ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΎ ΠΎΡΡΠ΅Π·ΠΎΠΊ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΠΉ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΎ ΠΎΡΡΠ΅Π·ΠΎΠΊ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΠΉ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ
ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ°ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ. ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΠ· ΡΡΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² Π±ΡΠ»ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Π½Ρ Π² Π·Π°Π΄Π°Π½ΠΈΡΡ Π΄Π»Ρ 9-Π³ΠΎ ΠΊΠ»Π°ΡΡΠ°, Π΄ΡΡΠ³ΠΈΠ΅ ΠΏΠΎΠΏΡΠΎΠ±ΡΠΉΡΠ΅ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎ. ΠΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΡΠ΅ ΡΠΈΡΡΠ½ΠΊΠΈ Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°ΡΡ Ρ ΠΎΠ΄ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²Π°.
$$ 4.<2>^<β>$$. Π Π»ΡΠ±ΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ, ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΈ ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠΈ Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½, Π»Π΅ΠΆΠ°Ρ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ (Π½Π° ΡΠΈΡ. 21 ΡΠΎΡΠΊΠΈ `M`, `N`, `O` ΠΈ `K`).
$$ 4.<3>^<β>$$. Π ΡΠ°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ³Π»Ρ ΠΏΡΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°Π²Π½Ρ (ΡΠΈΡ. 22).
$$ 4.<4>^<β>$$. Π ΡΠ°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΠΏΡΡΠΌΠ°Ρ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ°Ρ ΡΠ΅ΡΠ΅Π· ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ, ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌ ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΡΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ (ΡΠΈΡ. 23).
$$ 4.<5>^<β>$$. Π ΡΠ°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΡΠ°Π²Π½Ρ (ΡΠΈΡ. 24).
$$ 4.<6>^<β>$$. Π ΡΠ°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ Π²ΡΡΠΎΡΠ°, ΠΎΠΏΡΡΠ΅Π½Π½Π°Ρ Π½Π° Π±ΠΎΠ»ΡΡΠ΅Π΅ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠ· ΠΊΠΎΠ½ΡΠ° ΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ, Π΄Π΅Π»ΠΈΡ Π΅Π³ΠΎ Π½Π° Π΄Π²Π° ΠΎΡΡΠ΅Π·ΠΊΠ°, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π΅Π½ ΠΏΠΎΠ»ΡΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ, Π° Π΄ΡΡΠ³ΠΎΠΉ β ΠΈΡ ΠΏΠΎΠ»ΡΡΡΠΌΠΌΠ΅
(ΡΠΈΡ. 25, ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΠ°Π²Π½Ρ `a` ΠΈ `b`, `a>b`).
$$ 4.<7>^<β>$$. ΠΠΎ Π²ΡΡΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½ ΠΈ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Π»Π΅ΠΆΠ°Ρ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ (ΡΠΈΡ. 26).
$$ 4.<8>^<β>$$. ΠΠΎ Π²ΡΡΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΠΎΡΡΠ΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΠΉ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»Π΅Π½ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌ ΠΈ ΡΠ°Π²Π΅Π½ ΠΏΠΎΠ»ΡΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ (ΡΠΈΡ. 27).
ΠΠΎ Π²ΡΡΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΡΠΌΠΌΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½ ΠΈ ΡΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ, Ρ. Π΅. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.
$$ 4.<10>^<β>$$. ΠΠΎ Π²ΡΡΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌΠΈ `a` ΠΈ `b` ΠΎΡΡΠ΅Π·ΠΎΠΊ Ρ ΠΊΠΎΠ½ΡΠ°ΠΌΠΈ Π½Π° Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½Π°Ρ , ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠΈΠΉ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌ, ΡΠ°Π²Π΅Π½ `(2ab)/(a+b)` (Π½Π° ΡΠΈΡ. 28 ΠΎΡΡΠ΅Π·ΠΎΠΊ `MN`).
$$ 4.<11>^<β>$$. Π’ΡΠ°ΠΏΠ΅ΡΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΏΠΈΡΠ°ΡΡ Π² ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ ΡΠΎΠ³Π΄Π° ΠΈ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½Π° ΡΠ°Π²Π½ΠΎΠ±ΠΎΠΊΠ°Ρ.
ΠΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ² (ΡΠΌ. ΡΠΈΡ. 29Π° ΠΈ Π±):
`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,
`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (Ρ. ΠΊ. `cos(180^@-varphi)=-cos varphi`).
ΠΡΠΎΠ²ΠΎΠ΄ΠΈΠΌ `CK«|\|«BA` (ΡΠΈΡ. 29Π²), ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ, Π·Π°ΠΌΠ΅Π½ΡΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ Π² (2), ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
`d_1^2+d_2^2=c_1^2+c_2^2+2ab`. |
Π ΡΠ»ΡΡΠ°Π΅ ΡΠ°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ `d_1=d_2`, `c_1=c_2=c`, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ
ΠΡΡΠ΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΠΉ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, ΡΠ°Π²Π΅Π½ `5`, ΠΎΠ΄Π½Π° ΠΈΠ· Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΡΠ°Π²Π½Π° `6`. ΠΠ°ΠΉΡΠΈ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, Π΅ΡΠ»ΠΈ Π΅Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½Ρ.
ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ `ul(BDK)` Ρ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·ΠΎΠΉ `BK=BC+AD=2MN=10` ΠΈ ΠΊΠ°ΡΠ΅ΡΠΎΠΌ `DK=6` ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ»ΠΎΡΠ°Π΄Ρ `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. ΠΠΎ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° `BDK` ΡΠ°Π²Π½Π° ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, Ρ. ΠΊ. Π΅ΡΠ»ΠΈ `DP_|_BK`, ΡΠΎ
ΠΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΡ, ΡΠ°Π·Π±ΠΈΠ²Π°ΡΡ Π΅Ρ Π½Π° ΡΠ΅ΡΡΡΠ΅ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Ρ ΠΎΠ±ΡΠ΅ΠΉ Π²Π΅ΡΡΠΈΠ½ΠΎΠΉ. ΠΠ°ΠΉΡΠΈ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, Π΅ΡΠ»ΠΈ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ², ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΡ ΠΊ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌ, ΡΠ°Π²Π½Ρ `S_1` ΠΈ `S_2`.
ΠΠ°Π»Π΅Π΅, ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ `BOC` ΠΈ `DOA` ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ, ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² ΠΎΡΠ½ΠΎΡΡΡΡΡ ΠΊΠ°ΠΊ ΠΊΠ²Π°Π΄ΡΠ°ΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ ΡΡΠΎΡΠΎΠ½, Π·Π½Π°ΡΠΈΡ, `(S_1)/(S_2)=(a/b)^2`. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.ΠΡΡΡΠ΄Π° Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ `S_0=sqrt(S_1S_2)`, ΠΈ ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½Π°
ΠΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ°Π²Π½Ρ `8` ΠΈ `10`, Π²ΡΡΠΎΡΠ° ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ°Π²Π½Π° `3` (ΡΠΈΡ. 32).
ΠΠ°ΠΉΡΠΈ ΡΠ°Π΄ΠΈΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΠΎΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΠΎΠ»ΠΎ ΡΡΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ.
ΠΠ· ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° `ABK` Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ `AB=sqrt(1+9)=sqrt(10)` ΠΈ `sinA=(BK)/(AB)=3/(sqrt10)`. ΠΠΊΡΡΠΆΠ½ΠΎΡΡΡ, ΠΎΠΏΠΈΡΠ°Π½Π½Π°Ρ ΠΎΠΊΠΎΠ»ΠΎ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ `ABCD`, ΠΎΠΏΠΈΡΠ°Π½Π° ΠΈ ΠΎΠΊΠΎΠ»ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° `ABD`, Π·Π½Π°ΡΠΈΡ (ΡΠΎΡΠΌΡΠ»Π° (1), Β§ 1), `R=(BD)/(2sinA)`. ΠΡΡΠ΅Π·ΠΎΠΊ `BD` Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΠΈΠ· ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (ΠΈΠ»ΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ `d^2=c^2+ab`), ΡΠΎΠ³Π΄Π°
$$ 4.<12>^<β>$$. ΠΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ°Π²Π½Π° ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, Π΄Π²Π΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ°Π²Π½Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡΠΌ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, Π° ΡΡΠ΅ΡΡΡ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ.
