ΠΊΠ°ΠΊΠΈΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°ΡΡΡΡ ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ Π½Π΅ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎ
Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ
Π§ΡΠΎΠ±Ρ ΠΎΠΏΠΈΡΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ ΠΈ ΠΎΡΠ»ΠΈΡΠΈΡΡ ΠΎΠ΄Π½ΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΎΡ Π΄ΡΡΠ³ΠΈΡ , ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ 6 Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ. ΠΠ½ΠΈ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΡΠ°ΠΊ (ΡΠΈΡ. 1):
Π’Π°ΠΊΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΠΊΠ°ΠΊ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ°ΡΠ°Π»ΡΠ½ΡΡ ΡΠ°Π·Ρ, ΡΠ°ΠΊ ΠΆΠ΅, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ \(\large \Delta t\), Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½ΡΠ»Ρ ΡΠ΄Π²ΠΈΠ³Π°Π΅ΡΡΡ Π½Π°ΡΠ°Π»ΠΎ Π±Π»ΠΈΠΆΠ°ΠΉΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°.
Π§Π°ΡΡΠΎΡΡ ΠΈ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΡΡ ΡΠ°ΡΡΠΎΡΡ Π²ΡΡΠΈΡΠ»ΡΡΡ ΠΈΠ· Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°, ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π°ΠΌ. ΠΠ½ΠΈ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π½ΠΈΠΆΠ΅ Π² ΡΠ΅ΠΊΡΡΠ΅ ΡΡΠΎΠΉ ΡΡΠ°ΡΡΠΈ.
Π ΡΠ°Π·Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ, Π² ΠΊΠΎΡΠΎΡΡΡ Π²Ρ ΠΎΠ΄ΠΈΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΡΡΠΈΠΉ Π½Π°Ρ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. Π§ΠΈΡΠ°ΠΉΡΠ΅ Π΄Π°Π»Π΅Π΅.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π°
ΠΠΌΠΏΠ»ΠΈΡΡΠ΄Π° β ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ, ΡΠΎ Π΅ΡΡΡ, ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ.
ΠΠ·ΠΌΠ΅ΡΡΡΡ Π² ΡΠ΅Ρ ΠΆΠ΅ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ , Π² ΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½Π° ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ°ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π°. Π ΠΏΡΠΈΠΌΠ΅ΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°, Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΠΌΠ΅ΡΡΠ°Ρ .
Π ΡΠ»ΡΡΠ°Π΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π·Π°ΡΡΠ΄, Π΅Π΅ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΠΡΠ»ΠΎΠ½Π°Ρ . ΠΡΠ»ΠΈ ΠΊΠΎΠ»Π΅Π±Π»Π΅ΡΡΡ ΡΠΎΠΊ β ΡΠΎ Π² ΠΠΌΠΏΠ΅ΡΠ°Ρ , Π° Π΅ΡΠ»ΠΈ β Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅, ΡΠΎ Π² ΠΠΎΠ»ΡΡΠ°Ρ .
Π§Π°ΡΡΠΎ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π΅Π΅, ΠΏΡΠΈΠΏΠΈΡΡΠ²Π°Ρ ΠΊ Π±ΡΠΊΠ²Π΅, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΠ΅ΠΉ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈΠ½Π΄Π΅ΠΊΡ Β«0Β» ΡΠ½ΠΈΠ·Ρ.
Π ΠΏΡΠΈΠΌΠ΅ΡΡ, ΠΏΡΡΡΡ ΠΊΠΎΠ»Π΅Π±Π»Π΅ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π° \( \large x \). Π’ΠΎΠ³Π΄Π° ΡΠΈΠΌΠ²ΠΎΠ»ΠΎΠΌ \( \large x_ <0>\) ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΡΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ.
ΠΠ½ΠΎΠ³Π΄Π° Π΄Π»Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π±ΠΎΠ»ΡΡΡΡ Π»Π°ΡΠΈΠ½ΡΠΊΡΡ Π±ΡΠΊΠ²Ρ A, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΎ ΠΏΠ΅ΡΠ²Π°Ρ Π±ΡΠΊΠ²Π° Π°Π½Π³Π»ΠΈΠΉΡΠΊΠΎΠ³ΠΎ ΡΠ»ΠΎΠ²Π° Β«amplitudeΒ».
