Е равно мц квадрат что за формула

E = mc²: Самое знаменитое уравнение Эйнштейна

Это гораздо больше, чем взаимосвязь массы-энергии, это ключ к пониманию квантовой Вселенной.

Е равно мц квадрат что за формула. Смотреть фото Е равно мц квадрат что за формула. Смотреть картинку Е равно мц квадрат что за формула. Картинка про Е равно мц квадрат что за формула. Фото Е равно мц квадрат что за формула

Е равно мц квадрат что за формула. Смотреть фото Е равно мц квадрат что за формула. Смотреть картинку Е равно мц квадрат что за формула. Картинка про Е равно мц квадрат что за формула. Фото Е равно мц квадрат что за формула

В течение сотен лет существовал непреложный закон физики, который никогда не оспаривался: при любой реакции, происходящей во Вселенной, масса вещества сохранялась. Независимо от того, что с чем реагирует, масса исходных веществ и масса получившихся будет равна. Но, по законам специальной теории относительности, масса просто не может быть конечной сохраненной величиной, так как разные наблюдатели не соглашались бы с тем, что такое энергия системы. Вместо этого Эйнштейн смог получить закон, который мы используем сегодня, управляемый одним из самых простых, но самых мощных и изящных уравнений из всех существующих:

В самом известном уравнении Эйнштейна есть только три составляющих:

Это уравнение полностью меняет мир. Как выразился сам Эйнштейн:

Из специальной теории относительности следует, что масса и энергия — это одновременно разные проявления одного и того же — несколько необычная концепция для среднего ума.

Е равно мц квадрат что за формула. Смотреть фото Е равно мц квадрат что за формула. Смотреть картинку Е равно мц квадрат что за формула. Картинка про Е равно мц квадрат что за формула. Фото Е равно мц квадрат что за формула

Вот три самых важных по значимости вывода, которые следуют из этого простого уравнения:

Факт эквивалентности массы-энергии привел Эйнштейна к его величайшему достижению: Общей теории относительности. Представьте, что у вас есть частица материи и частица антивещества, каждая из которых имеет одинаковую массу покоя. Вы можете уничтожить их, и они будут производить фотоны определенного количества энергии, точного количества, заданного формулой E=mc². Теперь представьте, что пара частиц/античастиц движется очень быстро, как будто они падают из космоса, а затем самоуничтожаются вблизи поверхности Земли. Эти фотоны теперь будут иметь дополнительную энергию: не только E от E = mc², но и дополнительную E от количества кинетической энергии, которую они получили при падении.

Если мы хотим сохранить энергию, мы должны понять, что гравитационное красное смещение (а также синее смещение) должно быть реальным. Теория всемирного тяготения Ньютона не может объяснить этого, но в Общей теории относительности Эйнштейна кривизна пространства означает, что попадание в гравитационное поле заставляет вас получать энергию, а выход из гравитационного поля заставляет вас терять энергию. Тогда полное и общее отношение для любого движущегося объекта — это не только E=mc², но и E²=m²c⁴+ p²c² (где p — импульс.) Только обобщая вещи, включающие энергию, импульс и гравитацию, мы можем действительно описать Вселенную.

Источник

Спросите Итана №78: почему E = mc2?

Самое знаменитое уравнение Эйнштейна вычисляется более красиво, чем это можно было бы ожидать.

Е равно мц квадрат что за формула. Смотреть фото Е равно мц квадрат что за формула. Смотреть картинку Е равно мц квадрат что за формула. Картинка про Е равно мц квадрат что за формула. Фото Е равно мц квадрат что за формула

Из специальной теории относительности вытекает, что масса и энергия являются разными проявлениями одного и того же – концепция, среднему уму незнакомая.
— Альберт Эйнштейн

Некоторые научные концепции настолько меняют мир и настолько глубоки, что практически каждый знает о них, даже если полностью и не понимает. Почему бы не поработать над этим вместе? Каждую неделю вы отправляете ваши вопросы и предложения, и на этой неделе я выбрал вопрос Марка Лиюва, который спрашивает:

Если бы наша Вселенная не была устроена так, как сейчас, то всё могло бы быть по-другому. Давайте посмотрим, что я имею в виду.

Е равно мц квадрат что за формула. Смотреть фото Е равно мц квадрат что за формула. Смотреть картинку Е равно мц квадрат что за формула. Картинка про Е равно мц квадрат что за формула. Фото Е равно мц квадрат что за формула

С одной стороны, у нас имеются объекты с массой: от галактик, звёзд и планет до самых мелких молекул, атомов и фундаментальных частиц. Хотя они и крохотные, у каждой из компонент того, что известно нам под именем материи, имеется фундаментальное свойство массы, что означает, что даже если исключить его движение, даже если замедлить его до полной остановки, он всё равно будет оказывать влияние на все остальные объекты Вселенной.

Е равно мц квадрат что за формула. Смотреть фото Е равно мц квадрат что за формула. Смотреть картинку Е равно мц квадрат что за формула. Картинка про Е равно мц квадрат что за формула. Фото Е равно мц квадрат что за формула

Конкретно, он оказывает гравитационное притяжение на всё остальное во Вселенной, неважно, на каком расстоянии находится удалённый объект. Он притягивает всё к себе, испытывает притяжение ко всему остальному, а также обладает энергией, присущей самому его существованию.

Последнее утверждение контринтуитивно, поскольку об энергии, по крайней мере, в физике, говорят, как о возможности что-либо сделать – о возможности совершать работу. А что можно сделать, если ты просто сидишь на месте?

Перед тем, как ответить, давайте посмотрим на другую сторону монеты – вещи без массы.

Е равно мц квадрат что за формула. Смотреть фото Е равно мц квадрат что за формула. Смотреть картинку Е равно мц квадрат что за формула. Картинка про Е равно мц квадрат что за формула. Фото Е равно мц квадрат что за формула

С другой стороны, существуют вещи, не имеющие массы – например, свет. У этих частиц есть определённая энергия, и это легко понять, наблюдая их взаимодействие с другими вещами – при поглощении свет передаёт им свою энергию. Свет с достаточной энергией может разогревать материю, добавлять кинетическую энергию (и скорость), вышибать электроны на верхние энергетические уровни или вообще ионизировать, в зависимости от энергии.

Е равно мц квадрат что за формула. Смотреть фото Е равно мц квадрат что за формула. Смотреть картинку Е равно мц квадрат что за формула. Картинка про Е равно мц квадрат что за формула. Фото Е равно мц квадрат что за формула

Более того, количество энергии, содержащейся в безмассовой частице, определяется только её частотой и длиной волны, произведение которых всегда равняется скорости движения частицы: скорости света. Значит, у более длинных волн частоты меньше, и энергия меньше, а у коротких – частоты и энергия выше. Массивную частицу можно замедлить, а попытки отобрать энергию у безмассовой приведут лишь к удлинению её волны, а не к изменению скорости.

Е равно мц квадрат что за формула. Смотреть фото Е равно мц квадрат что за формула. Смотреть картинку Е равно мц квадрат что за формула. Картинка про Е равно мц квадрат что за формула. Фото Е равно мц квадрат что за формула

Е равно мц квадрат что за формула. Смотреть фото Е равно мц квадрат что за формула. Смотреть картинку Е равно мц квадрат что за формула. Картинка про Е равно мц квадрат что за формула. Фото Е равно мц квадрат что за формула

Е равно мц квадрат что за формула. Смотреть фото Е равно мц квадрат что за формула. Смотреть картинку Е равно мц квадрат что за формула. Картинка про Е равно мц квадрат что за формула. Фото Е равно мц квадрат что за формула

Изначально коробочка не двигается, но поскольку фотоны обладают энергией (и импульсом), когда фотон сталкивается с зеркалом с одной стороны коробки и отскакивает, коробка начнёт движение в том направлении, в котором изначально двигался фотон. Когда фотон достигнет другой стороны, он отразится от зеркала с другой стороны, изменяя импульс коробки обратно до нуля. И он продолжит отражаться таким образом, в то время как коробка половину времени будет двигаться в одну сторону, а другую половину – оставаться неподвижной.

В среднем коробка будет двигаться и, следовательно, так как у неё есть масса, будет иметь определённую кинетическую энергию, благодаря энергии фотона. Но важно также помнить про импульс, количество движения объекта. Импульс фотонов связан с их энергией и длиной волны очень просто: чем короче волна и выше энергия, тем выше импульс.

Е равно мц квадрат что за формула. Смотреть фото Е равно мц квадрат что за формула. Смотреть картинку Е равно мц квадрат что за формула. Картинка про Е равно мц квадрат что за формула. Фото Е равно мц квадрат что за формула

Подумаем о том, что это значит, и для этого проведём ещё один эксперимент. Представьте, что происходит, когда изначально двигается только сам фотон. У него будет определённое количество энергии и импульс. Оба свойства должны сохраняться, поэтому в начальный момент энергия фотона определена его длиной волны, а у коробки есть только энергия покоя – какая бы она ни была – и фотон обладает всем импульсом системы, а у коробки импульс нулевой.

Е равно мц квадрат что за формула. Смотреть фото Е равно мц квадрат что за формула. Смотреть картинку Е равно мц квадрат что за формула. Картинка про Е равно мц квадрат что за формула. Фото Е равно мц квадрат что за формула

Затем фотон сталкивается с коробкой и временно поглощается. Импульс и энергия должны сохраняться – это основные законы сохранения Вселенной. Если фотон поглощён, то существует только один способ сохранить импульс – коробка должна двигаться с определённой скоростью в том же направлении, в котором двигался фотон.

Проблема? Нет, это довольно просто решить. Энергия системы коробка/фотон равна массе покоя коробки плюс кинетической энергии коробки плюс энергии фотона. Когда коробка поглощает фотон, большая часть его энергии переходит в увеличение массы коробки. Когда коробка поглотила фотон, её масса меняется (увеличивается) по сравнению с той, что была до столкновения.

Е равно мц квадрат что за формула. Смотреть фото Е равно мц квадрат что за формула. Смотреть картинку Е равно мц квадрат что за формула. Картинка про Е равно мц квадрат что за формула. Фото Е равно мц квадрат что за формула

Источник

Самый простой вывод формулы E=mc2

Представим тело, которое двигается очень близко к скорости света с. Воздействуем на него силой F.

Источник

Учебники

Журнал «Квант»

Общие

Болотовский Б. Простой вывод формулы E = mc 2 //Квант. — 2005. — № 6. — С. 2-7.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Содержание

Введение

Полная и окончательная формулировка современной теории относительности содержится в большой статье Альберта Эйнштейна «К электродинамике движущихся тел», опубликованной в 1905 году. Если говорить об истории создания теории относительности, то у Эйнштейна были предшественники. Отдельные важные вопросы теории исследовались в работах Х.Лоренца, Дж.Лармора, А.Пуанкаре, а также некоторых других физиков. Однако теория относительности как физическая теория до появления работы Эйнштейна не существовала. Работа Эйнштейна отличается от предшествующих работ совершенно новым пониманием как отдельных сторон теории, так и всей теории как целого, таким пониманием, которого не было в работах его предшественников.

Теория относительности заставила пересмотреть многие основные представления физики. Относительность одновременности событий, различия в ходе движущихся и покоящихся часов, отличия в длине движущейся и покоящейся линеек — эти и многие другие следствия теории относительности неразрывно связаны с новыми по сравнению с ньютоновской механикой представлениями о пространстве и времени, а также о взаимной связи пространства и времени.

Одно из важнейших следствий теории относительности — знаменитое соотношение Эйнштейна между массой m покоящегося тела и запасом энергии Е в этом теле:

где с — скорость света.

(Это соотношение называют по-разному. На Западе для него принято название «соотношение эквивалентности между массой и энергией». У нас долгое время было принято более осторожное название «соотношение взаимосвязи между массой и энергией». Сторонники этого более осторожного названия избегают слова «эквивалентность», тождественность, потому что, говорят они, масса и энергия — это разные качества вещества, они могут быть связаны между собой, но не тождественны, не эквивалентны. Мне кажется, что эта осторожность является излишней. Равенство E = mc 2 говорит само за себя. Из него следует, что массу можно измерять в единицах энергии, а энергию — в единицах массы. Кстати, так физики и поступают. А утверждение, что масса и энергия — это разные характеристики вещества, было справедливо в механике Ньютона, а в механике Эйнштейна само соотношение E = mc 2 говорит о тождественности этих двух величин — массы и энергии. Можно, конечно, сказать, что соотношение между массой и энергией не означает их тождественности. Но это все равно, что сказать, глядя на равенство 2 = 2: это не тождество, а соотношение между разными двойками, потому что справа стоит правая двойка, а слева — левая.)

Соотношение (1) обычно выводится из уравнения движения тела в эйнштейновской механике, но этот вывод достаточно труден для ученика средней школы. Поэтому имеет смысл попытаться найти простой вывод этой формулы.

Условие малости скоростей

Мы будем предполагать, что тело массой m, с которым мы будем иметь дело, либо покоится (и тогда, очевидно, скорость его равна нулю), либо, если оно движется, то со скоростью υ, малой по сравнению со скоростью света с. Иными словами, мы будем предполагать, что отношение \(

\frac<\upsilon>\) скорости тела к скорости света есть величина малая по сравнению с единицей. Однако мы будем считать отношение \(

\frac<\upsilon>\) хотя и малой, но не пренебрежимо малой величиной — будем учитывать величины, пропорциональные первой степени отношения \(

\frac<\upsilon>\), но будем пренебрегать вторыми и более высокими степенями этого отношения. Например, если при выводе нам придется иметь дело с выражением \(

\frac<\upsilon^2>\) по сравнению с единицей:

В этом приближении получаются соотношения, которые на первый взгляд могут показаться странными, хотя ничего странного в них нет, надо только помнить, что соотношения эти не являются точными равенствами, а справедливы с точностью до величины \(

\frac<\upsilon>\) включительно, величинами же порядка \(

\frac<\upsilon^2>\) мы пренебрегаем. В таком предположении справедливо, например, следующее приближенное равенство:

Действительно, умножим обе части этого приближенного равенства на \(

т.е. приближенное равенство (2). Поскольку мы считаем, что величина \(

\frac<\upsilon^2>\) пренебрежимо мала в сравнении с единицей, мы видим, что в приближении \(

\frac<\upsilon^2> \ll 1\) равенство (3) справедливо.

Аналогично, нетрудно доказать в том же приближении равенство

Чем меньше величина \(

\frac<\upsilon>\), тем точнее эти приближенные равенства.

Мы не случайно будем использовать приближение малых скоростей. Нередко приходится слышать и читать, что теория относительности должна применяться в случае больших скоростей, когда отношение скорости тела к скорости света имеет порядок единицы, при малых же скоростях применима механика Ньютона. На самом деле теория относительности не сводится к механике Ньютона даже в случае сколь угодно малых скоростей. Мы это увидим, доказав соотношение E = mc 2 для покоящегося или очень медленно движущегося тела. Механика Ньютона такого соотношения дать не может.

Эффект Доплера

Мы начнем с явления, которое называется по имени австрийского физика Кристиана Доплера, открывшего это явление в середине позапрошлого века.

Рассмотрим источник света, причем будем считать, что источник движется вдоль оси x со скоростью υ. Предположим для простоты, что в момент времени t = 0 источник проходит через начало координат, т.е. через точку х = 0. Тогда положение источника в любой момент времени t определяется формулой

Предположим, что далеко впереди излучающего тела на оси x помещен наблюдатель, который следит за движением тела. Ясно, что при таком расположении тело приближается к наблюдателю. Допустим, что наблюдатель взглянул на тело в момент времени t. В этот момент до наблюдателя доходит световой сигнал, излученный телом в более ранний момент времени t’. Очевидно, момент излучения должен предшествовать моменту приема, т.е. должно быть t’ \(

Таким образом, наблюдатель, глядя на движущееся тело в момент времени t, видит это тело там, где оно находилось в более ранний момент времени t’, причем связь между t и t’ определяется формулой (5).

Предположим теперь, что яркость источника периодически меняется по закону косинуса. Обозначим яркость буквой I. Очевидно, I есть функция времени, и мы можем, учитывая это обстоятельство, записать

I = I_0 + I_1 \cos \omega t \ (I_0 > I_1 > 0),\)

где I0 и I1 — некоторые постоянные, не зависящие от времени. Неравенство в скобках необходимо потому, что яркость не может быть отрицательной величиной. Но для нас в данном случае это обстоятельство не имеет никакого значения, поскольку в дальнейшем нас будет интересовать только переменная составляющая — второе слагаемое в формуле для I(t).

Пусть наблюдатель смотрит на тело в момент времени t. Как уже было сказано, он видит тело в состоянии, соответствующем более раннему моменту времени t’. Переменная часть яркости в момент t’ пропорциональна cos ωt’. С учетом соотношения (5) получаем

Коэффициент при t под знаком косинуса дает частоту изменения яркости, как ее видит наблюдатель. Обозначим эту частоту через ω’, тогда

Если источник покоится (υ = 0), то ω’ = ω, т.е. наблюдатель воспринимает ту же самую частоту, что излучается источником. Если же источник движется к наблюдателю (в этом случае наблюдатель принимает излучение, направленное вперед по движению источника), то принимаемая частота ω’ отличается от излучаемой частоты ω, причем принимаемая частота больше излучаемой.

Случай, когда источник движется от наблюдателя, можно получить, изменив знак перед υ в соотношении (6). Видно, что тогда принимаемая частота оказывается меньше излучаемой.

Можно сказать, что вперед излучаются большие частоты, а назад — малые (если источник удаляется от наблюдателя, то наблюдатель, очевидно, принимает излучение, испущенное назад).

В несовпадении частоты колебаний источника и частоты, принимаемой наблюдателем, и состоит эффект Доплера. Если наблюдатель находится в системе координат, в которой источник покоится, то излучаемая и принимаемая частоты совпадают. Если же наблюдатель находится в системе координат, в которой источник движется со скоростью υ, то связь излучаемой и принимаемой частот определяется формулой (6). При этом мы предполагаем, что наблюдатель всегда покоится.

Как видно, связь между излучаемой и принимаемой частотами определяется скоростью v относительного движения источника и наблюдателя. В этом смысле безразлично, кто движется — источник приближается к наблюдателю или наблюдатель к источнику. Но нам в дальнейшем удобнее будет считать, что наблюдатель покоится.

Строго говоря, в разных системах координат время течет по-разному. Изменение хода времени также сказывается на величине наблюдаемой частоты. Если,например, частота колебаний маятника в системе координат, где он покоится, равна ω, то в системе координат, где он движется со скоростью υ, частота равна \(

\frac<\upsilon^2>\) по сравнению с единицей, то изменение хода времени для нашего случая (движение с малой скоростью) пренебрежимо мало.

Таким образом, наблюдение за движущимся телом имеет свои особенности. Наблюдатель видит тело не там, где оно находится (пока сигнал идет к наблюдателю, тело успевает переместиться), и принимает сигнал, частота которого ω’ отличается от излучаемой частоты ω.

Выпишем теперь окончательные формулы, которые понадобятся нам в дальнейшем. Если движущийся источник излучает вперед по направлению движения, то частота ω’, принятая наблюдателем, связана с частотой источника ω соотношением

Для излучения назад имеем

Энергия и импульс фотона

Иногда вместо слова «фотон» говорят «квант электромагнитного поля».

Фотон имеет не только энергию, но и импульс, равный

Этих сведений нам будет достаточно для дальнейшего.

Вывод формулы E = mc 2

Рассмотрим покоящееся тело массой m. Предположим, что это тело одновременно излучает два фотона в прямо противоположных направлениях. Оба фотона имеют одинаковые частоты ω и, значит, одинаковые энергии \(

E = \hbar \omega\), а также равные по величине и противоположные по направлению импульсы. В результате излучения тело теряет энергию

\Delta E = 2 \hbar \omega. \qquad (9)\)

Потеря импульса равна нулю, и, следовательно, тело после излучения двух квантов остается в покое.

Этот мысленный опыт представлен на рисунке 1. Тело изображено кружком, а фотоны — волнистыми линиями. Один из фотонов излучается в положительном направлении оси x, другой — в отрицательном. Около волнистых линий приведены значения энергии и импульса соответствующих фотонов. Видно, что сумма излученных импульсов равна нулю.

Е равно мц квадрат что за формула. Смотреть фото Е равно мц квадрат что за формула. Смотреть картинку Е равно мц квадрат что за формула. Картинка про Е равно мц квадрат что за формула. Фото Е равно мц квадрат что за формула

Рассмотрим теперь ту же картину с точки зрения наблюдателя, который движется по оси x влево (т.е. в отрицательном направлении оси x) с малой скоростью υ. Такой наблюдатель увидит уже не покоящееся тело, а тело, движущееся с малой скоростью вправо. Величина этой скорости равна υ, а направлена скорость в положительном направлении оси x. Тогда частота, излучаемая вправо, будет определяться формулой (7) для случая излучения вперед:

\omega’ = \omega \left( 1 + \frac<\upsilon> \right).\)

Мы частоту фотона, излучаемого движущимся телом вперед по направлению движения, обозначили через ω’, чтобы не спутать эту частоту с частотой ω излучаемого фотона в той системе координат, где тело покоится. Соответственно, частота фотона, излучаемого движущимся телом влево, определяется формулой (8) для случая излучения назад:

Чтобы не перепутать излучение вперед и излучение назад, мы будем величины, относящиеся к излучению назад, обозначать двумя штрихами.

Поскольку, из-за эффекта Доплера, частоты излучения вперед и назад различны, энергия и импульс у излученных квантов также будут различаться. Квант, излученный вперед, будет иметь энергию

E’ = \hbar \omega’ = \hbar \omega \left( 1 + \frac<\upsilon> \right)\)

Квант, излученный назад, будет иметь энергию

При этом импульсы квантов направлены в противоположные стороны.

Картина процесса излучения, каким его видит движущийся наблюдатель, изображена на рисунке 2.

Е равно мц квадрат что за формула. Смотреть фото Е равно мц квадрат что за формула. Смотреть картинку Е равно мц квадрат что за формула. Картинка про Е равно мц квадрат что за формула. Фото Е равно мц квадрат что за формула

Важно здесь подчеркнуть, что на рисунках 1 и 2 изображен один и тот же процесс, но с точки зрения разных наблюдателей. Первый рисунок относится к случаю, когда наблюдатель покоится относительно излучающего тела, а второй — когда наблюдатель движется.

Подсчитаем баланс энергии и импульса для второго случая. Потеря энергии в системе координат, где излучатель имеет скорость υ, равна

т.е. она такая же, как и в системе, где излучатель покоится (см. формулу (9)). Но потеря импульса в системе, где излучатель движется, не равна нулю, в отличие от системы покоя:

Движущийся излучатель теряет импульс \(

\frac<\Delta E \upsilon>\) и, следовательно, должен, казалось бы, тормозиться, уменьшать свою скорость. Но в системе покоя излучение симметрично, излучатель не меняет скорости. Значит, скорость излучателя не может измениться и в той системе, где он движется. А если скорость тела не меняется, то как оно может потерять импульс?

Чтобы ответить на этот вопрос, вспомним, как записывается импульс тела массой m:

\Delta p = \Delta m \upsilon\)

Здесь Δp — изменение импульса тела при неизменной скорости, Δm — изменение его массы.

Это выражение для потери импульса надо приравнять к выражению (10), которое связывает потерю импульса с потерей энергии. Мы получим формулу

\frac<\Delta E>\upsilon = \Delta m \upsilon,\)

\Delta E = \Delta m c^2,\)

которая означает, что изменение энергии тела влечет за собой пропорциональное изменение его массы. Отсюда легко получить соотношение между полной массой тела и полным запасом энергии:

Открытие этой формулы явилось огромным шагом вперед в понимании природных явлений. Само по себе осознание эквивалентности массы и энергии есть великое достижение. Но полученная формула, помимо того, имеет широчайшее поле применения. Распад и слияние атомных ядер, рождение и распад частиц, превращения элементарных частиц одна в другую и множество других явлений требуют для своего объяснения учета формулы связи между массой и энергией.

В заключение — два домашних задания для любителей теории относительности.

\Delta m = \frac<\Delta E>\) для случая системы отсчета, скорость которой υ может быть не малой по сравнению со скоростью света с. Указание. Используйте точную формулу для импульса частицы: \(

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *