какие функции выполняют суставные хрящи

ГДЗ биология 8 класс Колесов, Маш, Беляев Дрофа Задание: 12 Добавочный скелет: скелет поясов и свободных конечностей Соединение костей

Стр. 76. Вопросы в начале параграфа

№ 1. Какие отделы составляют добавочный скелет?

Добавочный скелет включает скелет пояса верхних и нижних конечностей и сами верхние и нижние конечности.

№ 2. В чём проявляется приспособление верхних конечностей к труду, а нижних конечностей к опоре?

Верхние конечности приспособлены к труду за счет маленьких костей, большого количества связок. Все это обеспечивает лучшую подвижность и гибкость кистям и пальцам. Также большой палец на обеих руках противопоставлен остальным четырем.

Нижние конечности приспособлены к опоре за счет крупных массивных костей, поперечным и продольным сводам. Это позволяет смягчать толчки при беге, прыжках, ходьбе.

№ 3. Какие функции выполняют разные виды соединения костей?

Существует 3 вида соединения костей:

Полуподвижное (симфиз) – хрящи носа, межпозвонковые хрящи позвоночника.

Прерывное – суставы (синовиальные) – это обязательные и вспомогательные элементы.

Стр. 82. Вопросы

№ 1. Сравните строение предплечья и голени. В чём их сходство и различие?

Сходство в строении предплечья и голени заключается в том, что в их состав входит по две кости. Предплечье состоит из локтевой и лучевой кости, а голень – из малой и большой берцовой кости. Различие в том, что предплечье относится к верхним конечностям, а голень – к нижним.

№ 2. Чем можно объяснить, что в скелете человека существуют разные типы соединения костей?

Скелет человека состоит из большого количества костей. Все они соединены между собой. И характер этих соединений зависит, в первую очередь, от функций костей.

№ 3. Какие функции выполняют суставные хрящи, суставная сумка, связки и суставная жидкость?

Суставные хрящи смягчают трение костей, покрывая их концы. Суставная сумка образует вокруг сустава герметично замкнутую полость, в которой сохраняется давление ниже атмосферного. Это обеспечивает прочность суставу. Связки ограничивают амплитуду и направление движения костей, укрепляют их соединения друг с другом. Суставная жидкость нужна для питания суставных хрящей.

№ 4. Как вы считаете, почему поверхности суставной головки и суставной ямки не покрыты надкостницей?

Надкостница ограничивает движение суставов, поэтому она не покрывает суставную головку и суставную сумку.

Стр. 83. Задания

№ 1. Изобразите схематично принципиальное строение сустава. Объясните, почему суставная полость заполнена жидкостью, а не воздухом.

какие функции выполняют суставные хрящи. Смотреть фото какие функции выполняют суставные хрящи. Смотреть картинку какие функции выполняют суставные хрящи. Картинка про какие функции выполняют суставные хрящи. Фото какие функции выполняют суставные хрящи

Жидкость уменьшает трение, которое создается между суставами при движении. Воздух такими свойствами не обладает.

№ 2. Используя дополнительную литературу и ресурсы Интернета, найдите информацию о типах суставов. Выберите критерии и составьте классификацию суставов.

Классификация строения суставов:

Простые – образованы 2 хрящевыми поверхностями и 2 костями (межфаланговый, лучезапястный).

Сложные – образованы 3 и более костями в одной капсуле (локтевой).

Комбинированные – работают одновременно в паре друг с другом (правый и левый височно-нижнечелюстные).

Комплексные – имеют дополнительно мениск или диск (коленный).

№ 3. Вспомните из предыдущих курсов биологии, у всех ли млекопитающих есть ключицы. Если нет, то объясните почему.

Ключица отсутствует у таких млекопитающих, как дельфин, кошка, некоторые виды копытных. У дельфинов не развиты верхние конечности, отсутствует плечевой пояс, как таковой. У кошки гибкое тело, благодаря чему она легко может пролезать в узкие отверстия. Также благодаря отсутствию ключиц некоторые копытные млекопитающие могут быстро бегать.

№ 4. Рассмотрите стопу, которая изображена на рисунке скелета, сделанном под руководством Везалия (см. рис. 3). Какая неточность была допущена великим анатомом Возрождения в изображении строения стопы?

Человеческая стопа имеет своды, благодаря чему она чуть изогнута. Везалий же на своем рисунке изобразил скелет с плоскими стопами.

№ 5. Составьте и заполните схему «Скелет человека».

какие функции выполняют суставные хрящи. Смотреть фото какие функции выполняют суставные хрящи. Смотреть картинку какие функции выполняют суставные хрящи. Картинка про какие функции выполняют суставные хрящи. Фото какие функции выполняют суставные хрящи

Стр. 83. Эксперименты

№ 1. Докажите, что плечевой пояс не только соединяет кости руки с осевым скелетом, но и увеличивает подвижность руки. Положите левую руку на правую ключицу и медленно поднимайте правую руку. Правая ключица остаётся неподвижной, пока рука поднимается до горизонтального положения, после чего прихо­дит в движение. Какое из этих движений происходит с участием плечевого пояса?

С участием плечевого пояса происходит подъём руки над головой.

№ 2. Выясните, участвует ли в движении руки вверх лопатка, или оно осуществляется только за счёт ключицы (см. рис. 34). Опустите поднятую руку, после чего нащупайте другой рукой нижний угол правой лопатки. Теперь поднимите правую руку вверх и убедитесь, что при подъёме руки до горизонтального уровня лопатка не подвижна, а при продолжении движения вверх до вертикального положения лопатка смещается вверх и в сторону. Это происходит потому, что мышцы спины, поворачивая лопатку плечевым суставом вверх, приводят плечо в вертикальное положение. Какова роль лопатки в движении руки?

Лопатка участвует в движении руки вверх, так как она соединена с ключицей и плечевой костью. Именно лопатка в тандеме с ключицей обеспечивают подвижность верхней конечности скелета человека вверх, вниз, влево или вправо.

Источник

Препараты при болях в суставах

Функции хрящевой соединительной ткани и костной ткани многогранны и имеют важное значение для всего организма. Кости и хрящи формируют осевой скелет, обеспечивая опору и защиту внутренним органам. Благодаря суставам, человек может выполнять движения и перемещаться. Различные заболевания опорно-двигательного аппарата способны резко ухудшать качество жизни пациента и приводить к инвалидизации.

Строение и функции хрящевой ткани

В организме взрослого человека хрящевая ткань входит в состав многих анатомических структур. Она бывает нескольких разновидностей:

Большинство хрящей состоит из надхрящницы и собственно хрящевой пластинки. [1]. Последняя содержит в себе клетки и межклеточное вещество, сформированное аморфным матриксом, коллагеновыми и эластиновыми волокнами. Клеточный состав представлен хондроцитами трёх типов: хондрокластами, хондробластами и прехондробластами.

какие функции выполняют суставные хрящи. Смотреть фото какие функции выполняют суставные хрящи. Смотреть картинку какие функции выполняют суставные хрящи. Картинка про какие функции выполняют суставные хрящи. Фото какие функции выполняют суставные хрящи

Различают следующие функции хрящевой ткани человека:

Каждая функция хрящевой ткани в организме является очень важной, так как от нормальной «работы» хрящей зависит здоровье всего опорно-двигательного аппарата.

какие функции выполняют суставные хрящи. Смотреть фото какие функции выполняют суставные хрящи. Смотреть картинку какие функции выполняют суставные хрящи. Картинка про какие функции выполняют суставные хрящи. Фото какие функции выполняют суставные хрящи

Костная ткань бывает двух видов: пластинчатая и грубоволокнистая. Она является основным структурным компонентом костей. Последние, в свою очередь, подразделяются на трубчатые, губчатые и плоские. Каждая кость состоит из нескольких основных частей:

Клеточный состав костной ткани представлен остеоцитами, остеокластами и остеобластами. Они располагаются в межклеточном матриксе, на 70% состоящем из неорганических соединений (преимущественно кристаллов фосфатов кальция — гидроксиапатита) и на 30% — из органических веществ (коллагеновых волокон, межклеточного матрикса). Костная ткань выполняет в организме 2 основных функции — скелетная (опорная) и защитная (грудная клетка, череп), а также участвует в процессах кроветворения.

Под влиянием возрастных изменений, системных заболеваний и неблагоприятных факторов, кости способны разрушаться, что может приводить к необратимым последствиям для организма.

Почему важна профилактика заболеваний опорно-двигательной системы

Костная и хрящевая ткани выполняют важную функцию в организме. Вместе с мышцами и связками они формируют опорно-двигательный аппарат, который испытывает огромную нагрузку в течение всей жизни человека. Чтобы предупредить заболевания опорно-двигательного аппарата, врачи рекомендуют проводить ежедневную профилактику и придерживаться принципов здорового образа жизни.

Человек должен давать организму адекватную физическую нагрузку, правильно питаться, отказаться от вредных привычек и исключить факторы, негативно влияющие на состояние костно-хрящевой системы (подъём тяжестей, перепады температур, недостаток витаминов и минералов и т.д.). Основой профилактики является лечебная физическая культура (ЛФК).

Существуют специальные комплексы упражнений, направленные на укрепление костной, хрящевой и мышечной ткани, разработку суставов и увеличение их мобильности, лечение определённых патологий (остеохондроз, артроз, плоскостопие и другие). Любой гимнастический комплекс содержит в себе разминку (7-10 минут) и основную часть. Тренировки проводятся 2-3 раза в неделю во второй половине дня. В одно занятие обычно включается 5-10 упражнений, которые повторяются по кругу. Каждый подход состоит из 20-30 повторений. Отдых между упражнениями составляет не более 2 минут. [2].

При наличии конкретного заболевания гимнастический комплекс подбирается индивидуально врачом ЛФК. Также назначаются медикаментозные средства, направленные на уменьшение симптомов болезни и восстановление хрящевой ткани. Одним из таких препаратов является Терафлекс. Он стимулирует регенерацию хрящевых структур, замедляет процессы разрушения хрящевой ткани. После приёма Терафлекса в течение 3-6 мес снижается интенсивность боли в суставах, улучшается функция сустава[3]. (раздел фармакологическое действие)

Источник

Как помочь хрящу восстановиться при артрозе

Артроз – это повреждения хрящевой ткани, которые приводят к боли во время движения. Что из себя представляет хрящ, какие процессы в нем происходят и что можно сделать, чтобы предупредить дегенеративно-деформационный сценарий?

Строение хряща

Хрящевая ткань одинакова во всем организме, поэтому рассмотрим ее строение, например, в коленном суставе. Хрящ, состоящий из коллагеновых и эластиновых волокон, покрывает конец кости. Он представляет собой разновидность соединительной ткани, в которой отсутствуют нервы и кровеносные сосуды. Питание и восстановление живых клеток происходят через синовиальную жидкость.

Между двумя костями расположены мениски – разновидность хряща, пронизанная волокнами. Мениски тверже и плотнее, чем гиалиновые хрящи, поэтому лучше противостоят давлению и имеют более высокую прочность на разрыв.

Хрящи, покрывающие собой кости, имеют толщину 5-6 мм и состоят из нескольких слоев. В идеале они имеют плотную и гладкую консистенцию, выполняют роль своеобразного амортизатора, поэтому кости скользят при сгибании и разгибании сустава относительно друг друга.

какие функции выполняют суставные хрящи. Смотреть фото какие функции выполняют суставные хрящи. Смотреть картинку какие функции выполняют суставные хрящи. Картинка про какие функции выполняют суставные хрящи. Фото какие функции выполняют суставные хрящи

Величина щели в разных суставах составляет от 1,5 до 8 мм

Основные составляющие хряща

Хрящи состоят из волокон двух типов:

Большую часть межклеточного пространства занимает вода. Чем ее больше, тем лучше функционирует синовиальная жидкость, которая поставляет хрящам питательные элементы из мяса, рыбы, овощей и других продуктов питания, показанных при артрозе. Если воды недостаточно, суставная жидкость теряет вязкость, становится менее текучей, и хрящевые ткани недополучают все необходимое для нормальной работы.

какие функции выполняют суставные хрящи. Смотреть фото какие функции выполняют суставные хрящи. Смотреть картинку какие функции выполняют суставные хрящи. Картинка про какие функции выполняют суставные хрящи. Фото какие функции выполняют суставные хрящи

Если в организме дефицит воды, хрящи страдают

Какой объем воды в день необходимо выпивать, чтобы суставы были здоровыми? Рекомендации от известного доктора:

Какова роль гликозаминов

В составе синовиальной жидкости есть гликозамины, которые вырабатываются хрящевой тканью. Именно этот компонент рекомендуют принимать для восстановления, поскольку он связывает клетки, делая ткани более устойчивыми к растяжению и более прочными. Если концентрация гликозаминов в суставе снижается, хрящевая ткань теряет сопротивляемость к нагрузкам и становится более чувствительной к повреждениям.

какие функции выполняют суставные хрящи. Смотреть фото какие функции выполняют суставные хрящи. Смотреть картинку какие функции выполняют суставные хрящи. Картинка про какие функции выполняют суставные хрящи. Фото какие функции выполняют суставные хрящи

Прием глюкозаминов – один из важных этапов в лечении артроза

Возможно ли самостоятельное восстановление поврежденного хряща

Хондроциты – это клетки в составе хряща, которые вырабатывают необходимые вещества для его восстановления. Они отличаются высокой скоростью метаболизма, регенерируются быстро, но есть одна проблема. В составе хряща хондроцитов всего 2-3 %, поэтому хрящевая ткань самостоятельно полностью не восстанавливается.

Поврежденные хрящи трутся друг о друга, если синовиальной жидкости недостаточно, причиняя человеку боль. Для лечения артроза или остеоартроза приема хондропротекторов недостаточно, поскольку процесс разрушения происходит быстрее, чем восстановление. Опытные ортопеды рекомендуют внутрисуставные инъекции заменителя синовиальной жидкости «Нолтрекс». Препарат разводит трущиеся поверхности и выполняет функцию амортизатора.

какие функции выполняют суставные хрящи. Смотреть фото какие функции выполняют суставные хрящи. Смотреть картинку какие функции выполняют суставные хрящи. Картинка про какие функции выполняют суставные хрящи. Фото какие функции выполняют суставные хрящи

Noltrex не восстанавливает хрящ, но прекращает его разрушение и избавляет от боли

Как еще помочь хрящу

Скорость восстановления поврежденной хрящевой ткани зависит от численности и активности хондроцитов. Поэтому их необходимо обеспечить полноценным питанием через синовиальную жидкость, а также ускорить метаболизм. Этому как нельзя лучше способствуют активные движения.

какие функции выполняют суставные хрящи. Смотреть фото какие функции выполняют суставные хрящи. Смотреть картинку какие функции выполняют суставные хрящи. Картинка про какие функции выполняют суставные хрящи. Фото какие функции выполняют суставные хрящи

Чем больше вы двигаетесь, тем быстрее восстанавливается хрящевая ткань

Длительное обездвижение приводит к атрофии мышц и уменьшению хрящевой ткани, поскольку она недополучает питательные вещества. Поэтому самое малое, что вы можете сделать при артрозе, – обеспечить поступление в организм достаточного количества жидкости и двигаться – разумеется, без фанатизма, по мере сил и возможностей!

Источник

Строение синовиальных суставов

какие функции выполняют суставные хрящи. Смотреть фото какие функции выполняют суставные хрящи. Смотреть картинку какие функции выполняют суставные хрящи. Картинка про какие функции выполняют суставные хрящи. Фото какие функции выполняют суставные хрящи

Международные названия

Содержание

Современные представления о строении и функции синовиальных суставов

ОА — заболевание синовиальных суставов (диартрозов). Основные функции диартрозов — двигательная (перемещение составляющих сустав элементов по определенным осям) и опорная (нагрузка при стоянии, ходьбе, прыжке). Синовиальный сустав состоит из сочленяющихся костных поверхностей, покрытых хрящом, суставной полости, содержащей синовиальную жидкость, и суставной капсулы. Непостоянными анатомическими элементами диартроза являются связки, расположенные снаружи или, реже, внутри сочленения, и хрящевые мениски.

По форме сочленяющихся костных поверхностей диартрозы разделяют на следующие виды (Насонова В.А., Бунчук Н.В., 1997):

Сустав окружен фиброзной капсулой, прикрепляющейся к кости вблизи периферии суставного хряща и переходящей в надкостницу. Капсула синовиального сустава состоит из двух слоев — наружного фиброзного и внутреннего — синовиального. Фиброзный слой состоит из плотной волокнистой ткани, в некоторых местах фиброзный слой капсулы истончается с образованием заворотов или бурс, в других местах он утолщен, выполняя функцию связки сустава. Толщина фиброзного слоя капсулы определяется функциональной нагрузкой на сустав.

Утолщения капсулы образуют связки, состоящие из плотных параллельных пучков коллагеновых волокон, которые служат для стабилизации и укрепления сустава и ограничивают определенные движения. Среди особенностей капсулы, помимо выполнения ею функции опоры для синовиальной оболочки и соединения со связками, следует отметить большое количество находящихся в ней нервных окончаний в отличие от синовии, имеющей незначительное количество таких окончаний, и суставного хряща, не содержащего их вовсе. Считается, что вместе с нервами мышц нервы капсулы участвуют в контроле положения, а также реагируют на болевые воздействия (Вернон-Робертс В., 1990).

Синовиальная оболочка — наименьшая по массе и объему, но наиболее важная составная часть синовиального сустава, поскольку большая часть ревматических болезней протекает с воспалением синовиальной оболочки, которое носит общее название «синовит». Синовиальная оболочка выстилает все внутрисуставные структуры кроме суставного хряща, ее толщина составляет 25–35 мкм. Гистологически она представляет собой пласт соединительной ткани, состоящий из покровного, коллагенового и эластического слоев (Павлова В.Н., 1980). Синовиальная оболочка в норме имеет известное количество складок и пальцевидных ворсин и формирует тонкий синовиальный слой (называемый иногда покровным слоем); в его состав входят слой покровных клеток, образующий выстилку несочленяющихся поверхностей сустава, и субсиновиальный поддерживающий слой, состоящий из фиброзно-жировой соединительной ткани различной толщины, которая соединяется с капсулой. Синовиальный слой часто сливается с субсиновиальной тканью путем плавного перехода от аваскулярного внутреннего покрытия, содержащего множество клеток, к васкуляризированной субсиновиальной соединительной ткани с меньшим количеством клеток, которая по мере приближения к соединению ее с фиброзной капсулой становится все более насыщенной коллагеновыми волокнами. Из кровеносных сосудов субсиновиальной соединительной ткани в синовиальную жидкость выходят клетки и питательные вещества благодаря отсутствию морфологического разъединения синовиального и субсиновиального слоев (отсутствию базальной мембраны, наличию промежутков между покровными клетками).

Синовиальная оболочка в норме выстлана 1–3 слоями синовицитов — синовиальных клеток, расположенных в матриксе (основном веществе), богатом микрофибриллами и аггрегатами протеогликанов. Синовициты делят на две группы — типа А (макрофагоподобные) и типа В (фибробластоподобные). Синовициты типа А имеют неровную клеточную поверхность с большим количеством выростов, у них хорошо развит комплекс Гольджи, много вакуолей и везикул, однако рибосомальная эндоплазматическая сеть выражена слабо. Макрофагальные синовициты также могут содержать большое количество фагоцитированного материала. У синовицитов типа В поверхность относительно гладкая, хорошо развита рибосомальная эндоплазматическая сеть, они содержат лишь незначительное количество вакуолей. Классическое деление синовицитов на А-клетки, выполняющие фагоцитирующую функцию, и В-клетки, основной функцией которых является выработка компонентов синовиальной жидкости, прежде всего гиалуроновой кислоты, не отражает всех функций синовицитов. Так, были описаны синовициты типа С, которые по своим ультраструктурным признакам занимают промежуточное положение между клетками типа А и В. Кроме того, установлено, что макрофагоподобные клетки способны синтезировать гиалуроновую кислоту, а фибробластоподобные обладают способностью к активному фагоцитозу (Вернон-Робертс Б., 1990).

Современные представления о строении и функции суставного хряща

Структура суставного хряща человека

Нормальный суставной хрящ выполняет две основные функции: поглощение давления путем деформации во время механической нагрузки и обеспечение гладкости суставных поверхностей, что позволяет максимально уменьшить трение при движениях в суставе. Это обеспечивается уникальной структурой суставного хряща, который состоит из хондроцитов, погруженных во внеклеточный матрикс (ВКМ).

Нормальный суставной хрящ взрослого можно разделить на несколько слоев, или зон (рис. 6): поверхностная, или тангенциальная, зона, переходная зона, глубокая, или радиальная, зона и кальцифицированная зона. Слой между поверхностной и переходной зонами и особенно между переходной и глубокой зонами не имеет четких границ. Соединение между некальцифицированным и кальцифицированным суставным хрящом называется «волнистой границей» — это линия, определяемая при окрашивании декальцифицированной ткани. Кальцифицированная зона хряща составляет относительно постоянную пропорцию (6–8%) в общей высоте среза хряща (Oegema T.R., Thompson R.C., 1992). Общая толщина суставного хряща, включая зону кальцифицированного хряща, варьирует в зависимости от нагрузки на определенный участок суставной поверхности и от вида сустава. Перемежающееся гидростатическое давление в субхондральной кости играет важную роль в поддержании нормальной структуры хряща, замедляя оссификацию.

какие функции выполняют суставные хрящи. Смотреть фото какие функции выполняют суставные хрящи. Смотреть картинку какие функции выполняют суставные хрящи. Картинка про какие функции выполняют суставные хрящи. Фото какие функции выполняют суставные хрящи

Хондроциты составляют приблизительно 2–3% от общей массы ткани; в поверхностной (тангенциальной) зоне они рсположены вдоль, а в глубокой (радиальной) зоне — перпендикулярно к поверхности хряща; в переходной зоне хондроциты формируют группы по 2–4 клетки, рассеянные по всему матриксу. В зависимости от зоны суставного хряща варьирует плотность расположения хондроцитов — наивысшая плотность клеток в поверхностной зоне, наиболее низкая — в кальцифицированной (рис. 6). Кроме того, плотность распределения клеток варьирует от сустава к суставу, она обратно пропорциональна толщине хряща и нагрузке, которую испытывает соответствующий его участок.

Наиболее поверхностно расположенные хондроциты имеют дисковидную форму и образуют в тангенциальной зоне несколько слоев клеток, расположенных ниже узкой полоски матрикса; глубже расположенные клетки этой зоны имеют тенденцию к более неровным контурам. В переходной зоне хондроциты имеют сферическую форму, иногда они объединяются в небольшие группы, рассеянные в матриксе. Хондроциты глубокой зоны имеют преимущественно эллипсоидную форму, группируются в радиально расположеные цепочки из 2–6 клеток. В кальцифицированной зоне они распределены еще более разреженно; некоторые из них некротизированы, хотя большинство жизнеспособны. Клетки окружены некальцифицированным матриксом, межклеточное пространство — кальцифицировано.

Таким образом, суставной хрящ человека состоит из гидратированного ВКМ и погруженных в него клеток, которые составляют 2–3% от общего объема ткани. Так как хрящевая ткань не имеет кровеносных и лимфатических сосудов, взаимодействие между клетками, доставка к ним питательных веществ, удаление продуктов обмена осуществляется путем диффузии через ВКМ. Несмотря на то, что метаболически хондроциты очень активны, в норме у взрослых людей они не делятся. Хондроциты существуют в бескислородной среде, считают, что их метаболизм осуществляется преимущественно анаэробным путем (Shapiro I.M. et al., 1991).

Каждый хондроцит рассматривают как отдельную метаболическую единицу хряща, изолированную от соседних клеток, но ответственную за продукцию элементов ВКМ в непосредственной близости от данной клетки и поддержание его состава (Aydelotte M.B., Kuettner K.E., 1988).

В ВКМ выделяют три отдела (рис. 7), каждый из которых имеет уникальную морфологическую структуру (Hunziker E.B., 1992) и определенный биохимический состав (Mok S.S. et al., 1994; Hauselmann H.J. et al., 1996). ВКМ, непосредственно прилегающий к базальной мембране хондроцита, называется перицеллюлярным, или лакунарным, матриксом. Он характеризуется высоким содержанием агрегатов протеогликанов, связанных с клеткой взаимодействием гиалуроновой кислоты с СD44-подобными рецепторами (Knudson C.B., Knudson W., 1993), и относительным отсутствием организованных фибрилл коллагенов. Непосредственно с перицеллюлярным матриксом соприкасается территориальный, или капсулярный, матрикс, который состоит из сети перекрещивающихся фибриллярных коллагенов, которая инкапсулирует отдельные клетки или (иногда) группы клеток, формируя хондрон, и, вероятно, обеспечивает специальную механическую поддержку клеток (Kuettner K.E., Thonar E.J.M.A., 1998). Контакт хондроцитов с капсулярным матриксом осуществляется посредством многочисленных цитоплазматических отростков, богатых микрофиламентами, а также посредством специфических матриксных молекул, таких, как анкорин и СD44-подобные рецепторы. Наиболее крупный и наиболее удаленный от базальной мембраны хондроцита отдел ВКМ — межтерриториальный матрикс, содержащий наибольшее количество коллагеновых фибрилл и протеогликанов (Hunziker E.B., 1992).

какие функции выполняют суставные хрящи. Смотреть фото какие функции выполняют суставные хрящи. Смотреть картинку какие функции выполняют суставные хрящи. Картинка про какие функции выполняют суставные хрящи. Фото какие функции выполняют суставные хрящи

Разделение ВКМ на отделы более четко очерчено в суставном хряще взрослого человека, чем в незрелом суставном хряще (Kuettner K.E., Thonar E.J.M.A., 1998). Относительный размер каждого отдела варьирует не только в разных суставах, но даже в пределах одного и того же хряща. Каждый хондроцит вырабатывает матрикс, окружающий его. По данным исследований (Hunziker E.B., 1992; Mok S.S. et al., 1994), хондроциты зрелой хрящевой ткани осуществляют активный метаболический контроль над своими перицеллюлярным и территориальным матриксами, менее активно они контролируют межтерриториальный матрикс, который может быть метаболически «инертным».

Как указывалось раньше, суставной хрящ главным образом состоит из обширного ВКМ, синтезируемого и регулируемого хондроцитами. Тканевые макромолекулы и их концентрация меняются в течение жизни в соответствии с изменяющимися функциональными потребностями. Однако остается неясным: клетки синтезируют весь матрикс одновременно или в определенные фазы в соответствии с физиологическими потребностями (Kuettner K.E., Thonar E.J.M.A., 1998). Концентрация макромолекул, метаболическое равновесие между ними, взаимоотношение и взаимодействие определяют биохимические свойства, а значит, и функцию суставного хряща в пределах одного сустава. Основным компонентом ВКМ суставного хряща взрослого человека является вода (65–70% от общей массы), которая прочно связана внутри него благодаря особым физическим свойствам макромолекул хрящевой ткани, входящих в состав коллагенов, протеогликанов и неколлагеновых гликопротеинов (Thonar E.J.M.A. et al., 1999).

Биохимический состав хряща

Коллагеновые волокна состоят из молекул фибриллярного белка коллагена. У млекопитающих на долю коллагена приходится четвертая часть всех белков организма. Коллаген формирует фибриллярные элементы (коллагеновые фибриллы), состоящие из структурных субъединиц, называемых тропоколлагеном. Молекула тропоколлагена имеет три цепи, которые образуют тройную спираль. Такое строение молекулы тропоколлагена, а также структура коллагенового волокна, когда эти молекулы располагаются параллельно в продольном направлении с постоянным сдвигом примерно на 1/4 длины и обеспечивают высокую упругость и прочность тканям, в которых они находятся. В настоящее время известны 10 генетически различных типов коллагена, различающихся химической структурой α-цепей и/или их набором в молекуле. Наиболее изученные первые четыре типа коллагена способны формировать до 10 молекулярных изоформ.

Коллагеновые фибриллы входят в состав внеклеточного пространства большинства видов соединительной ткани, в том числе и хрящевой. Внутри нерастворимой трехмерной сети из перекрещивающихся коллагеновых фибрилл «запутаны» другие более растворимые компоненты, такие, как протеогликаны, гликопротеины и тканеспецифические протеины; иногда они ковалентно связаны с коллагеновыми элементами.

Организованные в фибриллы коллагеновые молекулы составляют около 50% органического сухого остатка хряща (10–20% нативного хряща) (Thonar E.J.M.A. et al., 1999). В зрелом хряще около 90% коллагенов составляют коллагены II типа, которые обнаруживают лишь в некоторых тканях (например, стекловидное тело, эмбриональная спинная струна). Коллаген II типа относится к I классу (формирующих фибриллы) коллагеновых молекул. Кроме него в зрелом суставном хряще человека также находят коллагены IX, XI типа и в небольшом количестве VI типа. Относительное количество коллагеновых волокон IX типа в коллагеновых фибриллах снижается от 15% в хряще плода до около 1% в зрелом хряще быка (Mayne R., 1989; Eyre D.R., 1991; 1992).

Молекулы коллагена II типа состоят из трех идентичных полипептидных α1(II)-цепей, синтезируемых и секретируемых в виде проколлагена-предшественника. Как только готовые молекулы коллагена высвобождаются во внеклеточное пространство, они формируют фибриллы (Kuettner K.E., Thonar E.J.M.A., 1992). В зрелом суставном хряще коллаген II типа образуют фибриллярные аркады, в которых более «толстые» молекулы расположены в глубоких слоях ткани, а более «тонкие» — горизонтально в поверхностных слоях (Schenk R.K. et al., 1986; Aydelotte M.B., Kuettner K.E., 1988).

В гене проколлагена II типа обнаружен экзон, кодирующий богатый цистеином N-терминальный пропептид. Этот экзон экспрессируется не в зрелом хряще, а на ранних стадиях развития (прехондрогенез). Благодаря наличию этого экзона молекула проколлагена II типа (тип II А) длиннее коллагена II типа (Ryan M.C., Sandell L.J., 1990). Вероятно, экспрессия этого типа проколлагена угнетает накопление элементов в ВКМ суставного хряща. Возможно, он играет определенную роль в развитии патологии хряща (например, неадекватный репаративный ответ, образование остеофитов и др.) (Sundell L.J. et al., 1992).

Сеть из коллагеновых фибрилл II типа обеспечивает функцию сопротивления растяжению и необходима для поддержания объема и формы ткани (Eyre D.R. et al., 1992; Hunziker E.B., 1992). Эта функция усиливается ковалентными и поперечными связями между молекулами коллагена (Eyre D.R. et al., 1990). В ВКМ фермент лизилоксидаза образует альдегид из гидроксилизина, который затем превращается в мультивалентную аминокислоту гидроксилизил-пиридинолин, формирующую поперечные связи между цепями. С одной стороны, концентрация этой аминокислоты повышается с возрастом, однако в зрелом хряще она практически не изменяется (Eyre D.R. et al., 1988). С другой стороны, в суставном хряще обнаруживают повышение с возрастом концентрации поперечных связей различных типов, образующихся без участия ферментов (Monnier V.M., Cerami A., 1981).

Около 10% от общего количества коллагенов хрящевой ткани составляют так называемые минорные коллагены, которые во многом обусловливают уникальную функцию этой ткани (Thonar E.J.M.A. et al., 1999). Коллаген IX типа принадлежит к III классу короткоспиральных молекул и к уникальной группе FACIT-коллагенов (Fibril-Associated Collagen with Interrupted Triple-helices — фибрилл-ассоциированный коллаген с прерванной тройной спиралью) (Olsen B.R., 1992). Он состоит из трех генетически различных цепей. Одна из них — α2-цепь — гликозилируется одновременно с хондроитин сульфатом, что делает эту молекулу одновременно протеогликаном. Между сегментами спирали коллагена IХ типа и коллагеном II типа обнаруживают как зрелые, так и незрелые гидроксипиридиновые поперечные связи (Eyre D.R. et al., 1987; van der Rest M., Mayne R., 1988). Коллаген IХ также может функционировать как межмолекулярный-интерфибриллярный «коннектор» (или мостик) между прилежащими коллагеновыми фибриллами (Muller-Glauser W. et al., 1986; Wu J.J., Eyre D.R., 1989). Молекулы коллагена IХ образуют поперечные связи между собой, что увеличивает механическую стабильность фибриллярной трехмерной сети и защищает ее от воздействия ферментов. Они также обеспечивают сопротивление деформации, ограничивая набухание находящихся внутри сети протеогликанов. Кроме анионной CS-цепи молекула коллагена IХ содержит катионный домен, сообщающий фибрилле большой заряд и склонность к взаимодействию с другими матриксными макромолекулами (Vasios G. et al., 1988).

Коллаген ХI типа составляет только 2–3% от общей массы коллагенов. Он принадлежит к I классу (образующих фибриллы) коллагенов и состоит из трех различных α-цепей. Вместе с коллагенами II и IХ типов коллаген ХI типа образует гетеротипные фибриллы суставного хряща (Eyre D.R., 1991). Молекулы коллагена ХI типа выявлены внутри коллагеновых фибрилл II типа с помощью иммуноэлектромикроскопии. Возможно, они организуют молекулы коллагена II типа, контролируя латеральный рост фибрилл и детерминируя диаметр гетеротипной коллагеновой фибриллы (Eikenberry E.F. et al., 1992). Кроме того, коллаген ХI принимает участие в формировании поперечных связей, однако даже в зрелом хряще поперечные связи остаются в виде незрелых дивалентных кетоаминов (Eyre D.R. et al., 1992).

Малое количество коллагена VI типа, другого представителя III класса короткоспиральных молекул, обнаружено в суставном хряще (Eyre D.R., 1991; Thomas J.T. et al., 1994). Коллаген VI типа образует различные микрофибриллы и, возможно, концентрируется в капсулярном матриксе хондрона (Poole C.A. et al., 1988).

Протеогликаны — это белки, к которым ковалентно присоединена по крайней мере одна гликозаминогликановая цепь. Протеогликаны относятся к одним из наиболее сложных биологических макромолекул. Наиболее обширно протеогликаны представлены в ВКМ хряща. «Запутанные» внутри сети из коллагеновых фибрилл, гидрофильные протеогликаны выполняют свою основную функцию — сообщают хрящу способность обратимо деформироваться (Kuettner K.E., Thonar E.J.M.A., 1998). Предполагают, что протеогликаны осуществляют и ряд других функций, суть которых до конца не ясна (Wight T., Mecham R., 1987; Hardingham T.E. et al., 1992; Sandy J.D., 1992).

Аггрекан — основной протеогликан суставного хряща: он составляет около 90% общей массы протеогликанов в ткани (Thonar E.J.M.A. et al., 1999). Его стрежневой белок массой 230 кД гликозилирован множеством ковалентно связанных гликозаминогликановых цепей, а также N-концевыми и С-концевыми олигосахаридами (рис. 8).

какие функции выполняют суставные хрящи. Смотреть фото какие функции выполняют суставные хрящи. Смотреть картинку какие функции выполняют суставные хрящи. Картинка про какие функции выполняют суставные хрящи. Фото какие функции выполняют суставные хрящи

Гликозаминогликановые цепи суставного хряща, которые составляют около 90% от общей массы макромолекул, — кератансульфат (представляет собой последовательность из сульфатированного дисахарида N-ацетилглюкозамингалактоза с множественными сульфатированными участками и других моносахаридных остатков, таких, как сиаловая кислота) и хондроитин сульфат (представляет собой последовательность из дисахарида N-ацетилгалактозамин-глюкуроновой кислоты с сульфатным эфиром, присоединенным к каждому четвертому или шестому атому углерода N-ацетилгалактозамина).

Стержневой белок аггрекана содержит три глобулярных (G1, G2, G3) и два межглобулярных (Е1 и Е2) домена (см. рис. 8). N-концевой участок содержит G1- и G2- домены, разделенные Е1-сегментом, протяженностью 21 нм. G3-домен, расположенный на С-концевом участке, отделен от G2 более длинным (около 260 нм) Е2-сегментом, который несет на себе более 100 цепей хондроитин сульфатов около 15–25 цепей кератан сульфатов, а также О-связанные олигосахариды. N-связанные олигосахариды обнаруживают главным образом в пределах G1- и G2-доменов и Е1-сегмента, а также вблизи G3-региона. Гликозаминогликаны группируются в двух регионах: наиболее протяженный (так называемый регион, богатый хондроитин сульфатами) содержит цепи хондроитин сульфатов и около 50% кератан сульфатных цепей (Thonar E.J.M.A., Kuettner K.E., 1987). Регион, богатый кератан сульфатами, локализуется на Е2-сегменте вблизи G2-домена и предшествует региону, богатому хондроитин сульфатами (Hardingham T.E. et al., 1992). Молекулы аггрекана также содержат фосфатные эфиры, локализованные прежде всего на ксилозных остатках, которые присоединяют цепи хондроитин сульфатов к стержневому белку; их также обнаруживают на сериновых остатках стержневого белка (Thonar E.J.M.A. et al., 1999).

С-терминальный сегмент G3-домена высокогомологичен лектину, благодаря чему молекулы протеогликана могут фиксироваться в ВКМ путем связывания с некоторыми углеводородными структурами (Hardingham T.E. et al., 1992).

В недавно проведенных исследованиях был обнаружен экзон, кодирующий ЭФР-подобный (эпидермальный фактор роста) субдомен в пределах G3. Используя анти-ЭФР поликлональные антитела, ЭФР-подобный эпитоп был локализован внутри пептида массой 68 кД в аггрекане суставного хряща человека. Однако его функции требуют уточнения (Kuettner K.E., Thonar E.J.M.A., 1998). Этот субдомен также обнаружен в структуре молекул адгезии, контролирующих миграцию лимфоцитов (Hardingham T.E. et al., 1992). Лишь около трети молекул аггрекана, изолированных из зрелого суставного хряща человека, содержат интактный G3-домен; вероятно, это связано с тем, что в ВКМ молекулы аггрекана могут быть уменьшены в размерах ферментным путем. Дальнейшая судьба и функция отщепленных фрагментов неизвестны (Kuettner K.E., Thonar E.J.M.A., 1998).

Главным функциональным сегментом молекулы аггрекана является гликозаминогликан-несущий Е2-сегмент. Участок, богатый кератан сульфатами, содержит аминокислоты пролин, серин и треонин. Большинство остатков серина и треонина О-гликозилированы N-ацетилгалактозаминовыми остатками, они запускают синтез некоторых олигосахаридов, которые встраиваются в цепи кератан сульфатов, тем самым удлиняя их. Остальная часть Е2-сегмента содержит более 100 последовательностей серин–глицин, в которых серин обеспечивает прикрепление к ксилозильным остаткам в начале цепей хондроитин сульфатов. Обычно и хондроитин-6-сульфат, и хондроитин-4-сульфат существуют одновременно в пределах одной и той же молекулы протеогликана, из соотношение варьирует в зависимости от локализации хрящевой ткани и возраста человека (Thonar E.J.M.A. et al., 1999).

Структура молекул аггрекана в матриксе суставного хряща человека претерпевает ряд изменений в процессе созревания и старения (Roughley P.J., Mort J.S., 1986; Thonar E.J.M.A. et al., 1986; Thonar E.J.M.A., Kuettner K.E., 1987; Bayliss M.T., 1990). Связанные со старением изменения включают снижение гидродинамического размера в результате изменения средней длины цепей хондроитин сульфатов, увеличение числа и длины цепей кератан сульфатов (Thonar E.J.M.A., Kuettner K.E., 1987). Ряд изменений молекулы аггрекана также претерпевают под действием протеолитических ферментов (например, аггреканазы и стромелезина) на стержневой белок (Plass A.H.K., Sandy J.D., 1995). Это приводит к прогрессирующему уменьшению средней длины стержневого белка молекул аггрекана.

Молекулы аггрекана синтезируются хондроцитами и секретируются в ВКМ, где они формируют агрегаты, стабилизированные молекулами связующих белков. Эта агрегация включает в себя высокоспецифичные нековалентные и кооперативные взаимодействия между нитью глюкуроновой кислоты и почти 200 молекулами аггреканов и связующих белков. Глюкуроновая кислота — внеклеточный несульфатированный линейный гликозаминогликан с большой молекулярной массой, состоящий из множества последовательно связанных молекул N-ацетилглюкозамина и глюкуроновой кислоты (Knudson C.B., Knudson W., 1993). Спаренные петли G1-домена аггрекана (см. рис. 8) обратимо взаимодействуют с пятью последовательно расположенными дисахаридами гиалуроновой кислоты. Связующий белок, который содержит аналогичные (высокогомологичные) спаренные петли (Neame P.J. et al., 1987), взаимодействует с G1-доменом и молекулой гиалуроновой кислоты и стабилизирует структуру агрегата. Комплекс G1-домен — гиалуроновая кислота — связующий белок формирует высокостабильное взаимодействие, которое защищает G1-домен и связующий белок от действия протеолитических ферментов. Идентифицированы две молекулы связующего белка с молекулярной массой 40–50 кД; они отличаются друг от друга степенью гликозилирования. Только одна молекула связующего белка имеется в месте связи гиалуроновая кислота — аггрекан. Третья, более мелкая, молекула связующего белка образуется из более крупных путем протеолитического отщепления (Roughley P.J. et al., 1992).

Около 200 молекул аггрекана могут связываться с одной молекулой гиалуроновой кислоты с образованием агрегата длиной 8 мкм. В клеточно-ассоциированном матриксе, состоящем из перицеллюлярного и территориального отделов, агрегаты сохраняют свою связь с клетками путем связывания (через нить гиалуроновой кислоты) с CD44-подобными рецепторами на клеточной мембране (Knudson C.B., Knudson W., 1993).

Образование агрегатов в ВКМ — процесс сложный. Вновь синтезированные молекулы аггрекана не сразу проявляют способность связываться с гиалуроновой кислотой (Sandy J.D., Plass A.H.K., 1989). Это может служить регуляторным механизмом, позволяющим вновь синтезированным молекулам достичь межтерриториальной зоны матрикса перед тем, как быть иммобилизированными в крупные агрегаты (Mok S.S. et al., 1994). Количество вновь синтезированных молекул аггрекана и связующих белков, способных образовывать агрегаты путем взаимодействия с гиалуроновой кислотой, значительно уменьшается с возрастом (Bayliss M.T., 1992). Кроме того, с возрастом значительно уменьшаются размеры агрегатов, выделенные из суставного хряща человека. Это отчасти связано с уменьшением средней длины молекул гиалуроновой кислоты и молекул аггрекана.

Установлено два вида агрегатов в суставном хряще (Manicourt D.H. et al., 1988). Средний размер агрегатов первого вида — 60 S, агрегатов второго вида (быстро осаждающихся «суперагрегатов») — 120 S. Последний отличается обилием молекул связующего белка (Manicourt D.H. et al., 1988; Pita J.C. et al., 1992). Наличие этих суперагрегатов, возможно, играет большую роль в функционировании ткани; во время восстановления ткани после иммобилизации конечности в средних слоях суставного хряща обнаруживают более высокие их концентрации, в суставе, пораженном ОА, на ранних стадиях заболевания их размеры значительно уменьшаются (Pita J.C. et al., 1992).

Кроме аггрекана, суставной хрящ содержит ряд более мелких протеогликанов. Бигликан и декорин, молекулы, несущие дерматан сульфаты, имеют молекулярную массу около 100 и 70 кД соответственно; масса их стержневого белка — около 30 кД (Fisher L.W. et al., 1989).

В суставном хряще человека молекула бигликана содержит две цепи дерматан сульфата, тогда как более часто встречающийся декорин — только одну. Эти молекулы составляют лишь небольшую часть протеогликанов в суставном хряще, хотя их может быть также много, как и крупных агрегированных протеогликанов. Мелкие протеогликаны взаимодействуют с другими макромолекулами в ВКМ, включая коллагеновые фибриллы, фибронектин, факторы роста и др. (Kuettner K.E., Thonar E.J.M.A., 1998). Декорин первоначально локализуется на поверхности коллагеновых фибрилл и угнетает коллагеновый фибриллогенез (Vogel K.G. et al., 1984; Scott J.E., 1990). Стержневой протеин прочно сохраняется с клеточно-связывающим доменом фибронектина, тем самым, вероятно, препятствуя связыванию последнего с рецепторами клеточной поверхности (интегринами). В связи с тем что и декорин, и бигликан связываются с фибронектином и сдерживают адгезию и миграцию клеток, а также образование тромбов, они способны угнетать процессы тканевой репарации (Rosenberg L., 1992).

Фибромодулин суставного хряща — это протеогликан с молекулярной массой 50–65 кД, ассоциированный с коллагеновыми фибриллами (Olberg A. et al., 1989). Его стержневой протеин, гомологичный стержневым протеинам декорина и бигликана, содержит большое количество остатков сульфата тирозина. Эта гликозилированная форма фибромодулина (ранее ее называли матриксный протеин 59 кД) может участвовать в регуляции образования и поддержании структуры коллагеновых фибрилл (Plass A.H.K. et al., 1992). Фибромодулин и декорин располагаются на поверхности коллагеновых фибрилл. Таким образом, как указывалось раньше, увеличению фибриллы в диаметре должно предшествовать селективное удаление этих протеогликанов (а также молекул коллагена IХ типа) (Kuettner K.E., Thonar E.J.M.A., 1998).

Суставной хрящ содержит в ВКМ ряд белков, которые не относятся ни к протеогликанам, ни к коллагенам (рис. 9). Они взаимодействуют с другими макромолекулами с образованием сети, в которую включено большинство молекул ВКМ (Heingard D., Oldberg A., 1989; Heingard D. et al., 1995).

какие функции выполняют суставные хрящи. Смотреть фото какие функции выполняют суставные хрящи. Смотреть картинку какие функции выполняют суставные хрящи. Картинка про какие функции выполняют суставные хрящи. Фото какие функции выполняют суставные хрящи

Анкорин, белок с массой 34 кД, локализуется на поверхности хондроцитов и в клеточной мембране, опосредует взаимодействие между клеткой и матриксом. В связи с его высокой аффинностью к коллагену II типа он может выступать в качестве механорецептора, передающего сигнал об измененном давлении на фибриллу хондроциту (von der Mark K. et al., 1986).

Фибронектин — компонент большинства хрящевых тканей, незначительно отличается от фибронектина плазмы крови (Kuettner K.E., Thonar E.J.M.A., 1998). Предполагают, что фибронектин способствует интеграции матрикса путем взаимодействия с клеточными мембранами и другими составными матрикса, такими, как коллаген II типа и тромбоспондин (Heingard D. et al., 1995). Фрагменты фибронектина негативно влияют на метаболизм хондроцитов — угнетают синтез аггрекана, стимулируют катаболические процессы. В суставной жидкости больных с ОА обнаружена высокая концентрация фрагментов фибронектина, таким образом, они могут участвовать в патогенезе заболевания на поздних стадиях (Homandberg G.A. et al., 1992). Вероятно, такими же эффектами обладают и фрагменты других матриксных молекул, которые связываются с рецепторами хондроцитов (Poole A.R., 1995).

Олигомерный матриксный протеин хряща (ОМПХ) — член суперсемейства тромбоспондинов, представляет собой пентамер с пятью идентичными субъединицами с молекулярной массой около 83 кД. Их обнаруживают в большом количестве в суставном хряще, особенно в слое пролиферирующих клеток в растущей ткани. Поэтому, возможно, ОМПХ принимает участие в регуляции роста клеток (Heingard D. et al., 1995). В значительно более низкой концентрации их обнаруживают в ВКМ зрелого суставного хряща (Heingard D. et al., 1995).

К матриксным протеинам также относят:

Кроме того, очевидно, что хондроциты экспрессируют негликозилированные формы малых неагрегированных протеогликанов на определенных стадиях развития хряща и в патологических условиях, однако их специфическая функция в настоящее время изучается.

Функциональные свойства суставного хряща

Молекулы аггрекана сообщают суставному хрящу способность претерпевать обратимую деформацию (Maroudas A. et al., 1992). Они демонстрируют специфические взаимодействия внутри внеклеточного пространства и, несомненно, играют важную роль в организации, структуре и функции ВКМ. В хрящевой ткани молекулы аггрекана достигают концентрации 100 мг/мл (Thonar E.J.M.A. et al., 1999). В хряще молекулы аггрекана сжаты до 20% объема, который они занимают в растворе. Трехмерная сеть, образованная фибриллами коллагена, сообщает ткани свойственную ей форму и предотвращает увеличение объема протеогликанов. Внутри коллагеновой сети неподвижные протеогликаны несут большой отрицательный электрический заряд (содержат большое количество анионных групп), который позволяет взаимодействовать с подвижными катионными группами интерстициальной жидкости (Kuettner K.E., Thonar E.J.M.A., 1998). Взаимодействуя с водой, протеогликаны обеспечивают так называемое давление набухания, которому противодействует коллагеновая сеть (Maroudas A., 1975).

Наличие воды в ВКМ является очень важным моментом. Вода определяет объем ткани; связанная с протеогликанами, она обеспечивает сопротивление сжатию. Кроме того, вода обеспечивает транспорт молекул и диффузию в ВКМ. Высокая плотность отрицательного заряда на крупных протеогликанах, фиксированных в ткани, создает «эффект исключенного объема» (Kuettner K.E., Thonar E.J.M.A., 1998). Размер пор внутри концентрированного раствора протеогликанов настолько мал, что диффузия крупных глобулярных белков в ткань резко ограничена (Urban J.P.G., 1990). ВКМ отталкивает мелкие отрицательно заряженные (например, ионы хлора) и крупные (такие, как альбумин и иммуноглобулины) белки. Размер ячеек внутри плотной сети из коллагеновых фибрилл и протеогликанов соизмерим лишь с размерами некоторых неорганических молекул (например, натрия и калия, но не кальция).

В ВКМ некоторое количество воды присутствует в коллагеновых фибриллах. Физико-химические и биомеханические свойства хряща определяет экстрафибриллярное пространство (Maroudas A. et al., 1992). Содержание воды во внутрифибриллярном пространстве зависит от концентрации протеогликанов в экстрафибриллярном пространстве и повышается при снижении концентрации последних.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *