Докажите что медиана разбивает треугольник на два равновеликих треугольника
Медиана делит площадь треугольника пополам
Медиана делит площадь треугольника пополам
Два треугольника называются равновеликими. Если они имеют одинаковую площадь.
Теорема 1. Медиана делит треугольник на два равновеликих треугольника.
Пусть ВМ – медиана треугольника АВС. Докажем, что
.
Проведем высоту BH треугольника АВС. Тогда
,
.
Так как ВМ – медиана треугольника АВС, то АМ=МС, поэтому
.
,
.
Что и требовалось доказать.
Теорема 2. Медианы треугольника разбивают его на шесть равновеликих треугольников.
Доказательство можно посмотреть, например, в методическом пособии «Опорные задачи по планиметрии».
Из теоремы, в частности следует, что если точку пересечения медиан треугольника соединить со всеми его вершинами, то треугольник разобьется на три равновеликие части.
Задача 1 Две медианы треугольника взаимно перпендикулярны и равны соответственно 3 и 4. Найти площадь треугольника.
Пусть в треугольнике АВС медианы АМ и ВЕ равны 3 и 4 соответственно, , К – точка пересечения медиан.
,
.
Так как треугольник АВК прямоугольный с прямым углом ВКА, то .
Так как медиан делят треугольник на 6 равновеликих частей, то .
Задача 2 Медианы треугольника равны 6, 8 и 10, найти площадь треугольника.
Пусть медианы АM, BE и CD данного треугольника соответственно равны 6, 8 и 10, К – точка их пересечения. Отложим на продолжении луча ВЕ за точку Е отрезок EF=KE. Соединим точки С, F и A.
Рассмотрим треугольник KAF.
,
то
.
Далее, , так как CKAE – параллелограмм (по признаку параллелограмма: ели диагонали четырехугольника делятся точкой пересечения пополам, до данный четырехугольник параллелограмм), получаем
.
Так как , то есть
, то по обратной теореме Пифагора (если квадрат одной стороны треугольника равен сумме квадратов двух других его сторон, то треугольник прямоугольный) треугольник KAF – прямоугольный и
.
Вычислим площадь треугольника AKF:
.
Теперь сравним площади треугольников AKF и АВС: так как AE – медиана треугольника AKF, то
,
,
.
.
Отметим, что задачу можно решить по-другому, если воспользоваться тем фактом, что:
площадь треугольника, образованного медианами данного треугольника составляет от площади самого треугольника.
Доказательство можно посмотреть, например, в методическом пособии «Опорные задачи по планиметрии».
Вопросы для самопроверки:
1. Какие треугольники называются равновеликими?
2. Площадь треугольника равна S. Чему равна площадь каждого из треугольников, на которые его разбивает медиана, проведенная к какой-либо стороне этого треугольника?
3. На сколько равновеликих частей разбивают треугольник проведенные в нем три медианы?
4. Площадь треугольника равна S. Цент тяжести этого треугольника соединили с его вершинами. Чему равна площадь каждого из получившихся треугольников?
5. Площадь треугольника равна 48, чему равна площадь треугольника, составленного из медиан этого треугольника?
6. Площадь треугольника, составленного из медиан некоторого треугольника равна 24, чему равна площадь треугольника?
Задачи для самостоятельного решения:
1. Две медианы треугольника взаимно перпендикулярны и равны соответственно 6 и 8. Найти площадь треугольника.
2. Медианы треугольника равны 3, 4 и 5 найти площадь треугольника.
3. Треугольник АВС, стороны которого 13 см, 14 см и 15 см, разбит на три треугольника отрезками, соединяющими точку М пересечения медиан треугольника с вершинами треугольника. Найти площадь треугольника ВМС.
4. Две стороны треугольника равны 10 и 12, а медиана, проведённая к третьей, равна 5. Найдите площадь треугольника.
Геометрия Докажите, что медиана треугольника разбивает его на два равновеликих треугольника
Задача: докажите, что медиана треугольника разбивает его на два равновеликих треугольника.
Подсказка: медиана разбивает треугольник на треугольники с равными основаниями и одной и той же высотой.
Другие задачи по теме: Медиана треугольника
Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны (рис 1).
Поскольку в каждом треугольнике имеется три вершины, то в каждом треугольнике можно провести три медианы.
На рисунке 1 медианой является отрезок BD.
Утверждение 1. Медиана треугольника делит его на два треугольника равной площади (равновеликих треугольника).
Доказательство. Проведем из вершины B треугольника ABC медиану BD и высоту BE (рис. 2),
Поскольку отрезок BD является медианой, то
что и требовалось доказать.
Утверждение 2. Точка пересечения двух любых медиан треугольника делит каждую из этих медиан в отношении 2 : 1, считая от вершины треугольника.
Доказательство. Рассмотрим две любых медианы треугольника, например, медианы AD и CE, и обозначим точку их пересечения буквой O (рис. 3).
Обозначим середины отрезков AO и CO буквами F и G соответственно (рис. 4).
Теперь рассмотрим четырёхугольник FEDG (рис. 5).
Сторона ED этого четырёхугольника является средней линией в треугольнике ABC. Следовательно,
Сторона FG четырёхугольника FEDG является средней линией в треугольнике AOC. Следовательно,
откуда вытекает, что стороны ED и FG четырёхугольника FEDG равны и параллельны. Следовательно, четырехугольник FEDG является параллелограммом, а у параллелограмма диагонали в точке пересечения делятся пополам (рис.6).
Отсюда вытекает, что точка O делит каждую из медиан AD и CE в отношении 2 : 1, считая от вершины треугольника.
Следствие. Все три медианы треугольника пересекаются в одной точке.
Доказательство. Рассмотрим медиану AD треугольника ABC и точку O, которая делит эту медиану в отношении 2 : 1, считая от вершины A (рис.7).
Поскольку точка, делящая отрезок в заданном отношении, является единственной, то и другие медианы треугольника будут проходить через эту точку, что и требовалось доказать.
Определение. Точку пересечения медиан треугольника называют центроидом треугольника.
Утверждение 3. Медианы треугольника делят треугольник на 6 равновеликих треугольников (рис. 8).
Доказательство. Докажем, что площадь каждого из шести треугольников, на которые медианы разбивают треугольник ABC, равна площади треугольника ABC. Для этого рассмотрим, например, треугольник AOF и опустим из вершины A перпендикуляр AK на прямую BF (рис. 9).
В силу утверждения 1,
что и требовалось доказать.
Утверждение 4. Длина медианы треугольника (рис. 10) вычисляется по формуле:
Доказательство. Воспользуемся теоремой косинусов, примененной к треугольникам DBC и ABD:
Складывая эти равенства, получим:
что и требовалось доказать.
Следствие. Длины медиан и длины сторон треугольника связаны формулой
Доказательство. В силу утверждения 4 справедливы равенства:
Складывая эти равенства, получим:
что и требовалось доказать.
Утверждение 5. В параллелограмме сумма квадратов диагоналей равна сумме квадратов сторон.
Доказательство. Рассмотрим рисунок 11.
Поскольку AO – медиана треугольника ABD, а DO – медиана треугольника ADC, то, в силуутверждения 4, справедливы равенства:
Складывая эти равенства, получим
что и требовалось доказать.
Утверждение 6. Медиана, проведенная к гипотенузе прямоугольного треугольника, равна половине гипотенузы (рис. 12).
Доказательство. Продолжим медиану CO за точку O до точки D так, чтобы было выполнено равенство CO = OD, и соединим полученную точку D с точками A и B (рис. 13).
Получим четырехугольник ADBC, диагонали которого в точке пересечения делятся пополам. В силу признака параллелограмма заключаем, что четырехугольник ADBC является параллелограммом, а поскольку полученный параллелограмм содержит прямой угол C, то и все его углы прямые, следовательно, четырехугольник ADBC – прямоугольник. Поскольку диагонали прямоугольника равны, получаем равенства:
что и требовалось доказать.
Следствие. Середина гипотенузы прямоугольного треугольника является центром описанной около треугольника окружности (рис. 14).
Утверждение 7. Рассмотрим в пространстве или на плоскости декартову систему координат с началом в точке O и произвольный треугольник ABC. Если обозначить буквой M точку пересечения медиан этого треугольника (рис.15), то будет справедливо равенство
Медиана делит треугольник на два равновеликих треугольника
Здравствуйте!
Нужно рассмотреть и доказать утверждение: «Медиана делит треугольник на два равновеликих треугольника». Помогите, пожалуйста!
Спасибо!
Рассмотрим утверждение:
Медиана делит треугольник на два равновеликих треугольника.
Равновеликими называют треугольники, у которых площади одинаковые.
То есть медианой площадь треугольника делится пополам.
Докажем данное утверждение.
Доказательство.
Рассмотрим треугольник СМТ. Медиана данного треугольника МК делит сторону СТ пополам (согласно свойству медианы).
Докажем, что площади двух треугольников СМК и КМТ, на которые разбивает медиана МК заданный треугольник СМТ, равны между собой.
Воспользуемся формулой для нахождения площади треугольника через две стороны и угол между ними:
Углы и
являются смежными, поэтому
.
По свойству синуса , тогда
СК=КТ согласно свойству медианы МК треугольника СМТ.
Запишем формулы площадей рассматриваемых двух треугольников с новыми данными, получим:
Обратим внимание, что мы получили формулу для нахождения площади треугольника КМТ.
То есть площади треугольников СМК и КМТ, на которые делит медиана МК треугольник СМТ, равны:
Свойства медианы треугольника. Итоговое повторение курса геометрии 7 – 9 класса
Свойства медианы треугольника
Итоговое повторение курса геометрии 7 – 9 класса
При изучении какой-либо темы школьного курса можно отобрать определенный минимум задач, овладев методами решения которых, учащиеся будут в состоянии решить любую задачу на уровне программных требований по изучаемой теме. Предлагаю рассмотреть задачи, которые позволят увидеть взаимосвязи отдельных тем школьного курса математики. Поэтому составленная система задач является эффективным средством повторения, обобщения и систематизации учебного материала в ходе подготовки учащихся к экзамену.
Для сдачи экзамена не лишними будут дополнительные сведения о некоторых элементах треугольника. Рассмотрим свойства медианы треугольника и задачи, при решении которых этими свойствами можно воспользоваться. В предложенных задачах реализуется принцип уровневой дифференциации. Все задачи условно поделены на уровни (уровень указан в скобках после каждого задания).
Вспомним некоторые свойства медианы треугольника
Свойство 1. Докажите, что медиана треугольника ABC, проведённая из вершины A, меньше полусуммы сторон AB и AC.
Отложим на продолжении медианы AM за точку M отрезок MK, равный AM. Тогда в четырёхугольнике ABKC диагонали пересекаются и точкой пересечения делятся пополам. Значит, ABKC — параллелограмм. Применяя неравенство треугольника к треугольнику ABK, получим, что
то, сложив почленно эти три неравенства, получим, что
2AM +
BN +
CK
> AB + BC + AC.
Отсюда следует, что AM + BN + CK > (AB + BC + AC).
Отложим на продолжении медианы AM за точку M отрезок MA1, равный AM. Тогда ABA1C — параллелограмм. Поэтому
так расположить точки нельзя.
№32 Темы: Удвоение медианы. Ортоцентр и ортотреугольник Сложность:5 + Три точки, лежащие на одной прямой Подобные треугольники Классы: 9,10
Решение
Пусть A’B’C’ – треугольник, образованный
проведенными прямыми и G – точка пересечения его
сторонам треугольника A’B’C’ соответственно, поэтому эти треугольники подобны, причем соответствующие прямые BC и
Источник: Всероссийская олимпиада по математике, 2008 г, 9 класс
Отрабатываем умение: самостоятельно решать задачи.
Свойства медианы. Площадь треугольника
1. В треугольнике АВС медиана АМ перпендикулярна медиане BN. Найдите площадь треугольника АВС, если длина АМ равна 3, а длина BN равна 4.
2. Основание равнобедренного треугольника равно 2. Медианы, проведенные к боковым сторонам, взаимно перпендикулярны. Найдите площадь треугольника.
3. Две медианы равнобедренного треугольника взаимно перпендикулярны. Боковая сторона равна . Найдите площадь треугольника.
4. В треугольнике АВС медианы АD и ВE перпендикулярны, ,
. Чему равен квадрат третьей стороны?
5. Сторона треугольника равна 20, а медианы, проведенные к двум другим сторонам – 24 и 18. Найдите площадь треугольника.
6. Стороны треугольника равны 13, 14 и 15. Найти площади треугольников, на которые разбивается данный треугольник его медианами.
7. Площадь треугольника АВС равна 12. Из вершины тупого угла В проведена медиана BD, длина которой равна 3. Найдите длину стороны АС, если угол ABD – прямой.
8. Найдите площадь треугольника, если две его стороны равны 1 и , а медиана третьей стороны равна 2. (Указание – достроить до параллелограмма).
О т в е т: .
1. Одна сторона треугольника равна а, другая – b. Найдите третью сторону, если известно, что она равна медиане, проведенной к ней.
О т в е т: .
2. Основание равнобедренного треугольника , медиана боковой стороны 5. Найдите длины боковых сторон.
3. В равнобедренном треугольнике основание равно , а угол при основании равен 300. Найдите длину медианы, проведенной к боковой стороне.
4. Медианы треугольника равны 5, и
. Докажите, что треугольник прямоугольный.
5. Числа ,
и
выражают длины медиан некоторого треугольника. Докажите, что если выполняется равенство
, то треугольник является прямоугольным.
Медиана, проведенная к гипотенузе
1. Медиана, проведенная к гипотенузе прямоугольного треугольника, равна 3 см и делит прямой угол в отношении 2:1. Найдите меньший катет.
2. АА1, ВВ1, СС1 – медианы треугольника АВС. . Найдите
.
3. Медианы треугольника АВС АА1, ВВ1 и СС1 пересекаются в точке О. .
см.
см. Найдите ВО.
4. Гипотенуза прямоугольного треугольника в 4 раза больше проведенной к ней высоты. Найдите острые углы треугольника.
5. В трапеции ABCD углы при основании AD равны 200 и 700, длина отрезка, соединяющего середины оснований, равна 3. Найдите длину отрезка, соединяющего середины диагоналей трапеции.
· интернет сайт http://zadachi. ***** Задачи по геометрии
· Всероссийская олимпиада по математике, 2008 год,
· Турнир им. Ломоносова, 2001 год
· Московская математическая регата, 2012/13 г, 8 класс