Доказать что если плоскость проходит через данную прямую параллельную другой плоскости
Параллельность прямой и плоскости
Урок 6. Геометрия 10 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Параллельность прямой и плоскости»
· рассмотрим параллельность прямой и плоскости, как один из трех возможных вариантов их взаимного расположения в пространстве;
· сформулируем и докажем теорему о параллельности прямой и плоскости;
· докажем еще два утверждения, которые часто применяют при решении задач.
Раньше мы с вами уже узнали аксиомы стереометрии. На этом уроке нам понадобится вторая аксиома: если две точки прямой принадлежат плоскости, то и вся прямая принадлежит плоскости.
Отсюда вытекают три случая взаимного расположения прямой и плоскости в пространстве.
Первый случай. Прямая лежит в плоскости, т.е. каждая точка прямой лежит в плоскости. Например, если SABC – треугольная пирамида, то прямая CB лежит в плоскости ABC.
Второй случай. Прямая и плоскость пересекаются, т.е. имеют только одну общую точку. Например, прямая B1B пересекается с плоскостью грани ABCD параллелепипеда ABCDA1B1C1D1.
И третий случай. Прямая и плоскость не имеют ни одной общей точки. Например, если ABCDA1B1C1D1– куб, то прямая A1D1 и плоскость, в которой лежит грань ABCD, не пересекаются.
Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.
Параллельность прямой а и плоскости α обозначается следующим образом . Читают: «Прямая a параллельна плоскости α».
Отрезок (луч) называется параллельным плоскости, если он лежит на прямой, параллельной данной плоскости.
Приведем несколько примеров параллельности прямой и плоскости.
Вот возьмем, к примеру, гитару. Натянутая гитарная струна и плоскость грифа параллельны. Линии электропередач параллельны плоскости земли.
Еще примером может послужить линия пересечения стены и потолка. Эта линия параллельна плоскости пола.
Обратите внимание, в плоскости пола также есть прямая, параллельная этой линии. Такой прямой является, например, линия пересечения пола с той же самой стеной.
Прямые о которых мы сейчас говорили, обозначены буквами а и b. Оказывается, что если в плоскости α имеется прямая b, параллельная прямой а, не лежащая в плоскости α, то прямая а и плоскость α параллельны.
Это утверждение (теорема) является признаком, по которому можно сделать вывод о параллельности прямой а и плоскости α.
Теорема. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.
Докажем теорему. Пусть у нас есть две параллельные прямые а и b и плоскость α. Причем они расположены так, что прямая b лежит в плоскости α, а прямая а не лежит в этой плоскости. Докажем, что прямая а параллельна плоскости α.
Предположим, что прямая а пересекает плоскость α в некоторой точке М. А значит, по лемме о пересечении плоскости параллельными прямыми прямая b также должна пересекать плоскость α. Но это невозможно, так как прямая b лежит в плоскости α по условию. Таким образом, наше предположение неверно. И прямая а не пересекает плоскость α. По условию она не лежит в плоскости α. Следовательно, прямая а параллельна плоскости α. Теорема доказана.
На рисунке изображен параллелепипед ABCDA1B1C1D1. Прямая A1B1 параллельна плоскости α, в которой лежит грань ABCD. Действительно, прямая A1B1 параллельна прямой AB, лежащей в плоскости α. Следовательно, по признаку параллельности прямой и плоскости A1B1 параллельна α.
Докажем еще два утверждения, которые часто применяются при решении задач.
Первое утверждение. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
Докажем это утверждение. Пусть плоскость α проходит через прямую а, параллельную плоскости β. И плоскости α и β пересекаются по прямой b. Докажем, что прямая а параллельна прямой b.
Действительно, эти прямые лежат в одной плоскости (в плоскости α) и не пересекаются: ведь в противном случае, если бы прямые а и b пересекались в некоторой точке М, тогда бы прямая а пересекала плоскость β в точке М. Что невозможно, поскольку прямая а параллельна плоскости β по условию.
Таким образом, прямые а и b параллельны. Что и требовалось доказать.
Второе утверждение. Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо также параллельна данной плоскости, либо лежит в этой плоскости.
Доказательство. Пусть прямые а и b параллельны. Причем прямая а параллельна плоскости α. Тогда прямая а не пересекает плоскость α, и, следовательно, по лемме о пересечении плоскости параллельными прямыми прямая b также не пересекает плоскость α. А значит, прямая b либо параллельна плоскости α, либо лежит в этой плоскости. Что и требовалось доказать.
Задача. Прямая . Точка
. Докажите, что прямая, проходящая через точку
и параллельная прямой
, лежит в
.
Доказательство. Пусть прямая b проходит через точку K и параллельна прямой а.
Предположим, что прямая b не лежит в плоскости α, т.е. пересекает плоскость α в точке К. Тогда прямая а также пересекает плоскость α по лемме о пересечении плоскости параллельными прямыми. А это противоречит условию. Следовательно, прямая b лежит в плоскости α. Что и требовалось доказать.
Подведем итоги урока. На этом уроке мы рассмотрели параллельность прямой и плоскости, как один из трех возможных вариантов их взаимного расположения в пространстве. Сформулировали и доказали признак параллельности прямой и плоскости. А также доказали два утверждения, которые часто применяют при решении задач.
Скоро вебинар
«ПРЯМАЯ НА ПЛОСКОСТИ»
(Аналитическая геометрия). Жми подробнее.
Параллельность прямых и плоскостей.
1. Параллельные прямые в пространстве.
Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
Обозначение параллельных прямых a и b: a || b.
Теорема о параллельных прямых.
Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.
Лемма о пересечении плоскости параллельными прямыми.
Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.
Теорема о параллельности трех прямых.
Если две прямые параллельны третьей прямой, то они параллельны.
2. Параллельность прямой и плоскости.
Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.
Обозначение параллельности прямой a и плоскости β: a || β.
Признак параллельности прямой и плоскости.
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.
Два утверждения, которые часто используются при решении задач.
1. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
2. Если одна из двух параллельных прямых параллельна данной плоскости, то и другая прямая либо также параллельна плоскости, либо лежит в этой плоскости.
3. Параллельность плоскостей.
Определение. Две плоскости называются параллельными, если они не пересекаются.
Обозначение параллельных плоскостей γ и β: γ||β.
Признак параллельности двух плоскостей.
Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.
Свойства параллельных плоскостей:
1. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
2. Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.
Теорема о прямой и параллельной ей плоскости
В школьных учебниках ее и теоремой-то редко называют. Говорят, что это «лемма». Или «следствие». Или «задача». Как будто это что-то необязательное и незначительное. А на самом деле это важнейшая теорема о прямой и параллельной ей плоскости.
Даже если в школе ее доказывают — не говорят, зачем она нужна. Доказали — и забыли.
Но при этом в стереометрии — и особенно в задачах ЕГЭ по математике — есть множество ситуаций, когда без этой важнейшей теоремы не обойтись.
Теорема о прямой и параллельной ей плоскости:
Для чего нам эта теорема? Например, для того, чтобы построить сечение пирамиды плоскостью, параллельной плоскости основания.
1. Постройте сечение тетраэдра плоскостью, проходящей через точки M, N, K. Точка N лежит на ребре
Покажем, что плоскость сечения пересекает плоскость основания пирамиды по прямой NT, параллельной MK.
Прямая MK параллельна AB, лежащей в плоскости основания ABC. Значит,
Плоскость сечения проходит прямую MK, параллельную плоскости ABC. По теореме о прямой и параллельной ей плоскости, линия пересечения плоскости сечения и плоскости AВC параллельна прямой MK. Трапеция MKNT — искомое сечение.
Таких задач, где в сечении пирамиды получается трапеция (или параллелограмм), в вариантах Профильного ЕГЭ очень много.
2. В правильной четырехугольной пирамиде PABCD, все ребра которой равны 8, точка K — середина бокового ребра AP.
а) Постройте сечение пирамиды плоскостью, проходящей через точку K и параллельной прямым PB и BC.
б) Найдите площадь сечения.
Пусть точка M — середина AB. Тогда как средняя линия
Пусть точка N — середина PD. Поскольку KN — средняя линия и тогда
Построим сечение пирамиды плоскостью KMN. Пусть плоскости KMN и ABC пересекаются по прямой МE. Покажем, что
По теореме о прямой и параллельной ей плоскости,
б) Найдём площадь сечения.
где — высота трапеции KNEM.
Пусть H — середина KN,
Есть еще одна теорема — такая же полезная, как и теорема о прямой и параллельной ей плоскости. Вот она:
Как ее назвать? Согласитесь, сложно придумать короткое название. Для себя (не для оформления на экзамене!) можно запомнить эту картинку как «домик» или «книжечку». Главное — запомнить формулировку и увидеть, как теорема применяется в решении задач.
Параллельные прямая и плоскость, признак и условия параллельности прямой и плоскости
Статья рассматривает понятия параллельность прямой и плоскости. Будут рассмотрены основные определения и приведены примеры. Рассмотрим признак параллельности прямой к плоскости с необходимыми и достаточными условиями параллельности, подробно решим примеры заданий.
Параллельные прямые и плоскость – основные сведения
Прямая и плоскость называются параллельными, если не имеют общих точек, то есть не пересекаются.
Параллельность прямой и плоскости – признак и условия параллельности
Не всегда очевидно, что прямая и плоскость параллельны. Зачастую это нужно доказать. Необходимо использовать достаточное условие, которое даст гарантию на параллельность. Такой признак имеет название признака параллельности прямой и плоскости. Предварительно рекомендуется изучить определение параллельных прямых.
Рассмотрим теорему, используемую для установки параллельности прямой с плоскостью.
Если одна из двух параллельных прямых параллельна плоскости, то другая прямая лежит в этой плоскости либо параллельна ей.
Условие применимо, когда необходимо доказать параллельность в прямоугольной системе координат трехмерного пространства. Рассмотрим подробное доказательство.
Значит, перпендикулярность векторов a → и n → очевидна. Отсюда следует, что прямая с плоскостью являются параллельными.
Ответ: прямая с плоскостью параллельны.
Отсюда следует, что прямая А В с координатной плоскостью О y z не являются параллельными.
Ответ: не параллельны.
Из определения следует, что прямая a с плоскостью α не должна иметь общих точек, то есть не пересекаться, только в этом случае они будут считаться параллельными. Значит, система координат О х у z не должна иметь точек, принадлежащих ей и удовлетворяющих всем уравнениям:
Система уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 не имеет решения, когда ранг основной матрицы меньше ранга расширенной. Это проверяется теоремой Кронекера-Капелли для решения линейных уравнений. Можно применять метод Гаусса для определения ее несовместимости.
Для решения данного примера следует переходить от канонического уравнения прямой к виду уравнения двух пересекающихся плоскостей. Запишем это так:
Видим, что она не решаема, значит прибегнем к методу Гаусса.
Отсюда делаем вывод, что система уравнений является несовместной, так как прямая и плоскость не пересекаются, то есть не имеют общих точек.
Ответ: прямая и плоскость параллельны.
Конспект лекций (раздаточный материал) по учебной дисциплине «Математика: Геометрия» по разделу » Параллельность прямых и плоскостей» (часть 1)
Выбранный для просмотра документ Конспект лекций Параллельность прямых и плоскостей ч.1.docx
МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
«ВОЛЖСКИЙ ИНСТИТУТ ЭКОНОМИКИ, ПЕДАГОГИКИ И ПРАВА»
Волжский социально-педагогический колледж
Математика:Геометрия (10-11кл., 1 курс СПО)
Конспект лекций (раздаточный материал) по разделу
«Параллельность прямых и плоскостей (часть1)»
Автор: Бондаренко Людмила Валентиновна
Место работы: Волжский социально-педагогический колледж – структурное подразделение ВИЭПП
Теорема. Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.
Доказательство : Рассмотрим прямую а и точку М, не лежащую на этой прямой (рис. 11). Через прямую а и точку М проходит плоскость, и притом только одна (следствие из аксиом).
Параллельность трех прямых
Параллельность прямой и плоскости
Если две точки прямой лежат в данной плоскости, то согласно аксиоме А 2 вся прямая лежит в этой плоскости. Отсюда следует, что возможны три случая взаимного расположения прямой и плоскости в пространстве: а) прямая лежит в плоскости (см. рис. 5, а);
б) прямая и плоскость имеют только одну общую точку, т. е. пересекаются (см. рис. 5, б);
в) прямая и плоскость не имеют ни одной общей точки.
Определение. Прямая и плоскость называются параллельными , если они не имеют общих точек.
Теорема . (признак параллельности прямой и плоскости). Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.
1°. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
2°. Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо также параллельна данной плоскости, либо лежит в этой плоскости.