стоимость строительства АЭС Wylfa Newydd (2 ректора ABWR по 1350 МВт) выросла до 28 млрд долл. (21 млрд фунтов стерлингов), и строительство было отменено из-за экономической нецелесообразности.

В России стоимость строительства АЭС на российских реакторах ВВЭР-1200 поколения III+ обходится в 600 млрд руб (9 млрд долл.) за АЭС из 4-х реакторов мощностью 1200 МВт каждый (Ленинградская АЭС-2, Нововоронежская АЭС-2), рентабельность подтверждается планами строительства 12 энергоблоков до 2030 года.

В других странах стоимость строительства АЭС на российских реакторах ВВЭР-1200 обходится примерно в 2-2,5 раза дороже (5.5 млрд долл за каждый реактор на Белорусской АЭС и АЭС Аккую в Турции), рентабельность подтверждается планами строительства 33 энергоблоков до 2030 года.

Правительства могут страховать электростанции от закрытия, гарантируя закупку электричества по установленной цене. Такие схемы подвергаются критике из-за ограничения конкуренции и чрезмерной растраты денег налогоплательщиков, но используются для всех видов электростанций.

Тепловое загрязнение [ ]

Одной из проблем ядерной энергетики является тепловое загрязнение. По мнению некоторых специалистов, атомные электростанции «в расчёте на единицу производимой электроэнергии» выделяют в окружающую среду больше тепла, чем сопоставимые по мощности ТЭС. В качестве примера можно привести проект строительства в бассейне Рейна нескольких атомных и теплоэлектростанций. Расчеты показали, что в случае запуска всех запланированных объектов температура в ряде рек поднялась бы до +45°С, уничтожив в них всякую жизнь.

Подотрасли [ ]

Ядерная электроэнергетика [ ]

См. также: Список АЭС мира

Ядерная транспортная энергетика [ ]

Основная статья: Атомоход

Атомная энергетика что это. Смотреть фото Атомная энергетика что это. Смотреть картинку Атомная энергетика что это. Картинка про Атомная энергетика что это. Фото Атомная энергетика что это

Российский атомный ледокол «Ямал» в 1994 году

Атомная энергетика что это. Смотреть фото Атомная энергетика что это. Смотреть картинку Атомная энергетика что это. Картинка про Атомная энергетика что это. Фото Атомная энергетика что это

Атомоход проекта «Лидер», атомоход планируется достроить до 2035 года

Ядерная теплоэнергетика [ ]

Основная статья: Атомная теплоэлектроцентраль

Источник

Атомная энергетика сегодня, типы реакторов и переход к экологически чистой энергии

реклама

реклама

реклама

Внутри активной зоны атомы урана расщепляются естественным образом. При этом часть мощной силы, связывающей атомы вместе, высвобождается в виде гамма-излучения, а также пары нейтронов. Пока нейтроны летят, вода действует как замедлитель. То есть она замедляет эти нейтроны, увеличивая вероятность того, что они будут взаимодействовать с другими атомами урана.

Если один из этих нейтронов поглощается атомом урана-235, этот атом становится нестабильным и расщепляется, высвобождая больше энергии и больше нейтронов. Этот каскад нейтронов и расщепляющихся атомов перерастает в цепную реакцию, в результате которой выделяется энергия, достаточная для питания города в течение десятилетий. Чтобы реакция не вышла из-под контроля и не расплавила активную зону, можно вставить управляющие стержни, поглощающие нейтроны и гасящие выход.

Все это включает в себя множество очень сложных физических моментов, но в результате получается «гигантский чайник», который нагревает воду. Эта горячая вода проходит через теплообменник и нагревает еще один контур воды для создания пара, который затем вращает турбину, которая приводит в действие генератор, вырабатывающий электричество.

реклама

Современные типы реакторов

Вот краткая информация о том, как работают основные типы реакторов, используемых сегодня. Следует иметь в виду, что некоторые из этих основных конструкций были разработаны еще в 1950-х годах и на протяжении более 60 лет постоянно совершенствовались, чтобы сделать их более безопасными и эффективными.

Pressurized Water Reactor

Наиболее распространенным типом реактора является реактор с водой под давлением (PWR), который первоначально был разработан в США для питания атомных подводных лодок, а в настоящее время используется в более чем 20 странах. Это конструкция, описанная выше, в которой вода используется и как замедлитель, и как теплоноситель.

В современных конструкциях реакторов PWR топливо обогащается примерно до 3,2 процента урана-235 и формируется в таблетки весом около 10 граммов, которые запечатываются в стержни из циркониевого сплава. Контейнер из нержавеющей стали, окружающий реактор, предназначен как для герметизации всех ядерных продуктов, так и для использования в качестве сосуда под давлением, который поддерживает жидкую воду при более высокой температуре, как в скороварке, для большей эффективности. Контейнер, в свою очередь, закрыт стальным и бетонным щитом, чтобы удержать содержимое реактора даже в случае расплавления.

В старых конструкциях реакторов PWR вода с теплоносителем выходила из защитного экрана и использовалась для выработки электроэнергии. Чтобы поддерживать активную зону реактора холодной, вода должна была постоянно активно прокачиваться. Оба варианта создавали проблемы с безопасностью, как это было во время катастрофы на острове Три-Майл, поэтому в более поздних реакторах использовалась серия контуров теплообменников и резервные пассивные системы циркуляции воды для поддержания охлаждения активной зоны даже в случае полной остановки.

Кипящий водо-водяной реактор (BWR)

Boiling water reactor

Следующий по распространенности реактор, известный как реактор с кипящей водой (BWR), является более простым и практически менее безопасным, чем PWR. Как следует из названия, воде в контуре теплоносителя дают возможность закипеть, и пар поступает непосредственно в турбину из защитной оболочки, а после повторной конденсации возвращается в реактор. Это обеспечивает большую вероятность радиоактивного заражения.

Схема кипящего водо-водяного реактора

Heavy Water Reactor

Улучшенный реактор с газовым охлаждением AGR

Для охлаждения в этих реакторах используется двуокись углерода. Поскольку прежний реактор Магнокс был предназначен в основном для производства плутония, он был не очень эффективен, поэтому был создан реактор AGR, который работает при более высокой температуре для лучшего производства пара и работы турбин.

Реактор большой мощности канальный

Реактор большой мощности канальный, РБМК был разработан в СССР примерно в то же время, что и Magnox, и имеет некоторые общие конструктивные особенности, хотя это совершенно другая машина. В РБМК используется очень мощная графитовая активная зона с водяным охлаждением, состоящая примерно из 1700 вертикальных каналов, содержащих оксид урана, обогащенный до 1,8 процента урана-235. Вода циркулирует под давлением и затем используется для выработки пара.

Хотя большое количество РБМК все еще работает в бывших странах СССР, их печально известная небезопасная конструкция была продемонстрирована Чернобыльской катастрофой в 1986 году, когда инженеры нарушили протоколы безопасности во время имитации испытания на отключение электроэнергии, в результате чего активная зона одного из реакторов комплекса была разорвана паром, после чего произошло возгорание графитового замедлителя.

Реакторы будущего

Источник

АТОМНАЯ ЭНЕРГЕТИКА

Атомная энергетика что это. Смотреть фото Атомная энергетика что это. Смотреть картинку Атомная энергетика что это. Картинка про Атомная энергетика что это. Фото Атомная энергетика что это

Ядерный топливный цикл.

Атомная энергетика – это сложное производство, включающее множество промышленных процессов, которые вместе образуют топливный цикл. Существуют разные типы топливных циклов, зависящие от типа реактора и от того, как протекает конечная стадия цикла.

Обычно топливный цикл состоит из следующих процессов. В рудниках добывается урановая руда. Руда измельчается для отделения диоксида урана, а радиоактивные отходы идут в отвал. Полученный оксид урана (желтый кек) преобразуется в гексафторид урана – газообразное соединение. Для повышения концентрации урана-235 гексафторид урана обогащают на заводах по разделению изотопов. Затем обогащенный уран снова переводят в твердый диоксид урана, из которого изготавливают топливные таблетки. Из таблеток собирают тепловыделяющие элементы (твэлы), которые объединяют в сборки для ввода в активную зону ядерного реактора АЭС. Извлеченное из реактора отработанное топливо имеет высокий уровень радиации и после охлаждения на территории электростанции отправляется в специальное хранилище. Предусматривается также удаление отходов с низким уровнем радиации, накапливающихся в ходе эксплуатации и технического обслуживания станции. По истечении срока службы и сам реактор должен быть выведен из эксплуатации (с дезактивацией и удалением в отходы узлов реактора). Каждый этап топливного цикла регламентируется так, чтобы обеспечивались безопасность людей и защита окружающей среды.

Ядерные реакторы.

Атомная энергетика что это. Смотреть фото Атомная энергетика что это. Смотреть картинку Атомная энергетика что это. Картинка про Атомная энергетика что это. Фото Атомная энергетика что это

Среди них первый (и наиболее распространенный) тип – это реактор на обогащенном уране, в котором и теплоносителем, и замедлителем является обычная, или «легкая», вода (легководный реактор). Существуют две основные разновидности легководного реактора: реактор, в котором пар, вращающий турбины, образуется непосредственно в активной зоне (кипящий реактор), и реактор, в котором пар образуется во внешнем, или втором, контуре, связанном с первым контуром теплообменниками и парогенераторами (водо-водяной энергетический реактор – ВВЭР). Разработка легководного реактора началась еще по программам вооруженных сил США. Так, в 1950-х годах компании «Дженерал электрик» и «Вестингауз» разрабатывали легководные реакторы для подводных лодок и авианосцев ВМФ США. Эти фирмы были также привлечены к реализации военных программ разработки технологий регенерации и обогащения ядерного топлива. В том же десятилетии в Советском Союзе был разработан кипящий реактор с графитовым замедлителем.

Третий тип реактора, имевший коммерческий успех, – это реактор, в котором и теплоносителем, и замедлителем является тяжелая вода, а топливом тоже природный уран. В начале ядерного века потенциальные преимущества тяжеловодного реактора исследовались в ряде стран. Однако затем производство таких реакторов сосредоточилось главным образом в Канаде отчасти из-за ее обширных запасов урана.

Развитие атомной промышленности.

После Второй мировой войны в электроэнергетику во всем мире были инвестированы десятки миллиардов долларов. Этот строительный бум был вызван быстрым ростом спроса на электроэнергию, по темпам значительно превзошедшим рост населения и национального дохода. Основной упор делался на тепловые электростанции (ТЭС), работающие на угле и, в меньшей степени, на нефти и газе, а также на гидроэлектростанции. АЭС промышленного типа до 1969 не было. К 1973 практически во всех промышленно развитых странах оказались исчерпанными ресурсы крупномасштабной гидроэнергетики. Скачок цен на энергоносители после 1973, быстрый рост потребности в электроэнергии, а также растущая озабоченность возможностью утраты независимости национальной энергетики – все это способствовало утверждению взгляда на атомную энергетику как на единственный реальный альтернативный источник энергии в обозримом будущем. Эмбарго на арабскую нефть 1973–1974 породило дополнительную волну заказов и оптимистических прогнозов развития атомной энергетики.

Проблемы безопасности.

Чернобыльская катастрофа и другие аварии ядерных реакторов в 1970-е и 1980-е годы, помимо прочего, ясно показали, что такие аварии часто непредсказуемы. Например, в Чернобыле реактор 4-го энергоблока был серьезно поврежден в результате резкого скачка мощности, возникшего во время планового его выключения. Реактор находился в бетонной оболочке и был оборудован системой аварийного расхолаживания и другими современными системами безопасности. Но никому и в голову не приходило, что при выключении реактора может произойти резкий скачок мощности и газообразный водород, образовавшийся в реакторе после такого скачка, смешавшись с воздухом, взорвется так, что разрушит здание реактора. В результате аварии погибло более 30 человек, более 200 000 человек в Киевской и соседних областях получили большие дозы радиации, был заражен источник водоснабжения Киева. На севере от места катастрофы – прямо на пути облака радиации – находятся обширные Припятские болота, имеющие жизненно важное значение для экологии Беларуси, Украины и западной части России.

В Соединенных Штатах предприятия, строящие и эксплуатирующие ядерные реакторы, тоже столкнулись с множеством проблем безопасности, что замедляло строительство, заставляя вносить многочисленные изменения в проектные показатели и эксплуатационные нормативы, и приводило к увеличению затрат и себестоимости электроэнергии. По-видимому, было два основных источника этих трудностей. Один из них – недостаток знаний и опыта в этой новой отрасли энергетики. Другой – развитие технологии ядерных реакторов, в ходе которого возникают новые проблемы. Но остаются и старые, такие, как коррозия труб парогенераторов и растрескивание трубопроводов кипящих реакторов. Не решены до конца и другие проблемы безопасности, например повреждения, вызываемые резкими изменениями расхода теплоносителя.

Экономика атомной энергетики.

Инвестиции в атомную энергетику, подобно инвестициям в другие области производства электроэнергии, экономически оправданы, если выполняются два условия: стоимость киловатт-часа не больше, чем при самом дешевом альтернативном способе производства, и ожидаемая потребность в электроэнергии, достаточно высокая, чтобы произведенная энергия могла продаваться по цене, превышающей ее себестоимость. В начале 1970-х годов мировые экономические перспективы выглядели очень благоприятными для атомной энергетики: быстро росли как потребность в электроэнергии, так и цены на основные виды топлива – уголь и нефть. Что же касается стоимости строительства АЭС, то почти все специалисты были убеждены, что она будет стабильной или даже станет снижаться. Однако в начале 1980-х годов стало ясно, что эти оценки ошибочны: рост спроса на электроэнергию прекратился, цены на природное топливо не только больше не росли, но даже начали снижаться, а строительство АЭС обходилось значительно дороже, чем предполагалось в самом пессимистическом прогнозе. В результате атомная энергетика повсюду вступила в полосу серьезных экономических трудностей, причем наиболее серьезными они оказались в стране, где она возникла и развивалась наиболее интенсивно, – в США.

Если провести сравнительный анализ экономики атомной энергетики в США, то становится понятным, почему эта отрасль промышленности потеряла конкурентоспособность. С начала 1970-х годов резко выросли затраты на АЭС. Затраты на обычную ТЭС складываются из прямых и косвенных капиталовложений, затрат на топливо, эксплуатационных расходов и расходов на техническое обслуживание. За срок службы ТЭС, работающей на угле, затраты на топливо составляют в среднем 50–60% всех затрат. В случае же АЭС доминируют капиталовложения, составляя около 70% всех затрат. Капитальные затраты на новые ядерные реакторы в среднем значительно превышают расходы на топливо угольных ТЭС за весь срок их службы, чем сводится на нет преимущество экономии на топливе в случае АЭС.

Перспективы атомной энергетики.

Среди тех, кто настаивает на необходимости продолжать поиск безопасных и экономичных путей развития атомной энергетики, можно выделить два основных направления. Сторонники первого полагают, что все усилия должны быть сосредоточены на устранении недоверия общества к безопасности ядерных технологий. Для этого необходимо разрабатывать новые реакторы, более безопасные, чем существующие легководные. Здесь представляют интерес два типа реакторов: «технологически предельно безопасный» реактор и «модульный» высокотемпературный газоохлаждаемый реактор.

Прототип модульного газоохлаждаемого реактора разрабатывался в Германии, а также в США и Японии. В отличие от легководного реактора, конструкция модульного газоохлаждаемого реактора такова, что безопасность его работы обеспечивается пассивно – без прямых действий операторов или электрической либо механической системы защиты. В технологически предельно безопасных реакторах тоже применяется система пассивной защиты. Такой реактор, идея которого была предложена в Швеции, по-видимому, не продвинулся далее стадии проектирования. Но он получил серьезную поддержку в США среди тех, кто видит у него потенциальные преимущества перед модульным газоохлаждаемым реактором. Но будущее обоих вариантов туманно из-за их неопределенной стоимости, трудностей разработки, а также спорного будущего самой атомной энергетики.

Сторонники другого направления полагают, что до того момента, когда развитым странам потребуются новые электростанции, осталось мало времени для разработки новых реакторных технологий. По их мнению, первоочередная задача состоит в том, чтобы стимулировать вложение средств в атомную энергетику.

Но помимо этих двух перспектив развития атомной энергетики сформировалась и совсем иная точка зрения. Она возлагает надежды на более полную утилизацию подведенной энергии, возобновляемые энергоресурсы (солнечные батареи и т.д.) и на энергосбережение. По мнению сторонников этой точки зрения, если передовые страны переключатся на разработку более экономичных источников света, бытовых электроприборов, отопительного оборудования и кондиционеров, то сэкономленной электроэнергии будет достаточно, чтобы обойтись безо всех существующих АЭС. Наблюдающееся значительное уменьшение потребления электроэнергии показывает, что экономичность может быть важным фактором ограничения спроса на электроэнергию.

Таким образом, атомная энергетика пока не выдержала испытаний на экономичность, безопасность и расположение общественности. Ее будущее теперь зависит от того, насколько эффективно и надежно будет осуществляться контроль за строительством и эксплуатацией АЭС, а также насколько успешно будет решен ряд других проблем, таких, как проблема удаления радиоактивных отходов. Будущее атомной энергетики зависит также от жизнеспособности и экспансии ее сильных конкурентов – ТЭС, работающих на угле, новых энергосберегающих технологий и возобновляемых энергоресурсов.

Дементьев Б.А. Ядерные энергетические реакторы. М., 1984
Тепловые и атомные электрические станции. Справочник. Кн. 3. М., 1985
Синев Н.М. Экономика ядерной энергетики: Основы технологии экономики ядерного топлива. Экономика АЭС. М., 1987
Самойлов О.Б., Усынин Г.Б., Бахметьев А.М. Безопасность ядерных энергетических установок. М., 1989

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *