Докажите что многочлен t x 5x 2 4x 4 является делителем
Докажите что 73 является делителем 14892?
Докажите что 73 является делителем 14892.
Докажи что числа 56 являться делителем числа 42224?
Докажи что числа 56 являться делителем числа 42224.
Докажите что 89 является делителем 25276?
Докажите что 89 является делителем 25276.
— Составьте многочлен III степени, если известно, что число 1 является
Число В является делителем числа А?
Число В является делителем числа А.
Докажите, что частное от деления А на В так же является делителем числа А.
Проверьте это утверждение, если А = 18, а В = 3.
Б) Установите, является ли данный многочлен однородным.
В) Если многочлен является однородным, то определите его степень.
Помогите решить деления многочлена на многочлен :
9 + 9 + 6 + 6 = 30 см 9 * 6 = 54 см.
Пусть х(га) второе поле, тогда первое 6х(га) Составим и решим уравнение : 6х + х = х + х + 34. 5 7х = 2х + 34. 5 5х = 34. 5 х = 34. 5 : 5 х = 6. 9(га) 2)6. 9 + 34. 5 = 41. 4(га).
Деление многочленов
Продолжаем изучать многочлены. В данном уроке мы научимся их делить.
Деление многочлена на одночлен
Чтобы разделить многочлен на одночлен, нужно разделить на этот одночлен каждый член многочлена, затем сложить полученные частные.
Теперь делим каждый член многочлена 15x 2 y 3 + 10xy 2 + 5xy 3 на одночлен xy. Получающиеся частные будем складывать:
Получили привычное для нас деление одночленов. Выполним это деление:
При делении одного числа на другое, частное должно быть таким, чтобы при его перемножении с делителем, получалось делимое. Это правило сохраняется и при делении многочлена на одночлен.
Деление многочлена на одночлен очень похоже на сложение дробей с одинаковыми знаменателями. Мы помним, что для сложения дробей с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменений.
Например, чтобы сложить дроби ,
и нужно записать следующее выражение:
Если мы вычислим выражение , то получим дробь
, значение которой равно 1,5.
При этом выражение мы можем вернуть в исходное состояние
, и вычислить по отдельности каждую дробь, затем сложить полученные частные. Результат по прежнему будет равен 1,5
Вычисление каждой дроби даст в результате многочлен a + b + c
Пример 2. Разделить многочлен 8m 3 n + 24m 2 n 2 на одночлен 8m 2 n
Пример 3. Разделить многочлен 4c 2 d − 12c 4 d 3 на одночлен −4c 2 d
Деление одночлена на многочлен
Не существует тождественного преобразования, позволяющего разделить одночлен на многочлен.
Но в учебниках можно встретить задания на нахождение значения выражения при заданных значениях переменных. В исходных выражениях таких заданий бывает выполнено деление одночлена на многочлен. В этом случае никаких преобразований выполнять не нужно. Достаточно подставить значения переменных в исходное выражение и вычислить получившееся числовое выражение.
Выражение представляет собой деление одночлена на многочлен. В данном случае мы не сможем выполнить какие-либо преобразования. Единственное, что мы сможем сделать — это подставить число 2 в исходное выражение вместо переменной x и найти значение выражения:
Деление многочлена на многочлен
Если произведение разделить на множитель, то получится множимое. Это правило распространяется не только для чисел, но и для многочленов.
Деление многочлена на многочлен выполняется уголком. Отличие будет в том, что при делении многочленов не нужно определять первое неполное делимое, как в случае деления обычных чисел.
Результатом деления должен быть новый многочлен. Члены этого многочлена будут появляться один за другим в процессе деления.
Сейчас наша задача найти первый член нового многочлена. Как это сделать?
Этот же принцип нахождения первого члена будет выполняться и при решении других задач на деление многочленов.
Итак, чтобы найти первый член нового многочлена, нужно первый член делимого разделить на первый член делителя.
Если первый член делимого (в нашем случае это x 2 ) разделить на первый член делителя (это x), получится x. То есть первым членом нового многочлена является x. Записываем его под правым углом:
Теперь, как и при делении обычных чисел, сносим следующий член делимого. Следующий член это 15. Сносить его нужно вместе со своим знаком:
На этом деление завершено.
Пример 2. Разделить многочлен x 2 − 8x + 7 на многочлен x − 7
Записываем уголком данное деление:
Следует быть внимательным при вычитании отрицательных членов. Часто на этом этапе допускаются ошибки. Если на первых порах вычитание в столбик даётся тяжело, то можно использовать обычное вычитание многочленов в строку, которое мы изучили ранее. Для этого нужно отдельно выписать делимое и вычесть из него многочлен, который под ним располагается. Преимущество этого метода заключается в том, что следующие члены делимого сносить не нужно — они автоматически перейдут в новое делимое. Давайте воспользуемся этим методом:
Деление завершено. Таким образом, частное от деления многочлена x 2 − 8x + 7 на многочлен x − 7 равно x − 1
Пример 3. Разделить многочлен x 6 + 2x 4 + x 7 + 2x 5 на многочлен x 2 + x 3
Найдём первый член частного. Разделим первый член делимого на первый член делителя, получим x 4
Вычитание многочлена 2x 4 + 2x 5 из многочлена 2x 4 + 2x 5 дало в результате 0, поэтому деление успешно завершилось.
В промежуточных вычислениях члены нового делимого располагались друг от друга, образуя большие расстояния. Это было по причине того, что при умножении частного на делитель, результаты были записаны так, чтобы подобные члены располагались друг под другом.
Эти расстояния между членами нового делимого образуются тогда, когда члены исходных многочленов расположены беспорядочно. Поэтому перед делением желательно упорядочить члены исходных многочленов в порядке убывания степеней. Тогда решение примет более аккуратный и понятный вид.
Тогда деление уголком многочлена x 6 + 2x 4 + x 7 + 2x 5 на многочлен x 2 + x 3 примет следующий вид:
Деление завершено. Таким образом, частное от деления многочлена x 6 + 2x 4 + x 7 + 2x 5 на многочлен x 2 + x 3 равно x 4 + 2x 2
При перемножении многочленов члены исходных многочленов тоже желательно упорядочивать в порядке убывания степеней. Тогда члены полученного многочлена тоже будут упорядочены в порядке убывания степеней.
Перепишем умножение (x 4 + 2x 2 )(x 2 + x 3 ) упорядочив члены многочленов в порядке убывания степеней.
Пример 4. Разделить многочлен 17x 2 − 6x 4 + 5x 3 − 23x + 7 на многочлен 7 − 3x 2 − 2x
Упорядочим члены исходных многочленов в порядке убывания степеней и выполним уголком данное деление:
Пример 5. Разделить многочлен 4a 4 − 14a 3 b − 24a 2 b 2 − 54b 4 на многочлен a 2 − 3ab − 9b 2
Умножим 4a 2 на делитель a 2 − 3ab − 9b 2 и полученный результат запишем под делимым:
Вычтем из делимого полученный многочлен 4a 4 − 12a 3 b − 36a 2 b 2
Умножим −2ab на делитель a 2 − 3ab − 9b 2 и полученный результат запишем под делимым −2a 3 b + 12a 2 b 2 − 54b 4
Этот же результат можно получить, если выполнить вычитание многочленов в строку с помощью скобок:
Деление многочлена на многочлен с остатком
Как и при делении обычных чисел, при делении многочлена на многочлен может образоваться остаток от деления.
Для начала вспомним деление обычных чисел с остатком. Например, разделим уголком 15 на 2. С остатком это деление будет выполнено так:
То есть при делении 15 на 2 получается 7 целых и 1 в остатке. Ответ записывается следующим образом:
Рациональное число читается как семь целых плюс одна вторая. Знак «плюс» по традиции не записывают. Но если при делении многочлена на многочлен образуется остаток, то этот плюс записывать нужно.
Например, разделим многочлен 2x 3 − x 2 − 5x + 4 на многочлен x − 3
Умножим 2x 2 на делитель x − 3 и полученный результат запишем под делимым:
Вычтем из делимого полученный многочлен 2x 3 − 6x 2
Умножим 5x на делитель x − 3 и полученный результат запишем под делимым 5x 2 − 5x + 4
Вычтем из многочлена 5x 2 − 5x + 4 многочлен 5x 2 − 15x
Поэтому при делении многочлена 2x 3 − 2x 2 − 5x + 4 на многочлен x − 3 получается 2x 2 + 5x + 10 и 34 в остатке. Ответ записывается таким же образом, как и при делении обычных чисел. Сначала записывается целая часть (она располагается под правым углом) плюс остаток, разделенный на делитель:
Когда деление многочленов невозможно
Деление многочлена на многочлен невозможно в случае, если степень делимого окажется меньше степени делителя.
Но при делении многочлена на многочлен должен получаться именно многочлен, а частное x − 1 многочленом не является. Ведь многочлен состоит из одночленов, а одночлен в свою очередь это произведение чисел, переменных и степеней. Выражение x − 1 это дробь , которая не является произведением.
Пусть имеется прямоугольник со сторонами 4 и 2
Площадь этого прямоугольника будет равна 4 × 2 = 8 кв.ед.
Увеличим длину и ширину этого прямоугольника на x
Достроим отсутствующие стороны:
Алгебра и начала математического анализа. 10 класс
Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок №11. Многочлен P(x) и его корень. Алгебраическое уравнение.
Перечень вопросов, рассматриваемых в теме
1) обобщенное понятие многочлена;
2) основные действия над многочленами;
3) определение алгебраического уравнения;
Стоит отметить, что каждый многочлен степени больше 2 можно разложить на множители.
Корнем многочлена Р(х) называют такое значение х, при котором многочлен обращается в нуль.
Теорема Безу. Остаток от деления многочлена Р(х) на двучлен х-а равен Р(а).
Следствие. Если число а является корнем многочлена Р(х), то многочлен
где P — многочлен от переменных x1, x2, …, xn, которые называются неизвестными.
Коэффициенты многочлена P обычно берутся из некоторого множества F, и тогда уравнение P(x1, x2, …, xn)=0 называется алгебраическим уравнением над множеством F.
Степенью алгебраического уравнения называют степень многочлена P.
Значения переменных x1, x2, …, xn, которые при подстановке в алгебраическое уравнение обращают его в тождество, называются корнями этого алгебраического уравнения.
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Общая теория многочленов многих переменных далеко выходит за рамки школьного курса.
Мы рассмотрим многочлены одной действительной переменной, да и то в простейших случаях. Рассмотрим многочлены одной переменной, приведённые к стандартному виду.
Стоит отметить, что каждый многочлен степени больше 2 можно разложить на множители.
Корнем многочлена Р(х) называют такое значение х, при котором многочлен обращается в нуль.
Алгебраическое уравнение (полиномиальное уравнение) — уравнение вида
где P — многочлен от переменных x1, x2, …, xn, которые называются неизвестными.
Коэффициенты многочлена P обычно берутся из некоторого множества F, и тогда уравнение P(x1, x2, …, xn)=0 называется алгебраическим уравнением над множеством F.
Степенью алгебраического уравнения называют степень многочлена P.
является алгебраическим уравнением четвертой степени от трёх переменных (с тремя неизвестными) над множеством вещественных чисел.
Значения переменных x1, x2, …, xn, которые при подстановке в алгебраическое уравнение обращают его в тождество, называются корнями этого алгебраического уравнения.
Теорема Безу, невзирая на кажущуюся простоту и очевидность, является одной из базовых теорем теории многочленов. В данной теореме алгебраические характеристики многочленов (они позволяют работать с многочленами как с целыми числами) связываются с их функциональными характеристиками (которые позволяют рассматривать многочлены как функции).
Теорема Безу. Остаток от деления многочлена Р(х) на двучлен х-а равен Р(а).
Эту закономерность отметил и математик Безу.
Следствие. Если число а является корнем многочлена Р(х), то многочлен
Основные работы Этьенна Безу относятся к высшей алгебре, они посвящены созданию теории решения алгебраических уравнений.
В теории решения систем линейных уравнений он содействовал возникновению теории определителей, развивал теорию исключения неизвестных из систем уравнений высших степеней, доказал теорему (впервые сформулированную Маклореном) о том, что две кривые порядка m и n пересекаются не более чем в mn точках.
Во Франции и за её границей вплоть до 1848 года был очень популярен его шеститомный «Курс математики», написанный им в 1764-69 годах.
Безу развил метод неопределённых множителей. В элементарной алгебре его именем назван способ решения систем уравнений, основанный на этом методе.
Часть трудов Безу посвящена внешней баллистике.
Именем ученого названа одна из основных теорем алгебры.
Примеры алгебраических уравнений
Примеры и разбор решения заданий тренировочного модуля
Разложим на множители многочлен:
Решение: )
Ответ: )
)