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΎ ΠΎΡΡΠ΅Π·ΠΎΠΊ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΠΉ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅, ΡΡΠΎ ΠΎΡΡΠ΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΠΉ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, Π΄Π΅Π»ΠΈΡ Π΅Ρ Π½Π° Π΄Π²Π΅ ΡΠ°Π²Π½ΡΠ΅ ΠΏΠΎ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΠ°ΡΡΠΈ.
ΠΡΡΡΡ ABCD β ΡΡΠ°ΠΏΠ΅ΡΠΈΡ, M ΠΈ N β ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ AD ΠΈ BC ΡΠΎΠΎΡΠ²Π΅ΡΠ²Π΅Π½Π½ΠΎ.
ΠΡΡΡΡ AM = MD = a ΠΈ BN = NC = b, Π° h β Π²ΡΡΠΎΡΠ° ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ. Π’ΠΎΠ³Π΄Π° ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΡΠ°ΡΡΠ΅ΠΉ, Π½Π° ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΡΡΠ΅Π·ΠΎΠΊ MN Π΄Π΅Π»ΠΈΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΡ, ΡΠ°Π²Π½Π° ΡΠΎ Π΅ΡΡΡ, ΡΡΠΈ ΡΠ°ΡΡΠΈ ΡΠ°Π²Π½ΠΎΠ²Π΅Π»ΠΈΠΊΠΈ.
ΠΡΠΈΠ²Π΅Π΄Π΅ΠΌ Π΄ΡΡΠ³ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅.
ΠΡΡΡΡ β Π΄Π»ΠΈΠ½Π° Π²ΡΡΠΎΡΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ. ΠΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°
ΡΠ°Π²Π½Π° ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°
ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π²ΡΡΠΎΡΡ, ΠΏΡΠΎΠ²Π΅Π΄ΡΠ½Π½ΡΠ΅ ΠΊ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌ
ΠΈ
ΡΠ°Π²Π½Ρ, Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ
ΠΈ
ΡΠ°Π²Π½Ρ. ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΡΠ°Π²Π½Ρ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ²
ΠΈ
ΠΠΎΠΊΠ°ΠΆΠ΅ΠΌ, ΡΡΠΎ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΠ΅ΡΡΡΡΡ
ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ²
ΠΈ
ΡΠ°Π²Π½Ρ:
Π’ΡΠ°ΠΏΠ΅ΡΠΈΡ
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ
Π’ΡΠ°ΠΏΠ΅ΡΠΈΡ β ΡΡΠΎ Π²ΡΠΏΡΠΊΠ»ΡΠΉ ΡΠ΅ΡΡΡΠ΅Ρ ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ, Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π΄Π²Π΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ, Π° Π΄Π²Π΅ Π΄ΡΡΠ³ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ Π½Π΅ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ.
ΠΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ Π΅Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌΠΈ, Π° Π΄Π²Π΅ Π΄ΡΡΠ³ΠΈΠ΅ ΡΡΠΎΡΠΎΠ½Ρ β Π±ΠΎΠΊΠΎΠ²ΡΠΌΠΈ ΡΡΠΎΡΠΎΠ½Π°ΠΌΠΈ.
ΠΡΡΠΎΡΠ° ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ β ΡΡΠΎ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡ, ΠΎΠΏΡΡΠ΅Π½Π½ΡΠΉ ΠΈΠ· Π»ΡΠ±ΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΠΊ Π΄ΡΡΠ³ΠΎΠΌΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ.
Π’Π΅ΠΎΡΠ΅ΠΌΡ: ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ
2) ΠΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Π΄Π΅Π»ΡΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΡ Π½Π° ΡΠ΅ΡΡΡΠ΅ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, Π΄Π²Π° ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ, Π° Π΄Π²Π° Π΄ΡΡΠ³ΠΈΠ΅ β ΡΠ°Π²Π½ΠΎΠ²Π΅Π»ΠΈΠΊΠΈ.
ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅
Π‘ΡΠ΅Π΄Π½ΡΡ Π»ΠΈΠ½ΠΈΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ β ΠΎΡΡΠ΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΠΉ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½.
Π’Π΅ΠΎΡΠ΅ΠΌΠ°
Π‘ΡΠ΅Π΄Π½ΡΡ Π»ΠΈΠ½ΠΈΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌ ΠΈ ΡΠ°Π²Π½Π° ΠΈΡ ΠΏΠΎΠ»ΡΡΡΠΌΠΌΠ΅.
ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ*
Π‘ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎΠΌ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΡΡΡ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΡΡΡΡ ΠΏΠΎΡΠ»Π΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΌΡ βΠΠΎΠ΄ΠΎΠ±ΠΈΠ΅ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ²β.
1) ΠΠΎΠΊΠ°ΠΆΠ΅ΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΡΡΡ.
\[MN=MM’+M’N’+N’N=\dfrac12 AB’+B’C’+\dfrac12 C’D=\] \[=\dfrac12 \left(AB’+B’C’+BC+C’D\right)=\dfrac12\left(AD+BC\right)\]
Π’Π΅ΠΎΡΠ΅ΠΌΠ°: ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ
Π‘Π΅ΡΠ΅Π΄ΠΈΠ½Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ, ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΠΈ ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠΉ Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½ Π»Π΅ΠΆΠ°Ρ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ.
ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ*
Π‘ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎΠΌ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΡΡΡ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΡΡΡΡ ΠΏΠΎΡΠ»Π΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΌΡ βΠΠΎΠ΄ΠΎΠ±ΠΈΠ΅ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ²β.
2) ΠΠΎΠΊΠ°ΠΆΠ΅ΠΌ, ΡΡΠΎ ΡΠΎΡΠΊΠΈ \(N, O, M\) Π»Π΅ΠΆΠ°Ρ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ.
\(\triangle BNO\sim \triangle DMO\) ΠΏΠΎ Π΄Π²ΡΠΌ ΡΠ³Π»Π°ΠΌ ( \(\angle OBN=\angle ODM\) ΠΊΠ°ΠΊ Π½Π°ΠΊΡΠ΅ΡΡ Π»Π΅ΠΆΠ°ΡΠΈΠ΅ ΠΏΡΠΈ \(BC\parallel AD\) ΠΈ \(BD\) ΡΠ΅ΠΊΡΡΠ΅ΠΉ; \(\angle BON=\angle DOM\) ΠΊΠ°ΠΊ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅). ΠΠ½Π°ΡΠΈΡ: \[\dfrac
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ
Π’ΡΠ°ΠΏΠ΅ΡΠΈΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΉ, Π΅ΡΠ»ΠΈ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π΅Π΅ ΡΠ³Π»ΠΎΠ² β ΠΏΡΡΠΌΠΎΠΉ.
Π’ΡΠ°ΠΏΠ΅ΡΠΈΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠΉ, Π΅ΡΠ»ΠΈ Π΅Π΅ Π±ΠΎΠΊΠΎΠ²ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π²Π½Ρ.
Π’Π΅ΠΎΡΠ΅ΠΌΡ: ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ
1) Π£ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ³Π»Ρ ΠΏΡΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°Π²Π½Ρ.
2) ΠΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ°Π²Π½Ρ.
3) ΠΠ²Π° ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΡΠ΅ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡΠΌΠΈ ΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ, ΡΠ²Π»ΡΡΡΡΡ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΡΠΌΠΈ.
ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ
2)
Π’Π΅ΠΎΡΠ΅ΠΌΡ: ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ
1) ΠΡΠ»ΠΈ Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ³Π»Ρ ΠΏΡΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°Π²Π½Ρ, ΡΠΎ ΠΎΠ½Π° ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½Π°Ρ.
2) ΠΡΠ»ΠΈ Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΡΠ°Π²Π½Ρ, ΡΠΎ ΠΎΠ½Π° ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½Π°Ρ.
ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΎ ΠΎΡΡΠ΅Π·ΠΎΠΊ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΠΉ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ
ΠΠ°Π΄Π°Π½ΠΈΠ΅ 16. ΠΡΡΠ΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΠΉ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ Π ΠΈ N ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΠΠ‘ ΠΈ AD ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ABCD, ΡΠ°Π·Π±ΠΈΠ²Π°Π΅Ρ Π΅Ρ Π½Π° Π΄Π²Π΅ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, Π² ΠΊΠ°ΠΆΠ΄ΡΡ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΏΠΈΡΠ°ΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ.
Π°) ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅, ΡΡΠΎ ΡΡΠ°ΠΏΠ΅ΡΠΈΡ ABCD ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½Π°Ρ.
Π±) ΠΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ ΡΠ°Π΄ΠΈΡΡ ΡΡΠΈΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠ΅ΠΉ ΡΠ°Π²Π΅Π½ 4, Π° ΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΠ‘ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ°Π²Π½ΠΎ 14. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠ°Π΄ΠΈΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΠΊΠ°ΡΠ°ΡΡΠ΅ΠΉΡΡ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ ΠΠ, ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ AN ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ABMN ΠΈ Π²ΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ Π² Π½Π΅Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
Π°) ΠΠ°Π½Π° ΡΡΠ°ΠΏΠ΅ΡΠΈΡ ABCD, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ M β ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π° BC, Π° N β ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π° AD (ΡΠΌ. ΡΠΈΡΡΠ½ΠΎΠΊ Π½ΠΈΠΆΠ΅). Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ,
ΠΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ Π·Π°Π΄Π°Π½ΠΈΡ Π² ΡΡΠ°ΠΏΠ΅ΡΠΈΡ ABMN ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΏΠΈΡΠ°ΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ, Π·Π½Π°ΡΠΈΡ, ΡΡΠΌΠΌΡ Π΅Π΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΡ ΡΡΠΎΡΠΎΠ½ ΡΠ°Π²Π½Ρ:
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ Π΄Π»Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ MCDN:
ΠΡΠΈΡΠ°Π²Π½ΠΈΠ²Π°Π΅ΠΌ Π΄Π²Π° Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ MN, ΠΈΠΌΠ΅Π΅ΠΌ:
ΠΈ, ΡΡΠΈΡΡΠ²Π°Ρ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ (1), ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
ΠΠΎΠ»ΡΡΠ°Π΅ΠΌ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½, Π·Π½Π°ΡΠΈΡ, ΡΡΠ°ΠΏΠ΅ΡΠΈΡ ABCD β ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½Π°Ρ.
Π±) Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠ°Π΄ΠΈΡΡ Π²ΠΏΠΈΡΠ°Π½Π½ΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠ΅ΠΉ ΡΠ°Π²Π΅Π½ 4, Π·Π½Π°ΡΠΈΡ, Π²ΡΡΠΎΡΠ° ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ MN=2β4=8. Π’Π°ΠΊΠΆΠ΅ ΠΏΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ Π΄Π°Π½Π° Π΄Π»ΠΈΠ½Π° BC=14 ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, BM=BC:2=14:2=7. ΠΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ BF ΡΠ΅ΡΠ΅Π· x (ΡΠΌ. ΡΠΈΡΡΠ½ΠΎΠΊ Π½ΠΈΠΆΠ΅). Π’ΠΎΠ³Π΄Π° BM1=x ΠΊΠ°ΠΊ ΠΎΡΡΠ΅Π·ΠΊΠΈ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ .
ΠΠΎΠ»ΡΡΠ°Π΅ΠΌ, ΡΡΠΎ M1M=7-x, ΠΏΠΎΡΡΠΎΠΌΡ ΠΈ MZ=7-x,
ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, N1N=x+1 (ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΠΎΡΡΠ΅Π·ΠΊΠΈ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ ΡΠ°Π²Π½Ρ). Π’Π°ΠΊ ΠΊΠ°ΠΊ MZ=ZN (ΡΠ°Π΄ΠΈΡΡ O1Z Π²ΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π±ΡΠ΄Π΅Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»Π΅Π½ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡΠΌ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ), ΠΈΠΌΠ΅Π΅ΠΌ:
ΠΠ½Π°ΡΠΈΡ, BF=BM1 = 3. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ BO1A (ΠΎΠ½ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ AO1 ΠΈ BO1 β Π±ΠΈΡΡΠ΅ΠΊΡΡΠΈΡΡ, Π° , ΠΏΠΎΡΡΠΎΠΌΡ
). ΠΠ²Π°Π΄ΡΠ°Ρ Π²ΡΡΠΎΡΡ OF1, ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΠΈΠ· ΠΏΡΡΠΌΠΎΠ³ΠΎ ΡΠ³Π»Π°, ΡΠ°Π²Π΅Π½:
ΠΈ ΠΏΠΎ ΡΠ΅ΠΎΡΠ΅ΠΌΠ΅ ΠΠΈΡΠ°Π³ΠΎΡΠ°
ΠΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ ΡΠ°Π΄ΠΈΡΡ ΠΌΠ°Π»ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ AO=y, ΡΠΎΠ³Π΄Π°
Π£ΡΠΈΡΡΠ²Π°Ρ, ΡΡΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ AFO1 ΠΈ AYO ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ ΠΏΠΎ Π΄Π²ΡΠΌ ΡΠ³Π»Π°ΠΌ, ΠΌΠΎΠΆΠ΅ΠΌ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅:
ΠΠ°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ
ΠΠ°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ
Π’ΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΡ Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΠΈ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ Π»Π΅ΠΆΠ°Ρ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ.
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²Π° ΡΡΠΎΠ³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π°. ΠΠ°Π΄ΠΎ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ ΡΠ΅ΡΡΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π»Π΅ΠΆΠ°Ρ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ. ΠΡΡΠΌΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΡΠ΅ΡΠ΅Π· Π»ΡΠ±ΡΠ΅ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ. ΠΡΠ±ΠΈΡΠ°ΡΡ Π΄Π²Π΅ Π»ΡΠ±ΡΠ΅ ΡΠΎΡΠΊΠΈ ΠΈΠ· ΡΠ΅ΡΡΡΡΡ , ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡ ΡΠ΅ΡΠ΅Π· Π½ΠΈΡ ΠΏΡΡΠΌΡΡ ΠΈ Π΄ΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ, ΡΡΠΎ Π΄Π²Π΅ Π΄ΡΡΠ³ΠΈΠ΅ ΡΠΎΡΠΊΠΈ ΡΠ°ΠΊΠΆΠ΅ Π»Π΅ΠΆΠ°Ρ Π½Π° ΡΡΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ.
Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΠΌ ΡΡΠΎ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΠΈΠ½Π°ΡΠ΅:
ΠΡΡΠΌΠ°Ρ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ°Ρ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΠΈ ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΡ Π΅Ρ Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½, Π΄Π΅Π»ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ.
ΠΠ°Π½ΠΎ:
ABCD- ΡΡΠ°ΠΏΠ΅ΡΠΈΡ, AD||BC,
ΠΠΎΠΊΠ°Π·Π°ΡΡ: K- ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π° AD,
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ AOK ΠΈ COP.
β OAK=β OCP (ΠΊΠ°ΠΊ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΠ΅ Π½Π°ΠΊΡΠ΅ΡΡ Π»Π΅ΠΆΠ°ΡΠΈΠ΅ ΠΏΡΠΈ AD||BC ΠΈ ΡΠ΅ΠΊΡΡΠ΅ΠΉ AC).
ΠΠ½Π°ΡΠΈΡ, ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ AOK ΠΈ COP ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ (ΠΏΠΎ Π΄Π²ΡΠΌ ΡΠ³Π»Π°ΠΌ).
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ, ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ DOK ΠΈ BOP ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ ΠΈ
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΡΠ΅ ΡΠ°ΡΡΠΈ ΡΡΠΈΡ ΡΠ°Π²Π΅Π½ΡΡΠ² ΡΠ°Π²Π½Ρ, ΡΠΎ Π»Π΅Π²ΡΠ΅ ΡΠ°ΠΊΠΆΠ΅ ΡΠ°Π²Π½Ρ:
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ AFK ΠΈ BFP.
β KAF=β PBF (ΠΊΠ°ΠΊ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΏΡΠΈ AD||BC ΠΈ ΡΠ΅ΠΊΡΡΠ΅ΠΉ AF).
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ AFK ΠΈ BFP ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ (ΠΏΠΎ Π΄Π²ΡΠΌ ΡΠ³Π»Π°ΠΌ).
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ, ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ DFK ΠΈ CFP ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ ΠΈ
ΠΡΠ°Π²ΡΠ΅ ΡΠ°ΡΡΠΈ ΡΠ°Π²Π΅Π½ΡΡΠ² ΡΠ°Π²Π½Ρ, ΠΏΡΠΈΡΠ°Π²Π½ΠΈΠ²Π°Π΅ΠΌ Π»Π΅Π²ΡΠ΅ ΡΠ°ΡΡΠΈ:
Π° Π·Π½Π°ΡΠΈΡ, CP=BP, ΡΠΎ Π΅ΡΡΡ P β ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π° BC.
AK=DK, K β ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π° AD.
Π§ΡΠΎ ΠΈ ΡΡΠ΅Π±ΠΎΠ²Π°Π»ΠΎΡΡ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ.
Π Π½Π°ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ Π΄ΠΎΠΊΠ°ΠΆΠ΅ΠΌ, ΡΡΠΎ ΡΠΎΡΠΊΠΈ O ΠΈ P Π»Π΅ΠΆΠ°Ρ Π½Π° ΠΏΡΡΠΌΠΎΠΉ FK.
FK β ΠΌΠ΅Π΄ΠΈΠ°Π½Π° ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° AFD.
ΠΡΠΎΠ²Π΅Π΄ΡΠΌ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΡ O ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΠΎΡΡΠ΅Π·ΠΎΠΊ QL Ρ ΠΊΠΎΠ½ΡΠ°ΠΌΠΈ Π½Π° Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½Π°Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ.
BC||AD (ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ), QL||AD (ΠΏΠΎ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ).
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΌΠ΅Π΄ΠΈΠ°Π½Π°, ΠΏΡΠΎΠ²Π΅Π΄ΡΠ½Π½Π°Ρ ΠΊ ΡΡΠΎΡΠΎΠ½Π΅ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, Π΄Π΅Π»ΠΈΡ ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ Π»ΡΠ±ΠΎΠΉ ΠΎΡΡΠ΅Π·ΠΎΠΊ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΉ ΡΡΠΎΠΉ ΡΡΠΎΡΠΎΠ½Π΅, Ρ ΠΊΠΎΠ½ΡΠ°ΠΌΠΈ Π½Π° Π΄Π²ΡΡ Π΄ΡΡΠ³ΠΈΡ ΡΡΠΎΡΠΎΠ½Π°Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΡΠΎ ΡΠΎΡΠΊΠΈ P ΠΈ O Π»Π΅ΠΆΠ°Ρ ΠΏΡΡΠΌΠΎΠΉ FK.
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΌΠ΅Π΄ΠΈΠ°Π½Π° FK, ΠΏΡΠΎΠ²Π΅Π΄ΡΠ½Π½Π°Ρ ΠΊ AD, Π΄Π΅Π»ΠΈΡ ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ Π»ΡΠ±ΠΎΠΉ ΠΎΡΡΠ΅Π·ΠΎΠΊ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΉ AD, Ρ ΠΊΠΎΠ½ΡΠ°ΠΌΠΈ Π½Π° ΡΡΠΎΡΠΎΠ½Π°Ρ AF ΠΈ DF, ΡΠΎ ΡΡΠ΅Π΄Π½ΡΡ Π»ΠΈΠ½ΠΈΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΠΎΠ½Π° ΡΠ°ΠΊΠΆΠ΅ Π΄Π΅Π»ΠΈΡ ΠΏΠΎΠΏΠΎΠ»Π°ΠΌ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π·Π°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΡ:
Π’ΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΡ Π±ΠΎΠΊΠΎΠ²ΡΡ ΡΡΠΎΡΠΎΠ½ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΠΈ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π° ΡΡΠ΅Π΄Π½Π΅ΠΉ Π»ΠΈΠ½ΠΈΠΈ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ Π»Π΅ΠΆΠ°Ρ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ.