какие физические явления используются для ионизации газа
Какие физические явления используются для ионизации газа
Явление ионизации и рекомбинации в газах | |
Щелкните по ссылке » Электрический ток в газах «, чтобы ознакомиться с презентацией раздела в формате PowerPoint. Для возврата к данной странице закройте окно программы PowerPoint. | ||||||||||||||||||||
В нормальном состоянии газы состоят из электрически нейтральных молекул и атомов, и, следовательно, не могут проводить электрический ток. Поэтому газы являются хорошими электрическими изоляторами. Напомню, что окружающий нас воздух является хорошим и самым дешёвым диэлектриком, и его изолирующие свойства широко используются в различных устройствах высокого напряжения (ЛЭП, подстанциях, электростатических генераторах и др.). Проделаем опыт: разорвём цепь источника тока, т.е. создадим в ней воздушный промежуток. Если включить в такую разорванную цепь гальванометр, то он покажет отсутствие электрического тока. Поднесём к воздушному промежутку пламя газовой горелки. В пламени происходят интенсивные химические процессы, за счёт энергии которых отдельные атомы могут возбуждаться и ионизироваться. Образующиеся в пламени горелки ионы и электроны переходят в возбужденный промежуток, и под действием приложенной к нему разности потенциалов начинают двигаться к электродам; в цепи появляется ток. Процесс ионизации заключается в том, что под действием высокой температуры или некоторых лучей молекулы газа теряют электроны, и тем самым превращаются в положительные ионы. Таким образом, в результате происходит освобождение электронов из атомов и молекул, которые могут присоединиться к нейтральным молекулам или атомам, превращая их в отрицательные ионы. Ионы и свободные электроны делают газ проводником электричества. Ионизация газа может происходить под действием коротковолнового излучения – ультрафиолетовых, рентгеновских и гамма-лучей, а также альфа-, бета- и космических лучей. Установлено, что в нормальных условиях газы, например воздух, обладают электрической проводимостью, но очень ничтожной. Эта проводимость вызвана излучением радиоактивных веществ, имеющихся на поверхности земли, а также космическими лучами, приходящими из мировых глубин. Однако равновесная концентрация ионов в воздухе не превышает нескольких десятков пар ионов в кубическом сантиметре. Для того, чтобы воздух стал заметно проводить электрический ток, его надо подвергнуть воздействию интенсивных ионизаторов. Электрический ток, возникающий в процессе ионизации газа – ток в газах – это встречный поток ионов и свободных электронов. Наряду с термином «ионизация» часто употребляют термин «генерация», характеризующий тот же самый процесс образования носителей зарядов в газе. Одновременно с процессом ионизации идёт обратный процесс рекомбинации (иначе – молизации). Рекомбинация – это нейтрализация при встрече разноименных ионов или воссоединение иона и электрона в нейтральную молекулу (атом). Факторы, под действием которых возникает ионизация в газе, называют внешними ионизаторами, а возникающая при этом проводимость называется несамостоятельной проводимостью. При данной мощности внешнего ионизатора в объёме газа устанавливается равновесное состояние, при котором число пар ионов, возникающих под действием ионизатора за одну секунду в единице объёма, равно числу пар рекомбинировавших ионов. При этом скорость ионизации равна скорости рекомбинации: Таким образом, ионизованный газ способен проводить ток. Явление прохождения электрического тока через газ называется газовым разрядом. Газовые разряды можно разделить на два вида: несамостоятельный и самостоятельный. ИОНИЗАЦИЯ ГАЗОВПолезноеСмотреть что такое «ИОНИЗАЦИЯ ГАЗОВ» в других словарях:Ионизация газов в атмосфере — происходит, например, при грозовых разрядах. Оказывает влияние на физиологическую активность организмов и активность поведения животных (при увеличении количества положительных ионов). Экологический словарь. Алма Ата: «Наука». Б.А. Быков. 1983 … Экологический словарь ИОНИЗАЦИЯ — ИОНИЗАЦИЯ, ионизации, мн. нет, жен. 1. Образование или возбуждение ионов в какой нибудь среде (физ.). Ионизация газов. 2. Введение в организм лекарственных веществ посредством ионов, возбуждаемых электрическим током в этих веществах (мед.).… … Толковый словарь Ушакова ИОНИЗАЦИЯ — образование положит. и отрицат. ионов и свободных эл нов из электрически нейтральных атомов и молекул. Термином «И.» обозначают как элементарный акт (И. атома, молекулы), так и совокупность множества таких актов (И. газа, жидкости). Ионизация в… … Физическая энциклопедия ИОНИЗАЦИЯ — ИОНИЗАЦИЯ, и, жен. (спец.). Образование ионов в какой н. среде. И. газов. | прил. ионизационный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова Ионизация — образование положительных и отрицательных ионов (См. Ионы) и свободных электронов из электрически нейтральных атомов и молекул. Термином «И.» обозначают как элементарный акт (И. атома, молекулы), так и совокупность множества таких актов… … Большая советская энциклопедия Ионизация — Энергия ионизации некоторых чистых химических элементов. На пиках находятся инертные газы. Ионизация эндотермический процесс образования ионов из нейтральных … Википедия Газов очистка — выделение из промышленных газов содержащихся в них примесей. Очистку газов производят с целью дальнейшего использования самого газа или содержащихся в нём примесей; выбрасываемые в атмосферу промышленные газы очищают с целью охраны… … Большая советская энциклопедия ИОНИЗАЦИЯ — процесс превращения атомов (молекул) в ионы. И. газов (их превращение в положит. ионы) происходит при поглощении эл. магн. излучения (фотоионизация), нагревании (термич. И.), столкновении частиц с электронами или ускоренными частицами (ударная… … Естествознание. Энциклопедический словарь Аэродинамика разреженных газов — раздел механики газов, в котором для описания движения газов необходимо учитывать их молекулярное строение. Методы А. р. г. широко применяют при определении аэродинамического нагрева (См. Аэродинамический нагрев) приземляющихся… … Большая советская энциклопедия Дополнительный материал Ионизация газаИщем педагогов в команду «Инфоурок» Ионизация газов показывает, что в газах под влиянием высокой температуры и различных излучений появляются заряженные частицы. Они возникают потому, что от атомов газа отщепляется один или несколько электронов, в результате чего вместо нейтрального атома возникают положительный ион и электроны. Часть образовавшихся электронов может быть при этом захвачена другими нейтральными Ионы и свободные электроны делают газ проводником электричества. Газы в естественном состоянии не проводят электричества. Если поместить в сухом атмосферном воздухе хорошо изолированное заряженное тело, например заряженный электрометр с хорошей изоляцией, то заряд электрометра долгое время практически остается неизменным. Однако, подвергая газ различным внешним воздействиям, можно вызвать в нем электропроводность. Так, например, помещая вблизи заряженного электрометра пламя горелки, можно видеть, что заряд электрометра быстро уменьшается. Газу сообщили электропроводность, создавая в нем высокую температуру. Если вместо пламени горелки поместить вблизи электрометра подходящий источник света, также можно наблюдать утечку зарядов с электрометра. Отрыв электрона от атома ( ионизация газа ) требует затраты определенной энергии – энергии ионизации. Она зависит от строения атома и поэтому различна для разных Наряду с термином « ионизация » часто употребляют термин « генерация » , характеризующий тот же самый процесс образования носителей зарядов в газе . Таким образом, ионизованный газ способен проводить ток. При рекомбинации положительного иона и электрона или двух ионов высвобождается определенная энергия, равная энергии, затраченной на ионизацию. Она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации). Если концентрация положительных и отрицательных ионов велика, то и число ежесекундно происходящих актов рекомбинации будет большим, и свечение рекомбинации может быть очень сильным. Излучение света при рекомбинации является одной из причин свечения многих форм газового разряда. При данной мощности внешнего ионизатора в объёме газа устанавливается равновесное состояние , при котором число пар ионов, возникающих под действием ионизатора за одну секунду в единице объёма, равно числу пар рекомбинировавших ионов. При этом скорость ионизации равна скорости рекомбинации : Ионизация газов.Газы в естественном состоянии не проводят электричества. Если поместить в сухом атмосферном воздухе хорошо изолированное заряженное тело, например заряженный электрометр с хорошей изоляцией, то заряд электрометра долгое время практически остается неизменным. Однако, подвергая газ различным внешним воздействиям, можно вызвать в нем электропроводность. Так, например, помещая вблизи заряженного электрометра пламя горелки, можно видеть, что заряд электрометра быстро уменьшается. Мы сообщили газу электропроводность, создавая в нем высокую температуру. Если бы вместо пламени горелки мы поместили вблизи электрометра подходящий источник света, мы также наблюдали бы утечку зарядов с электрометра. Это показывает, что в газах под влиянием высокой температуры и различных излучений появляются заряженные частицы. Они возникают потому, что от атомов газа отщепляется один или несколько электронов, в результате чего вместо нейтрального атома возникают положительный ион и электроны. Часть образовавшихся электронов может быть при этом захвачена другими нейтральными атомами, и тогда появятся еще и отрицательные ионы. При рекомбинации положительного иона и электрона или двух ионов высвобождается определенная энергия, равная энергии, затраченной на ионизацию. Она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации). Если концентрация положительных и отрицательных ионов велика, то и число ежесекундно происходящих актов рекомбинации будет большим, и свечение рекомбинации может быть очень сильным. Излучение света при рекомбинации является одной из причин свечения многих форм газового разряда. Ионизация электронными ударами. В явлениях электрического разряда в газах большую роль играет ионизация атомов электронными ударами. Процесс заключается в том, что движущийся электрон, обладающий достаточной кинетической энергией, при соударении с нейтральным атомом выбивает из него один или несколько атомных электронов, в результате чего нейтральный атом превращается в положительный ион, а в газе появляются новые электроны. Метод Франка и Герца не является единственным методом измерения энергии ионизации. Она может быть определена также из исследования линейчатых спектров свечения разреженных газов и паров, причем с довольно большой точностью. Значения энергии ионизации, найденные по спектрам, хорошо совпадают с ее значениями, определенными методом электронных ударов. В таблице даны значения энергии ионизации некоторых атомов.
Самостоятельные и несамостоятельные разряды. В зависимости от того, какие именно процессы образования ионов в разряде играют главную роль, мы говорим о различных формах или типах самостоятельных разрядов. Так, например, различают коронный, искровой, дуговой, тлеющий и другие разряды. Эти разряды отличаются друг от друга свойствами и внешним видом. Если постепенно увеличивать напряжение между двумя электродами, находящимися в атмосферном воздухе и имеющими такую форму, что электрическое поле между ними не слишком сильно отличается от однородного (например, два плоских электрода с закругленными краями или два достаточно больших шара), то при некотором напряжении возникает электрическая искра. Она имеет вид ярко светящегося канала, соединяющего оба электрода, который обычно бывает сложным образом изогнут и разветвлен (рис 4). Электрическая искра возникает в том случае, если электрическое поле в газе достигает некоторого определенного значения Ек (критическая напряженность поля) или напряженность пробоя. Для воздуха при нормальных условиях Ек » 3*10 6 В/м Значение Ек увеличивается с увеличением давления. Отношение критической напряженности поля к давлению газа р для данного газа остается приблизительно постоянным в широкой области изменения давлений: Напряжение пробоя понижается при воздействии на газ внешнего ионизатора. Если приложить к газовому промежутку напряжение, несколько меньшее пробойного, и внести в пространство между электродами зажженную газовую горелку, то возникает искра. Такое же действие оказывает и освещение отрицательного электрода ультрафиолетовым светом, а также другие ионизаторы. Объяснение большой скорости развития искры дано так называемой стримерной теорией искры, в настоящее время обоснованной экспериментальными данными. Согласно этой теории, возникновению ярко светящегося канала искры предшествует появление слабо светящихся скоплений ионизированных частиц (стримеров). Пронизывая газоразрядный промежуток, стримеры образуют проводящие мостики, по которым в последующие стадии разряда и устремляются мощные потоки электронов. Причиной возникновения стримеров является не только образование электронных лавин посредством ударной ионизации, но еще и ионизация газа излучением, возникающим в самом разряде (фотоионизация). Наряду со стримерами, распространяющимися от катода к аноду (отрицательные стримеры), существуют также стримеры, движущиеся от анода к катоду (положительные стримеры). Молния как пример искрового разряда. Молния представляет собой гигантскую электрическую искру. Электрическая природа молнии была впервые доказана известными опытами Франклина с воздушным змеем и многочисленными исследованиями Ломоносова и Рихмана. Ломоносов создал первую теорию возникновения электрических разрядов в атмосфере и этим положил начало науки об атмосферном электричестве. Кроме обычных молний, наблюдаются так называемые шаровые молнии. Они имеют вид светящихся шаров диаметром 10-20 см, которые либо медленно движутся, либо прикрепляются к неподвижным предметам. Шаровые молнии обычно зарождаются при ударе очень сильных молний и через несколько секунд исчезают с сильным взрывом. Линии напряженности электрического поля сгущаются по мере приближения к проволоке, а, следовательно, напряженность поля возле проволоки имеет наибольшее значение. Когда она достигает приблизительно 3*10 6 В/м, между проволокой и цилиндром зажигается разряд и в цепи появляется ток. При этом возле проволоки возникает свечение, имеющее вид оболочки или короны, окружающей проволоку, откуда и произошло название разряда. Коронный разряд возникает как при отрицательном потенциале на проволоке (отрицательная корона), так и при положительном (положительная корона), а также при переменном напряжении между проволокой и цилиндром. При увеличении напряжения между проволокой и цилиндром растет и ток в коронном разряде. При этом увеличивается толщина светящегося слоя короны. Процессы внутри короны сводятся к следующему : если проволока заряжена отрицательно, то по достижении напряженности пробоя у поверхности проволоки зарождаются электронные лавины, которые распространяются от проволоки к цилиндру. В случае положительной короны электронные лавины зарождаются на внешней поверхности короны и движутся по направлению к проволоке. Коронный разряд возникает не только возле проволок, но и возле любых проводников с малой поверхностью. Корона возникает также в природе под влиянием атмосферного электрического поля и появляется на верхушках деревьев, корабельных мачт и т.п. Тлеющий разряд удобно наблюдать при пониженном давлении газа. Если к электродам, впаянным в стеклянную трубку длиной 30-50 см, приложить постоянное напряжение в несколько сот ампер и затем постепенно откачивать воздух из трубки, то наблюдается следующее явление : при атмосферном давлении приложенное напряжение недостаточно для пробоя газа и трубка остается темной. При уменьшении давления газа в некоторый момент в трубке возникает разряд, имеющий вид светящегося шнура. При дальнейшем уменьшении давления этот шнур расширяется и заполняет все сечение трубки. Существование катодного темного пространства объясняется тем, что электроны начинают сталкиваться с атомами газа не сразу, а лишь на некотором расстоянии от катода. Ширина катодного темного пространства приблизительно равна средней длине свободного пробега электронов : она увеличивается с уменьшением давления газа. Следовательно, в катодном темном пространстве электроны движутся практически без соударения. Катодное падение потенциалов необходимо для поддержания тлеющего разряда. Именно благодаря его наличию положительные ионы приобретают необходимую энергию для образования интенсивной вторичной электронной эмиссии с катода, без которой тлеющий разряд не мог бы существовать. Поэтому катодное падение потенциала есть наиболее характерный признак тлеющего разряда, отличающий эту форму газового разряда от всех других форм. Тлеющий разряд широко используют в качестве источника света в различных газоразрядных трубках. В лампах дневного света излучение тлеющего разряда поглощается слоем специальных веществ, нанесенных на внутреннюю поверхность трубки, которые под действием поглощенного излучения в свою очередь начинают светиться. Такие трубки оказываются более экономичными нежели обычные лампы накаливания. Газоразрядные трубки применяются также для рекламных и декоративных целей, для чего им придают очертания различных фигур и букв. Наполняя трубки различными газами, можно получить свечение разной окраски. В лабораторной практике используют тлеющий разряд для катодного распыления металлов, так как вещество катода в тлеющем разряде постепенно переходит в парообразное состояние и оседает в виде металлического налета на стенках трубки. Если после зажигания искового разряда постепенно уменьшат сопротивление цепи, то сила тока в искре будет увеличиваться. Когда сопротивление цепи станет достаточно малым, возникает новая форма газового разряда, называемая дуговым разрядом. При этом сила тока резко увеличивается, а напряжение на разрядном промежутке уменьшается до нескольких десятков вольт. Это показывает, что в разряде возникают новые процессы, сообщающие газу очень большую проводимость. В настоящее время электрическую дугу чаще всего получают между специальными угольными электродами. Наиболее горячим местом дуги является углубление, образующееся на положительном электроде и называемое «кратером дуги». Его температура равна 4000 К, а при давлении в 20 атм превышает 7000 К. Дуговой разряд возникает во всех случаях, когда вследствие разогревания катода основной причиной ионизации газа становится термоэлектронная эмиссия. Например, в тлеющем разряде положительные ионы, бомбардирующие катод, не только вызывают вторичную эмиссию электронов, но и нагревают катод. Поэтому, если увеличивать силу тока в тлеющем разряде, то температура катода увеличивается, и когда она достигает такой величины, что начинается заметная термоэлектронная эмиссия, тлеющий разряд переходит в дуговой. При этом исчезает и катодное падение потенциала. Электрическая дуга является мощным источником света и широко применяется в проекционных, прожекторных и других установках. Расходуемая ею удельная мощность меньше, чем у ламп накаливания. Ионизация газаИонизация газа — это процесс образования ионов из нейтральных частиц. Ионизация образуется от соударения в процессе теплового движения или ионизация газа в воздухе. Что такое ионизация газа АэроионыЧистые, сухие газы не содержат свободных зарядов и являются диэлектриками. При различных внешних воздействиях электроны легко отрываются от атомов газа, образуя таким образом положительные ионы. Оторвавшиеся электроны в значительной части остаются в свободном состоянии, в меньшей — присоединяются к другим атомам, образуя отрицательные ионы. Происходит ионизация газа. В результате ионизации газ делается хотя и плохим, но проводником электрического тока. Ионизация газа происходит при нагревании (см. рис. 2), соударении его частиц, поглощении фотонов ультрафиолетового излучения и т. п. Соударяясь в процессе теплового движения, электроны и положительные ионы могут вновь соединяться в нейтральные частицы. Это называется рекомбинацией ионов. Если ионизирующий агент действует с постоянной интенсивностью, то в газе устанавливается динамическое равновесие между количеством ионов и электронов, вновь образующихся и рекомбинирующихся в единицу времени. В результате количество ионов, содержащихся в единице объема газа, или их концентрация, остается постоянным. Если интенсивность ионизирующего агента повышается, увеличивается и концентрация ионов и электронов. Если действие ионизирующего агента прекращается, то газ постепенно возвращается к исходному состоянию. Ионизация газа в воздухеВ воздухе и других газах, которые находятся в естественных природных условиях, всегда имеется небольшое количество свободных электронов, а также ионов обоих знаков, образовавшихся вследствие ионизирующего действия природных факторов: ультрафиолетовой части солнечного излучения, космического излучения, излучения радиоактивных веществ, находящихся в земной коре, и т. д. Обычно они присоединяются к нейтральным молекулам или группам молекул и образуют сложные газовые ионы обоих знаков. В воздухе ионы образуются также при распыливании воды (это называется баллоэлектрическим эффектом), например при падении дождя, около водопадов, фонтанов и т. п. Ионы образуются также (путем вторичной ионизации) при атмосферных электрических разрядах (грозовые молнии). Газовые ионы, в свою очередь, могут присоединяться к различным взвешенным в газе частицам вещества (пылинки частицы дыма) или мельчайшим капелькам водяного пара и т. п. Находящиеся в атмосфере газовые ионы называются аэроионами и разделяются на легкие и тяжелые. Легкими аэроионами называются газовые ионы, простые или сложные. Масса их невелика, а подвижность относительно высокая. Тяжелыми аэроионами называются газовые ионы, связанные с твердыми частицами или частицами влаги. Эти ионы имеют значительно большую массу и меньшую подвижность. Концентрация аэроионов в воздухе зависит от различных метеорологических условий и все время меняется. В среднем в 1 см 3 городского воздуха содержится несколько сотен легких и до нескольких десятков тысяч тяжелых аэроионов. В чистом загородном воздухе количество легких аэроионов увеличивается до нескольких тысяч, а тяжелых снижается почти до нуля. Легкие и преимущественно отрицательные аэроионы являются положительным гигиеническим фактором. Тяжелые аэроионы действуют вредно на организм. В настоящее время в качестве оздоровительного, а иногда и лечебного мероприятия применяется искусственная аэроионизация воздуха с помощью приборов, называемых аэроионизаторами. Образование тока в газе вторичная ионизацияИонизация газа, происходящая под влиянием внешних воздействий, называется первичной ионизацией. Если в газе, в котором поддерживается первичная ионизация, образовать электрическое поле, то под действием сил поля ионы и электроны придут в направленное движение. Движение двух встречных потоков положительных и отрицательных ионов и электронов образует электрический ток в газе. Достигая электродов, ионы нейтрализуют свои заряды путем присоединения (на катоде) или отдачи (на аноде) электронов и таким образом поддерживают ток во внешней цепи. Образование тока в газе при ионизации его путем нагревания можно показать на опыте (рис. 2). Воздух, находящийся между пластинами Р воздушного конденсатора, подключенного к батарее Б, будучи нагрет пламенем спиртовой горелки, делается токопроводящим. Ток между пластинами отмечается чувствительным гальванометром Г. Если напряжение, приложенное к электродам невелико, невысока и ско рость перемещения ионов, то только часть из числа пар ионов, образующих ся в единицу времени, достигает электродов и, отдавая свои заряды, образует ток в цепи, остальные ионы рекомбинируются. При увеличении напряжения эта часть ионов будет возрастать, соответственно возрастает и сила тока, однако только до тех пор, пока все ионы, образующиеся в единицу времени, не будут достигать электродов. Ток при этом, несмотря на увеличение напряжения, больше возрастать не будет. Этот ток называется током насыщения. Величина Iн тока насыщения прямо пропорциональна заряду е иона, числу N ионов одного знака, образующихся в единицу времени (1 сек) в единице объема (1 см 3 ) газа, и объему V газа между электродами: Это поясняется схемой, которая показывает, что ионы в газе двигаются двумя встречными потоками, но через любое сечение газа в единицу времени проходит NV зарядов (например, для среднего сечения аb это будет два потока, каждый по NV/2 ионов). Ионы (или электроны), двигающиеся в газе, испытывают столкновения с окружающими их неионизированными частицами газа, поэтому средняя скорость поступательного движения аэроионов относительно невелика. Эта скорость прямо пропорциональна напряженности поля и зависит от строения иона. Скорость движения ионов в газеПодвижность (скорость при напряженности поля 1 в/см) аэроионов указана в таблице.
|