Допущение об однородности материала предполагает что

Тема 2.1 Основные понятия и допущения

Элементы сооружений отличаются друг от друга формами, размерами, материалом, функциональным назначением, рядом специальных требований. При этом следует отметить, что все без исключения элементы как искусственного, так и естественного происхождения обладают такими свойствами, как прочность и жесткость, то есть способностью, не разрушаясь воспринимать различные нагрузки и сопротивляться изменению своих первоначальных форм и размеров, без чего не может нормально функционировать сооружение. Цель расчетов в сопротивлении материалов – создание прочных, устойчивых, обладающих достаточной жесткостью, долговечностью и вместе с тем экономичных элементов сооружений

Например, конструкции стропильной фермы, междуэтажных перекрытий зданий должны выдерживать нагрузки от атмосферных воздействий, оборудования и людей и обладать достаточной жесткостью, обеспечивающей ограничение прогибов для создания нормальных условий функционирования сооружения.

Рис. 1. Характер деформирования и разрушения стержня под нагрузкой:

а) – элемент до нагружения; б) – деформация стержня при изгибе; в) – вид излома элемента при изгибе; г) – изгиб стержня при сжатии

Прочностные и жесткостные качества элементов сооружений зависят от многих факторов: материала, размеров, характера возникающих деформаций и др. Металлические конструкции обладают большей прочностью и жесткостью, чем аналогичные деревянные конструкции. Стержень из одного и того же материала, имеющий большие поперечные размеры, более прочный и жесткий, при этом его легче разрушить, изгибая, чем растягивая. Тонкий стержень при его сжатии разрушается в результате выпучивания в поперечном направлении, в то же время это явление отсутствует при продольном растяжении и для разрушения стержня требуется значительно большая нагрузка.

Например, возьмем деревянный брусок (рис.1, а). Начнем сгибать стержень. Чем сильнее мы будем прикладывать усилия, тем больше он изогнется (рис.1 б), и при какой то величине усилий сломается (рис.1, в). Подведя итог можно утверждать, что всякое реальное тело под воздействием сил меняет свою форму и размеры, т. е. деформируется. Деформации обуславливают появление внутри элемента сил сопротивления. Если внешние силы больше сил сопротивления, происходит разрушение элемента сооружения.

При возрастании нагрузки выше определенных значений в теле наряду с упругими будут возникать деформации не исчезающие после снятия нагрузки. Такие деформации называются остаточными. Возникновение остаточных деформаций, наравне с разрушением связано с нарушением нормальной работы конструкции и, как правило, недопустимо.

Способность конструкции воспринимать заданную нагрузку, не разрушаясь и без остаточных деформаций, называют прочностью.

Все элементы сооружения, из каких бы материалов они ни были изготовлены, под нагрузкой деформируются. Однако значительные деформации могут мешать нормальной эксплуатации сооружения.

Способность сооружений и ее частей под нагрузкой сохранять свои размеры и форму в установленных нормами пределах называется жесткостью.

Рассмотрим еще один пример. Будем сжимать тонкий и длинный стержень (тот же деревянный брусок). Уже при незначительной силе стержень изогнется, как показано на рис.1, г. В этом случае первоначальная форма прямолинейная форма равновесия стержня становится неустойчивой.

Способность конструкции, и ее частей, сохранять под нагрузкой первоначальную форму упругого равновесия называется устойчивостью. Обычно потеря устойчивости сопровождается мгновенным изменением формы элемента и разрушением конструкции.

Методами сопротивления материалов выполняются расчеты, на основании кото­рых определяются необходимые размеры деталей машин и конструкций инженерных сооружений. Любая конструкция должна обладать надежностью при эксплуатации и быть экономичной.

Надежность – свойство конструкции выполнять заданные функции, сохраняя свои эксплуатационные показатели в определенных нормативных пределах в течение требуемого промежутка времени.

В сопротивлении материалов широко применяются методы теоретической механики и математического анализа, используются данные из разделов физики, изучающих свойства различных материалов, материаловедения и других наук. К тому же сопротивление материалов является наукой экспериментально-теоретической, так как она широко использует опытные данные и теоретические исследования.

ЗАДАНИЕ:

Что изучает раздел «Сопротивление материалов»?

Выписать определения: прочность, жесткость, устойчивость, надежность и экономичность.

§2. Реальный объект и расчетная схема

При выборе расчетной схемы вводятся упрощения (схематизация) реального объекта, т.е. отбросить все те факторы, которые не могут сколько-нибудь заметным образом повлиять на работу системы в целом.

Такого рода упрощения задачи совершенно необходимы, так как решение с полным учетом всех свойств реального объекта является принципиально невозможным в силу их очевидной неисчерпаемости.

Основным упрощающим приемом в сопротивлении материалов является приведение геометрической формы тела к схемам бруса (стержня), оболочки или пластины. Как известно, любое тело в пространстве характеризуется тремя измерениями.

Рис. 2. Прямой брус (стержень) постоянного сечения

ЗАДАНИЕ:

У казать чем отличается расчетная схема от реального объекта.

Начертить стержень, изобразив его ось и поперечное сечение, записать определение стержня.

§3. Связи и опорные устройства

Для соединения отдельных частей конструкции между собой и передачи внешней нагрузки на основание на нее накладываются связи , ограничивающие перемещения тех точек сооружения, к которым они приложены. Связи могут ограничивать либо повороты точек сооружения, либо их линейные смещения, либо и то и другое.

Основным видом связей в расчетной схеме является шарнирная связь.

Все опорные связи условно делятся на три основных типа:

— Подвижная шарнирная опора (рис.3, а). Такая опора не препятствует вращению конца бруса и его перемещению вдоль плоскости качения. В ней может возникать только одна реакция, которая перпендикулярна плоскости качения и проходит через ось катка (R).

— Жесткая заделка или защемление (рис.3, в). Такое закрепление не допускает ни линейных, ни угловых перемещений опорного сечения. В этой опоре в общем случае может возникать реакция, которую обычно раскладывают на две составляющие (H и R) и момент защемления (М).

При рассмотрении реального объекта в число внешних сил включаются не только заданные нагрузки, но и реакции связей (опор), дополняющие систему сил до равновесного состояния.

§4. Внешние и внутренние силы. Метод сечений

Поверхностные силы приложены к участкам поверхности и являются результатом непосредственного контактного взаимодействия рас­сматриваемого объекта с окружающими телами (давление ветра, воды на стенку).

В зависимости от соотношения площади приложения нагрузки и общей площади поверхности рассматриваемого тела, поверхностные нагрузки подразделяются на сосредоточенные и распределенные.

Динамические нагрузки также подразделяются на периодические и случайные нагрузки. К случайным нагрузкам относятся нагрузки, действующие на детали автомобилей, тракторов, станков, а также нагрузки, действующие на сооружения (дома, мачты, краны и т.п.) от давления ветра, снега и т.п.

Временная нагрузка может сохранять более или менее постоянную величину в течение всего периода ее действия, а может непрерывно изменяться по некоторому закону; в последнем случае она называется переменной нагрузкой.

По отношению к выбранному материальному телу (элементу конструкции) все действующие силы подразделяются на внешние и внутренние силы. Под внешними силами (нагрузками) понимаются силы взаимодействия данного материального тела со всеми другими окружающими его телами.

Взаимодействие между частями рассматриваемого тела характеризуется внутренними силами , которые возникают внутри тела под действием внешних нагрузок и определяются силами межмолекулярного воздействия. Эти силы сопротивляются стремлению внешних сил разрушить элемент конструкции, изменить его форму, отделить одну часть от другой. Вообще внутренние силы возникают между всеми смежными частицами тела при нагружении.

ЗАДАНИЕ:

Составить таблицу «Виды нагрузок», в таблице дать характеристику каждому виду нагрузки.

Рис.4. Внутренние силовые факторы, возникающие при действии нагрузки

В зависимости от вида внутренних силовых факторов, возникающих в сечении, различают различные следующие виды нагружения бруса:

— Растяжение или сжатие. Действует только продольная сила N.

— Кручение. Действует только крутящий момент T.

— Сдвиг. Действует только поперечная сила Q x или Q y

— Изгиб. Действует только изгибающий момент M x или M y (чистый изгиб), при действии изгибающего момента и поперечной силы (поперечный изгиб).

— Сложное сопротивление. Одновременное действие нескольких силовых факторов. Например, M x и T, M и N.

Итак, внутренние усилия в сечении есть функции параметров, определяющих положение сечения в теле, и нагрузок по одну сторону от сечения. Эти функции могут быть представлены аналитически или графически. График, показывающий изменение внутреннего усилия в зависимости от положения сечения, называется эпюрой . Ординаты усилий в определенном масштабе откладывают от линии, соответствующей оси бруса.

ЗАДАНИЕ:

Начертить внутренние силовые факторы стержня(рис. 4), дать пояснение каждому символу на этой схеме и указать вид нагружения при котором возникают N , Q y и Q z , Т , M z и М у .

§5. Допущения, применяемые в сопротивлении материалов

Для построения теории сопротивления материалов принимают некоторые понятия и допущения относительно структуры и свойств материалов, а также о характере деформаций. Приведем основные из них.

1. В сопротивлении материалов принято рассматривать все материалы как однородную сплошную среду, независимо от их микроструктуры. Под однородностью материала понимают независимость его свойств от величины выделенного из тела объема. И хотя в действительности реальный материал, как правило, неоднороден (уже в силу его молекулярного строения), тем не менее, указанная особенность не является существенной, поскольку в сопротивлении материалов рассматриваются конструкции, размеры которых существенно превышают не только межатомные расстояния, но и размеры кристаллических зерен.

Металлы и сплавы, как правило, изотропны, так как большинство металлов имеет мелкозернистую структуру. Благодаря большому количеству кристаллов свойства материалов выравниваются в различных направлениях и можно считать эти материалы практически изотропными. В настоящее время широкое распространение получили анизотропные композиционные материалы, состоящие из двух компонентов – наполнителя и связующего. Наполнитель состоит из уложенных в определенном порядке высокопрочных нитей – матрицы, что и определяет значительную анизотропию композита. Композиционные материалы имеют высокую прочность при значительно меньшем, чем металлы весе.

Результат воздействия на тело системы сил равен сумме результатов воздействия тех же сил, прилагаемых к телу последовательно и в любом порядке (рис. 6). Под словами «результат воздействия» следует понимать – деформации, внутренние силы и перемещения отдельных точек.

Источник

Допущения и ограничения, принятые в сопротивлении материалов

Реальные строительные материалы, из которых воз­водятся различные здания и сооружения, представляют собой довольно сложные и неоднородные твердые тела, обладающие различными свойствами. Учесть это разно­образие свойств трудно, поэтому в сопротивлении мате­риалов используются не все характеристики твердых тел, а, только общие признаки, присущие всем телам суста­новившимися внутренними связями между ними. Иными словами, в сопротивлении материалов изучается поведе­ние конструкции из идеализированного материала, с со­хранением главных физико-механических характеристик.

1.1 Допущение о непрерывном (сплошном) строении материала.По этому допущению принимается, что весь объем любого элемента конструкции заполнен вещест­вом без каких-либо пустот, т. е. не учитывается действи­тельная дискретная атомистическая структура материа­лов. Это допущение позволяет выделять из любой части сооружения бесконечно малый элемент и, приписывая ему свойства материала всего сооружения, пользоваться при исследовании напряженно-деформированного состояния математическими методами анализа бесконечно малых величин.

2. Допущение о ненапряженном состоянии тела.Со­гласно этому допущению, в материале элемента до его нагружения нет никаких напряжений, т. е. действитель­ные (начальные) напряжения, характер и величина ко­торых зависят от причин возникновения, принимаются равными нулю. Иными словами, возникающие напряже­ния врезультате нагружения тела внешними силами принимаются за фактические напряжения в то время как они в действительности составляют лишь прирост напря­жение, вызванных этими силами.

3.Допущение об однородности материала. Согласно этому допущению принимается, что материал во всех точках любого объема имеет одинаковые физико-механи­ческие характеристики.

4.Допущение об изотропности материала. Согласно этому допущению, материал в любой точке и по всем на­правлениям, проведенным через эту точку, имеет одина­ковые физико-механические характеристики. Реальные материалы не являются абсолютно изотропными. Напри­мер, у технических сплавов стали физико-механические характеристики не одинаковы по разным направлениям, что обусловлено ее структурой и условиями обработки, но этими различиями обычно пренебрегают и считают сплавы стали изотропными. Если различия характерис­тик материала в разных направлениях будут значитель­ными, то такие конструкции следует рассчитывать по теории анизотропных тел. В данном случае материал наделяется свойствами абсолютной изотропии.

5.Допущение об идеальной упругости материала. Со­гласно этому допущению предполагается, что материал обладает способностью полностью восстанавливать свою первоначальную форму и размеры тела после устранения причин, вызвавших его деформацию. Деформация иде­ально упругого тела зависит лишь от тех нагрузок, ко­торые в данный момент действуют на тело и не зависят от того, каковы были нагрузки в предшествовавшие мо­менты времени. Данная гипотеза применима только при напряжениях, не превышающих предела упругости мате­риала.

6.Допущение о линейной зависимости между напря­жение и деформациями. Согласно этому допущению, упругое тело наделяется наиболее простой, а именно ли­нейной зависимостью между напряжениями и деформа­циями в данной точке, которая носит название закона Гука. Для такого материала диаграмма растяжения-сжатия, построенная в координатах «напряжение-де­формация», имеет вид наклонной прямой линии, прохо­дящей через начало координат. Для реальных материа­лов диаграмма имеет нелинейный характер, но на начальном этапе нагружения при сравнительно неболь­ших напряжениях, соответствующих действительной работе материала в конструкции, диаграмму с неболь­шой кривизной заменяют прямолинейной зависимостью Таким образом, в сопротивлении материалов закон Гука применим при напряжениях, не превосходящих некото­рого предела, называемого пределом пропорционально­сти. Если же исследуется поведение конструкции за пре­делом пропорциональности или же криволинейность диаграммы значительна, то расчеты проводят по физи­чески нелинейной теории.

7. Допущение о малости перемещений по сравнению с геометрическими размерами элементов сооружений. Со­гласно этому допущению, не учитываются изменения геометрических размеров элементов и местоположения нагрузок из-за искривления, растяжения, сжатия и сдви­га после приложения к ним внешних сил. Поскольку в со­противлении материалов исследуются элементы в виде бруса, то сравнение перемещений производится с его длиной. Таким образом, реакции и внутренние силовые факторы определяются по заданной, начальной геомет­рии, что значительно упрощает расчет, так как все урав­нения приобретают линейный вид. В тех же случаях, когда перемещения сравнимы с длинами элементов, рас­чет следует производить по деформированной схеме, пользуясь геометрически нелинейной теорией.

8. Следствием трех последних допущений об идеаль­ной упругости материала, линейной зависимости между напряжениями и деформациями и малости перемещений является принцип независимости действия сил или прин­цип суперпозиции.

Согласно этому принципу, эффект от действия суммы сил равен сумме эффектов действия каждой силы от­дельно. Иными словами, в сопротивлении материалов можно вычислять реакции, внутренние силовые факто­ры, напряжения и перемещения как алгебраическую сум­му этих факторов от раздельного действия внешних сил независимо от порядка их приложения к жен­жению.

9. Гипотеза плоских сечений (гипотеза Бернулли). Со­гласно этой гипотезе, поперечное сечение элемента (бал­ки, стержня), плоское и перпендикулярное к его оси до приложения к элементу внешних сил, остается плоским и перпендикулярным к оси и после приложения к эле­менту нагрузок.

10. Гипотеза Сен-Венана. Согласно этой гипотезе, в достаточно удаленных точках элемента от места приложения нагрузки внутренние силовые факторы весьма мало зависят от способа приложения этой нагрузки.

Источник

Гипотезы и допущения в сопромате

Гипотеза сплошности и однородности

Материал представляет собой однородную сплошную среду; свойства материала во всех точках тела одинаковы и не зависят от размеров тела. Атомистическая теория дискретного строения вещества во внимание не принимается. Гипотеза позволяет не учитывать особенности кристаллической структуры металла, разный химический состав и прочностные свойства связующего и наполнителей в пластмассах, бетонах (щебень, песок, цемент), наличие сучков в древесине.

Гипотеза об изотропности материала

Физико-механические свойства материала одинаковы по всем направлениям. В некоторых случаях предположение об изотропии неприемлемо, материал является анизотропным. Так, анизотропными являются древесина, свойства которой вдоль и поперек волокон различны, а также армированные (композиционные) материалы.

Гипотеза об идеальной упругости материала

Тело способно восстанавливать свою первоначальную форму и размеры после устранения причин, вызвавших его деформацию.

Гипотеза о пропорциональности между нагрузками и деформациями

Перемещения точек конструкции в упругой стадии работы материала прямо пропорциональны силам, вызывающим эти перемещения (справедлив закон Гука). В действительности реальные тела можно считать упругими только до определенных величин нагрузок, и это необходимо учитывать, применяя формулы сопротивления материалов.

Гипотеза Бернулли (гипотеза плоских сечений)

Поперечные сечения, плоские и нормальные к оси стержня до приложения к нему нагрузки, остаются плоскими и нормальными к его оси в деформированном состоянии; при изгибе сечения поворачиваются не искривляясь.

Принцип Сен-Венана

В сечениях, достаточно удаленных от мест приложения нагрузки, деформация тела не зависит от конкретного способа нагружения и определяется только статическим эквивалентом нагрузки. Резко выраженная неравномерность распределения напряжений по сечению 2-2, показанная на рисунке, постепенно выравнивается (сечение
3-3) и на удалении, равном ширине сечения (сечения 4-4 и 5-5), исчезает.

Допущение об однородности материала предполагает что. Смотреть фото Допущение об однородности материала предполагает что. Смотреть картинку Допущение об однородности материала предполагает что. Картинка про Допущение об однородности материала предполагает что. Фото Допущение об однородности материала предполагает что

Рис. 1.1. Распределение нормальных напряжений в поперечных сечениях стержня при растяжении сосредоточенной силой

Принцип Д’Аламбера

Если к активным силам, действующим на точки механической системы, и реакциям наложенных связей присоединить силы инерции, то получится уравновешенная система сил. Принцип используется в расчетах на прочность при динамическом действии сил.

Принцип независимости действия сил (принцип суперпозиции)

Результат воздействия нескольких внешних факторов равен сумме результатов воздействия каждого из них, прикладываемого в отдельности, и не зависит от последовательности их приложения. Это же справедливо и в отношении деформаций.

Принцип начальных размеров (гипотеза о малости деформаций)

Деформации в точках тела настолько малы по сравнению с размерами деформируемого тела, что не оказывают существенного влияния на взаимное расположение нагрузок, приложенных к телу. Допущение применяют при составлении условий статики, считая тело абсолютно твердым.

Допущение об отсутствии начальных внутренних усилий в теле до приложения нагрузки

Почти во всех реальных деталях и элементах конструкций указанное допущение полностью не выполняется. Внутренние напряжения возникают в деревянных конструкциях вследствие неравномерного высыхания; в стальных и чугунных отливках – вследствие неравномерного охлаждения; в стальных деталях – вследствие термической (закалка…) и механической (шлифование…) обработок. Формирование колесных пар для железнодорожных вагонов осуществляют путем запрессовки колес на ось. За счет натяга создаются напряжения в ступице колеса и подступичной части оси.

Замечание о точности расчетов в сопромате и округлениях результатов.

Источник

Техническая механика

Сопротивление материалов

Основные положения сопромата

Допущение об однородности материала предполагает что. Смотреть фото Допущение об однородности материала предполагает что. Смотреть картинку Допущение об однородности материала предполагает что. Картинка про Допущение об однородности материала предполагает что. Фото Допущение об однородности материала предполагает что

Формула для определения нормальных напряжений σ = F/S справедлива только для достаточно удаленных от места приложения внешней нагрузки поперечных сечений стержня. Вблизи места приложения внешней нагрузки, в общем случае нагружения, гипотеза плоских сечений не выполняется, поскольку здесь распределение деформаций и напряжений носит более сложный характер и требует точных методов определения.

Основываясь на этом принципе, при расчетах принимают, что в местах приложения внешних сил внутренние силы меняются скачкообразно, т. е. вводится понятие локального напряжения, быстро (моментально) убывающего при удалении от места приложения нагрузки. Если же рассматривать на брусе реальный участок приложения внешней нагрузки, то напряжения распределяются в его близлежащих сечениях по сложным закономерностям, тем не менее, они быстро убывают по мере удаления от площадки, к которой приложена нагрузка..

Основные гипотезы и допущения, принимаемые в сопромате.

При практических расчетах различных конструкций способами и методами сопротивления материалов принимают некоторые упрощения, вызванные невозможностью установить влияние некоторых свойств реальных материалов или элементов конструкций.
Так, например, материал любой детали или конструкции не является строго однородными по структуре, поскольку в его объеме присутствуют различные дефекты, не поддающиеся учету и расчету.

По этой причине в большинстве случаев приходится условно принимать, что физические свойства материала по всему его объему остаются постоянными, пренебрегая этими дефектами и реальной неоднородностью.
Такие упрощения в сопромате называют гипотезами и допущениями.

Гипотезы и допущения принимаемые при расчетах

Гипотеза об отсутствии первоначальных внутренних усилий предполагает, что если нет причин, вызывающих деформацию тела (нагрузка, температура и т. п.), то во всех его точках внутренние усилия равны нулю. Таким образом, не принимаются во внимание силы взаимодействия между частицами ненагруженного тела.

Допущение об изотропности материала предполагает, что материал обладает одинаковыми физико-механическими свойствами во всех направлениях. Это допущение хорошо подтверждается практическими исследованиями для таких материалов, как металлы, пластмассы, камень, железобетон.
Но для некоторых материалов может приниматься лишь приближенно, а для таких материалов, как древесина или слюда приниматься не может, поскольку они явно не обладают одинаковыми свойствами в разных направлениях, т. е. анизотропны.

Допущение об идеальной упругости предполагает, что в известных пределах нагружения материал обладает идеальной упругостью, т. е. после снятия нагрузки деформации полностью исчезают.

Гипотезы и допущения, связанные с деформациями элементов конструкций

Допущение об однородности материала предполагает что. Смотреть фото Допущение об однородности материала предполагает что. Смотреть картинку Допущение об однородности материала предполагает что. Картинка про Допущение об однородности материала предполагает что. Фото Допущение об однородности материала предполагает что

Допущение о линейной деформируемости тел предполагает, что перемещения точек и сечений упругого тела в известных пределах нагружения прямо пропорциональны силам, вызывающим эти перемещения (по сути, это допущение характеризует закон Гука, который применим лишь в определенном интервале нагрузок).

Гипотеза о ненадавливании волокон предполагает, что если мысленно представить брус состоящим из бесконечного количества продольных волокон, то эти волокна не оказывают друг на друга силового воздействия (т. е. не давят друг на друга) в определенном интервале нагрузок и деформаций.

Виды нагрузок, возникающих в конструкциях и их элементах

В процессе работы машин и сооружений их узлы, детали и составные элементы воспринимают и передают друг другу различные нагрузки, т. е. силовые воздействия, вызывающие изменения внутренних сил и деформацию узлов, деталей и т. п.

Действующие на элементы конструкций нагрузки бывают массовыми или объемными (сила тяжести, сила инерции), либо поверхностными силами контактного взаимодействия рассматриваемого элемента с соседними элементами или прилегающей к нему средой (пар, жидкость и т. п.).

При расчете конструкций методами сопротивления материалов в число внешних нагрузок включаются реакции связей и силы инерции (при достаточно быстром ускорении).

Виды деформаций, возникающих в конструкциях и их элементах

Основные деформации, возникающие в процессе эксплуатации конструкций:

Растяжение (тросы, цепи, вертикально подвешенные брусья и т. п.).

Сжатие (колонны, кирпичная кладка, пуансоны штампов и т. п.).

Смятие (заклепки, болтовые соединения деталей)

Кручение (валы, передающие мощность при вращательном движении и т. п.).

На практике очень часто элементы конструкций подвергаются действию нагрузок, вызывающих одновременно несколько основных деформаций.

Материалы раздела «Сопротивление материалов»:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *