Доказать что если две прямые параллельны третьей то они параллельны
Помощь нужна. Докажите что если две прямые параллельны третьей прямой,то они параллельны. и рисунок
Две прямые, параллельные третьей, параллельны.
Это свойство называется транзитивностью параллельности прямых.
Доказательство
Пусть прямые a и b одновременно параллельны прямой c. Допустим, что a не параллельна b, тогда прямая a пересекается с прямой b в некоторой точке A, не лежащей на прямой c по условию. Следовательно, мы имеем две прямые a и b, проходящие через точку A, не лежащую на данной прямой c, и одновременно параллельные ей. Это противоречит аксиоме 3.1. Теорема доказана.
аксиома 3.1Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну.
А рисунок сам или сама, тебя не поймёшь.
Две прямые, параллельные третьей, параллельны.
Это свойство называется транзитивностью параллельности прямых.
Доказательство
Пусть прямые a и b одновременно параллельны прямой c. Допустим, что a не параллельна b, тогда прямая a пересекается с прямой b в некоторой точке A, не лежащей на прямой c по условию. Следовательно, мы имеем две прямые a и b, проходящие через точку A, не лежащую на данной прямой c, и одновременно параллельные ей. Это противоречит аксиоме 3.1. Теорема доказана.
аксиома 3.1Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну.
А рисунок сам или сама, тебя не поймёшь.
Планиметрия. Страница 2
Главная > Учебные материалы > Математика: Планиметрия. Страница 2 | ||||
| Рис.2 Теорема. Признаки параллельности прямых. 3.Свойство углов при пересечении параллельных прямыхТеорема. Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны и сумма внутренних односторонних углов равна 180 градусов. Доказательство. Пусть a и b параллельные прямые. Прямая с пересекает их в точках А и В. (Рис. 3) Проведем через точку А прямую а 1 так, чтобы внутренние накрест лежащие углы, образованные между прямыми а 1 и b и секущей с, были равны. Тогда по признаку параллельности прямых они параллельны. А так как согласно аксиоме о единственной параллельной прямой, проходящей через точку не лежащей на данной прямой, такая прямая может быть только одна, то прямые а и а 1 совпадают. А следовательно внутренние накрест лежащие углы, образованные между прямыми а,b и секущей с, равны. | Рис.3 Теорема. Свойство углов при пересечении параллельных прямых. 4.Сумма углов треугольникаТеорема. Сумма углов треугольника равна 180 градусов. Доказательство. Пусть АВС данный треугольник. Проведем через вершину В прямую BD, параллельную стороне АС (Рис. 4). Тогда углы α и α’, γ и γ’ равны как внутренние накрест лежащие. А так как прямая BD представляет собой развернутый угол с вершиной угла в точке В, который равен 180°, т.е. α’ + β + γ’ = 180°, то сумма углов треугольника равна также 180°. Таким образом, мы пришли к выводу, что сумма углов треугольника, т.е. α + β + γ = 180°. | Рис.4 Теорема. Сумма углов треугольника. 5.Единственность перпендикуляра к прямойТеорема. Из любой точки, не лежащей на данной прямой, можно опустить только один перпендикуляр на данную прямую. Доказательство. Пусть дана прямая а и не лежащая на ней точка А. Отметим на прямой а произвольную точку, например D. И проведем через нее перпендикуляр.(Рис. 5) | Рис.5 Теорема. Единственность перпендикуляра к прямой. 6. Высота, биссектриса и медиана треугольникаВысотой треугольника, проведенной из данной вершины, называется перпендикуляр, опущенный из данной вершины на противолежащую сторону. Биссектрисой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину угла и противолежащую сторону, и делящий данный угол пополам. Медианой треугольника, проведенной из данной вершины, называется отрезок, соединяющий эту вершину и противолежащую сторону, и делящий ее пополам. (Рис.6) Рис.6 Высота, биссектриса и медиана треугольника. 7. Свойство медианы равнобедренного треугольникаТеорема. В равнобедренном треугольнике медиана, проведенная из вершины угла к основанию, является биссектрисой и высотой. Доказательство: Рассмотрим треугольники ABD и BDC. Они равны по третьему признаку равенства треугольников. АВ = ВС по условию, AD = DC, так как BD медиана, а сторона BD у них общая. Следовательно, углы при вершине D равны, а так как они являются смежными, то ∠ADB = ∠CDB = 90°. Из равенства треугольников ABD и BDC следует равенство углов при вершине В, т.е. ∠AВD = ∠CВD = α. Отсюда можно сделать вывод, что медиана BD является биссектрисой и высотой. Рис.7 Свойство медианы равнобедренного треугольника. |
Вышеуказанные свойства являются одновременно признаками, по которым мы можем сделать вывод о параллельности прямых. Причем достаточно установить и доказать лишь один признак — остальные будут к нему прилагаться.
А сейчас посмотрим, как все это помогает решать задачи и практиковаться в определении параллельности двух прямых.
Задача 1
Прямые MN и KP пересекают две другие прямые, образуя несколько углов. Известно, что ∠1 = 73°; ∠3 = 92°; ∠2 = 73°. Требуется найти величину ∠4.
Решение
Поскольку ∠1 и ∠2 являются соответственными, их равенство говорит о том, что MN II KP. Следовательно, ∠3 = ∠MPK = 92°.
Согласно другому свойству параллельных прямых ∠4 + ∠MPK = 180°.
Задача 2
Две параллельные прямые а и b удалены друг от друга на расстояние 27 см. Секущая к этим прямым образует с одной из них угол в 150°. Требуется найти величину отрезка секущей, расположенного между а и b.
Решение
Поскольку а II b, значит ∠MKD + ∠KDN = 180°.
Теперь рассмотрим треугольник KDM. Мы знаем, что отрезок DM представляет собой расстояние между прямыми а и b, а значит, DM ┴ b и наш треугольник является прямоугольным.
Поскольку катет, противолежащий углу в 30°, равен ½ гипотенузы, DM = 1/2DK.
Геометрия. 7 класс
Конспект урока
Признаки параллельности прямых
Перечень рассматриваемых вопросов:
Две прямые на плоскости называются параллельными, если они не пересекаются.
Признаки параллельности двух прямых:
1. Если при пересечении двух прямых секущей, накрест лежащие углы равны, то прямые параллельны.
2. Если при пересечении двух прямых секущей, соответственные углы равны, то прямые параллельны.
3. Если при пересечении двух прямых секущей, сумма односторонних углов равна 180°, то прямые параллельны.
Теоретический материал для самостоятельного изучения.
Вы уже знаете, что при пересечении двух прямых секущей образуются углы:
Прямая c называется секущей по отношению к прямым a и b, если она пересекает их в двух точках.
Рассмотрим и докажем признаки параллельности прямых.
Если при пересечении двух прямых секущей, накрест лежащие углы равны, то прямые параллельны.
Дано: прямые a и b, секущая AB, ∠ 1 = ∠ 2 накрест лежащие.
В этом случае две прямые, перпендикулярные к третьей не пересекаются, т. е. параллельны.
2 случай: ∠ 1= ∠ 2 ≠ 90°
1) Из середины O отрезка AB проведём перпендикуляр OH к прямой а. На прямой b от точки B отложим отрезок BH1, равный отрезку AH и проведем отрезок OH1.
2) AO = OB т. к. O середина AB; AH = BH1 по построению; ∠1 = ∠2 по условию. Тогда ΔOHA = ΔOH1B по первому признаку равенства треугольников.
Далее следует из равенства треугольников: ∠3 = ∠4 и ∠5 = ∠6.
3) Из равенства углов ∠3 и ∠4 следует, что точка H1 лежит на продолжении луча OH. Это значит, что точки H1, O, H лежат на одной прямой.
4) Из равенства ∠5 и ∠6 следует, что ∠6 = 90°. Это значит, что прямые a и b перпендикулярны к третьей НН1, а значит, по теореме о двух прямых, перпендикулярных к третьей, не пересекаются, т. е. параллельны.
Если при пересечении двух прямых секущей, соответственные углы равны, то прямые параллельны.
Дано: прямые a и b, секущая AB, ∠1 = ∠2 соответственные.
∠1 = ∠2 – по условию и ∠2 = ∠3 – по свойству вертикальных углов.
Значит, ∠1 = ∠3, это накрест лежащие углы, следовательно, a║b по теореме 1.
Если при пересечении двух прямых секущей, сумма односторонних углов равна 180°, то прямые параллельны.
Прямые a и b, секущая AB, ∠1 + ∠2 = 180° ‑ односторонние.
∠3 +∠2 = 180°– по свойству смежных углов, откуда ∠3 = 180° – ∠2.
∠1 + ∠2 = 180 ° по условию, откуда ∠1 = 180° – ∠2.
Тогда ∠1 = ∠3, это накрест лежащие углы, следовательно, a║b по теореме 1.
Разбор заданий тренировочного модуля.
Ответ: прямые a и b параллельны по 1 признаку параллельности прямых.
Дано: ΔABC – равнобедренный, ∠А = 60°. CD – биссектриса ∠BCK.
Ответ: AB║CD по 2 признаку параллельности прямых.
- Доказать что если все элементы определителя 3 порядка равны 1
- Доказать что если диагонали трапеции равны то она равнобедренная