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°ΠΊ (ΡΠΈΡ. 2):
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄
ΠΠΎΠ³Π΄Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ ΡΠΎΡΠ½ΠΎ, ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠ°ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΎΠ΄Π½ΠΈ ΠΈ ΡΠ΅ ΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ ΠΊΡΡΠΎΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. Π’Π°ΠΊΠΎΠΉ ΠΊΡΡΠΎΡΠ΅ΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ.
ΠΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π΅Π³ΠΎ ΠΎΠ±ΡΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΎΠΉ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ Β«TΒ» ΠΈ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ .
\( \large T \left( c \right) \) β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ΄Π½Π° ΡΠ΅ΠΊΡΠ½Π΄Π° β Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠΎΡΡΠΎΠΌΡ, Ρ ΠΎΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΈ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ , Π½ΠΎ Π΄Π»Ρ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΠ½ Π±ΡΠ΄Π΅Ρ ΠΈΠ·ΠΌΠ΅ΡΡΡΡΡΡ Π΄ΠΎΠ»ΡΠΌΠΈ ΡΠ΅ΠΊΡΠ½Π΄Ρ.
Π§ΡΠΎΠ±Ρ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ (ΡΠΈΡ. 3), Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π΄Π²Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. ΠΠΎΡΠ»Π΅, ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΎΡ ΡΡΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΊ ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠ½ΠΊΡΠΈΡΡ. Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΡΠ½ΠΊΡΠΈΡΠ°ΠΌΠΈ β ΡΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ΅ΡΠΈΠΎΠ΄ β ΡΡΠΎ Π²ΡΠ΅ΠΌΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ.
ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π½Π°ΠΉΡΠΈ ΡΠ΄ΠΎΠ±Π½Π΅Π΅ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠ°ΠΊΠΈΡ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² (ΡΠΈΡ. 4):
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°ΡΡΠΎΡΠ°
ΠΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ Π΅Π΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ΅ΡΠ΅ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²Ρ Β«Π½ΡΒ» \( \large \nu \).
Π§Π°ΡΡΠΎΡΠ° ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π½Π° Π²ΠΎΠΏΡΠΎΡ: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Π·Π° ΠΎΠ΄Π½Ρ ΡΠ΅ΠΊΡΠ½Π΄Ρ?Β» ΠΠ»ΠΈ ΠΆΠ΅: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠ½Π΄Π΅?Β».
ΠΠΎΡΡΠΎΠΌΡ, ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΡΠ°ΡΡΠΎΡΡ β ΡΡΠΎ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ:
\( \large \nu \left( \frac<1>
ΠΠ½ΠΎΠ³Π΄Π° Π² ΡΡΠ΅Π±Π½ΠΈΠΊΠ°Ρ
Π²ΡΡΡΠ΅ΡΠ°Π΅ΡΡΡ ΡΠ°ΠΊΠ°Ρ Π·Π°ΠΏΠΈΡΡ \( \large \displaystyle \nu \left( c^ <-1>\right) \), ΠΏΠΎΡΠΎΠΌΡ, ΡΡΠΎ ΠΏΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ \( \large \displaystyle \frac<1>
ΠΠ°ΡΠΈΠ½Π°Ρ Ρ 1933 Π³ΠΎΠ΄Π° ΡΠ°ΡΡΠΎΡΡ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π² ΠΠ΅ΡΡΠ°Ρ Π² ΡΠ΅ΡΡΡ ΠΠ΅Π½ΡΠΈΡ Π° Π ΡΠ΄ΠΎΠ»ΡΡΠ° ΠΠ΅ΡΡΠ°. ΠΠ½ ΡΠΎΠ²Π΅ΡΡΠΈΠ» Π·Π½Π°ΡΠΈΠΌΡΠ΅ ΠΎΡΠΊΡΡΡΠΈΡ Π² ΡΠΈΠ·ΠΈΠΊΠ΅, ΠΈΠ·ΡΡΠ°Π» ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠ΅ Π²ΠΎΠ»Π½Ρ.
ΠΠ΄Π½ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠ΅ Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ°ΡΡΠΎΡΠ΅ Π² 1 ΠΠ΅ΡΡ.
Π§ΡΠΎΠ±Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°ΡΡΠΎΡΡ, Π½ΡΠΆΠ½ΠΎ Π½Π° ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄. Π Π·Π°ΡΠ΅ΠΌ ΠΏΠΎΡΡΠΈΡΠ°ΡΡ ΡΠ°ΡΡΠΎΡΡ ΠΏΠΎ ΡΠ°ΠΊΠΎΠΉ ΡΠΎΡΠΌΡΠ»Π΅:
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π΅ΡΠ΅ ΠΎΠ΄ΠΈΠ½ ΡΠΏΠΎΡΠΎΠ± ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°ΡΡΠΎΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. ΠΡΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠ½Π΄Π΅, ΠΈ ΡΠΎΡΡΠΈΡΠ°ΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΡΠΌΠ΅ΡΡΠΈΠ²ΡΠΈΡ ΡΡ Π² ΡΡΠΎΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» (ΡΠΈΡ. 5).
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ°
ΠΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΈΠΌΠ΅ΡΡ ΠΌΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅Π³ΠΎ β ΡΡΠΎ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΠ΅ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠ΄Π½ΠΎΠΌΡ ΠΏΠΎΠ»Π½ΠΎΠΌΡ ΠΎΠ±ΠΎΡΠΎΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ³ΠΎΠ» \(\large 2\pi\) ΡΠ°Π΄ΠΈΠ°Π½. ΠΠΎΡΡΠΎΠΌΡ, ΠΊΡΠΎΠΌΠ΅ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ 1 ΡΠ΅ΠΊΡΠ½Π΄Π°, ΡΠΈΠ·ΠΈΠΊΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ \(\large 2\pi\) ΡΠ΅ΠΊΡΠ½Π΄.
Π§ΠΈΡΠ»ΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π΄Π»Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π³ΡΠ΅ΡΠ΅ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ Β«ΠΎΠΌΠ΅Π³Π°Β»:
\( \large \displaystyle \omega \left( \frac<\text<ΡΠ°Π΄>>
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅: ΠΠ΅Π»ΠΈΡΠΈΠ½Ρ \( \large \omega \) ΡΠ°ΠΊ ΠΆΠ΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ, Π° Π΅ΡΠ΅ β ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ (ΡΡΡΠ»ΠΊΠ°).
Π¦ΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π½Π° Π²ΠΎΠΏΡΠΎΡ: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Π·Π° \(\large 2\pi\) ΡΠ΅ΠΊΡΠ½Π΄?Β» ΠΠ»ΠΈ ΠΆΠ΅: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π½ΡΠΉ \(\large 2\pi\) ΡΠ΅ΠΊΡΠ½Π΄?Β».
ΠΠ±ΡΡΠ½Π°Ρ \( \large \nu \) ΠΈ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ \( \large \omega \) ΡΠ°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ²ΡΠ·Π°Π½Ρ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
Π‘Π»Π΅Π²Π° Π² ΡΠΎΡΠΌΡΠ»Π΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ Π½Π° ΡΠ΅ΠΊΡΠ½Π΄Ρ, Π° ΡΠΏΡΠ°Π²Π° β Π² ΠΠ΅ΡΡΠ°Ρ .
Π§ΡΠΎΠ±Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ \( \large \omega \), Π½ΡΠΆΠ½ΠΎ ΡΠ½Π°ΡΠ°Π»Π° Π½Π°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ T.
ΠΠ°ΡΠ΅ΠΌ, Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ \( \large \displaystyle \nu = \frac<1>
Π ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ \( \large \omega = 2\pi \cdot \nu \) ΠΏΠΎΡΡΠΈΡΠ°ΡΡ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΡΡ \( \large \omega \) ΡΠ°ΡΡΠΎΡΡ.
ΠΠ»Ρ Π³ΡΡΠ±ΠΎΠΉ ΡΡΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ, ΡΡΠΎ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ ΠΎΠ±ΡΡΠ½ΡΡ ΡΠ°ΡΡΠΎΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ Π² 6 ΡΠ°Π· ΡΠΈΡΠ»Π΅Π½Π½ΠΎ.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ \( \large \omega \) ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π΅ΡΠ΅ ΠΎΠ΄Π½ΠΈΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ. ΠΠ° ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡΠΌΠ΅ΡΠΈΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π», ΡΠ°Π²Π½ΡΠΉ \(\large 2\pi\), Π° Π·Π°ΡΠ΅ΠΌ, ΡΠΎΡΡΠΈΡΠ°ΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π² ΡΡΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ (ΡΠΈΡ. 6).
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° ΠΈ ΠΊΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π΅Π΅ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ
ΠΡΠΊΠ»ΠΎΠ½ΠΈΠΌ ΠΊΠ°ΡΠ΅Π»ΠΈ Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ³ΠΎΠ» ΠΎΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ ΠΈ Π±ΡΠ΄Π΅ΠΌ ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°ΡΡ ΠΈΡ Π² ΡΠ°ΠΊΠΎΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ. ΠΠΎΠ³Π΄Π° ΠΌΡ ΠΎΡΠΏΡΡΡΠΈΠΌ ΠΈΡ , ΠΊΠ°ΡΠ΅Π»ΠΈ Π½Π°ΡΠ½ΡΡ ΡΠ°ΡΠΊΠ°ΡΠΈΠ²Π°ΡΡΡΡ. Π ΡΡΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ ΠΈΠ· ΡΠ³Π»Π°, Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ ΠΈΡ ΠΎΡΠΊΠ»ΠΎΠ½ΠΈΠ»ΠΈ.
Π’Π°ΠΊΠΎΠΉ, Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ, Π½Π°Π·ΡΠ²Π°ΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. ΠΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ ΡΡΠΎΡ ΡΠ³ΠΎΠ» (ΡΠΈΡ. 7) ΠΊΠ°ΠΊΠΎΠΉ-Π½ΠΈΠ±ΡΠ΄Ρ Π³ΡΠ΅ΡΠ΅ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, \(\large \varphi_ <0>\).
\(\large \varphi_ <0>\left(\text <ΡΠ°Π΄>\right) \) β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π°, ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ (ΠΈΠ»ΠΈ Π³ΡΠ°Π΄ΡΡΠ°Ρ ).
ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β ΡΡΠΎ ΡΠ³ΠΎΠ», Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ ΠΎΡΠΊΠ»ΠΎΠ½ΠΈΠ»ΠΈ ΠΊΠ°ΡΠ΅Π»ΠΈ, ΠΏΠ΅ΡΠ΅Π΄ ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ ΠΈΡ ΠΎΡΠΏΡΡΡΠΈΡΡ. ΠΠ· ΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° Π½Π°ΡΠ½Π΅ΡΡΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ΅ΠΏΠ΅ΡΡ, ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡΠΈΠ½Π° \(\large \varphi_ <0>\) Π²Π»ΠΈΡΠ΅Ρ Π½Π° Π³ΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (ΡΠΈΡ. 8). ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° Π±ΡΠ΄Π΅ΠΌ ΡΡΠΈΡΠ°ΡΡ, ΡΡΠΎ ΠΌΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΡΡ ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΡΠΈΠ½ΡΡΠ°.
ΠΡΠΈΠ²Π°Ρ, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½Π½Π°Ρ ΡΠ΅ΡΠ½ΡΠΌ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅, Π½Π°ΡΠΈΠ½Π°Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠ· ΡΠΎΡΠΊΠΈ t = 0. ΠΡΠ° ΠΊΡΠΈΠ²Π°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ Β«ΡΠΈΡΡΡΠΌΒ», Π½Π΅ ΡΠ΄Π²ΠΈΠ½ΡΡΡΠΌ ΡΠΈΠ½ΡΡΠΎΠΌ. ΠΠ»Ρ Π½Π΅Π΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·Ρ \(\large \varphi_ <0>\) ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌ ΡΠ°Π²Π½ΠΎΠΉ Π½ΡΠ»Ρ.
ΠΡΠΎΡΠ°Ρ ΠΊΡΠΈΠ²Π°Ρ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½Π° ΠΊΡΠ°ΡΠ½ΡΠΌ ΡΠ²Π΅ΡΠΎΠΌ. ΠΠ°ΡΠ°Π»ΠΎ Π΅Π΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΡΠ΄Π²ΠΈΠ½ΡΡΠΎ Π²ΠΏΡΠ°Π²ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ t = 0. ΠΠΎΡΡΠΎΠΌΡ, Π΄Π»Ρ ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΠΊΡΠΈΠ²ΠΎΠΉ, Π½Π°ΡΠ°Π²ΡΠ΅ΠΉ Π½ΠΎΠ²ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΏΡΡΡΡ Π²ΡΠ΅ΠΌΡ \(\large \Delta t\), Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» \(\large \varphi_ <0>\) Π±ΡΠ΄Π΅Ρ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΠΎΡ Π½ΡΠ»Π΅Π²ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΠ³ΠΎΠ» \(\large \varphi_ <0>\) Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ±ΡΠ°ΡΠΈΠΌ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ (ΡΠΈΡ. 8) Π½Π° ΡΠΎ, ΡΡΠΎ Π²ΡΠ΅ΠΌΡ, Π»Π΅ΠΆΠ°ΡΠ΅Π΅ Π½Π° Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈ, ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ , Π° Π²Π΅Π»ΠΈΡΠΈΠ½Π° \(\large \varphi_ <0>\) β Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ . ΠΠ½Π°ΡΠΈΡ, Π½ΡΠΆΠ½ΠΎ ΡΠ²ΡΠ·Π°ΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΠΊΡΡΠΎΡΠ΅ΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ \(\large \Delta t\) ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΉ Π΅ΠΌΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» \(\large \varphi_ <0>\).
ΠΠ°ΠΊ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ» ΠΏΠΎ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ
ΠΠ»Π³ΠΎΡΠΈΡΠΌ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π° ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π½Π΅ΡΠ»ΠΎΠΆΠ½ΡΡ ΡΠ°Π³ΠΎΠ².
\[\large T = 5 β 1 = 4 \left( \text <ΡΠ΅ΠΊ>\right)\]
ΠΠ· Π³ΡΠ°ΡΠΈΠΊΠ° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ T = 4 ΡΠ΅ΠΊ.
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄ΡΠΎΠ±ΠΈ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΠΊΡΠ°ΡΠ½Π°Ρ ΠΊΡΠΈΠ²Π°Ρ ΡΠ΄Π²ΠΈΠ½ΡΡΠ° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ t = 0 ΠΈ ΡΠ΅ΡΠ½ΠΎΠΉ ΠΊΡΠΈΠ²ΠΎΠΉ Π½Π° ΡΠ΅ΡΠ²Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°.
ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ:
\(\large \displaystyle \frac<1> <4>\cdot 2\pi = \frac<\pi > <2>=\varphi_ <0>\)
ΠΠ½Π°ΡΠΈΡ, ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Ρ \(\large \Delta t\) ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ³ΠΎΠ» \(\large \displaystyle \frac<\pi > <2>\) β ΡΡΠΎ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° Π΄Π»Ρ ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΠΊΡΠΈΠ²ΠΎΠΉ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅.
Π§ΡΠΎΠ±Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠΈΡΡ Π·Π°ΠΏΠ°Π·Π΄ΡΠ²Π°Π½ΠΈΠ΅, Π±ΡΠ΄Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π·Π½Π°ΠΊ Β«ΠΌΠΈΠ½ΡΡΒ» Π΄Π»Ρ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ³Π»Π°:
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅: ΠΡΠ»ΠΈ Π½Π° ΠΊΡΠΈΠ²ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π½Π°ΡΠ°Π»ΠΎ Π±Π»ΠΈΠΆΠ°ΠΉΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° Π»Π΅ΠΆΠΈΡ Π»Π΅Π²Π΅Π΅ ΡΠΎΡΠΊΠΈ t = 0, ΡΠΎ Π² ΡΠ°ΠΊΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΡΠ³ΠΎΠ» \(\large \displaystyle \frac<\pi > <2>\) ΠΈΠΌΠ΅Π΅Ρ Π·Π½Π°ΠΊ Β«ΠΏΠ»ΡΡΒ».
ΠΠ»Ρ Π½Π΅ ΡΠ΄Π²ΠΈΠ½ΡΡΠΎΠ³ΠΎ Π²Π»Π΅Π²ΠΎ, Π»ΠΈΠ±ΠΎ Π²ΠΏΡΠ°Π²ΠΎ, ΡΠΈΠ½ΡΡΠ° ΠΈΠ»ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° Π½ΡΠ»Π΅Π²Π°Ρ \(\large \varphi_ <0>= 0 \).
ΠΠ»Ρ ΡΠΈΠ½ΡΡΠ° ΠΈΠ»ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠ΄Π²ΠΈΠ½ΡΡΠΎΠ³ΠΎ Π²Π»Π΅Π²ΠΎ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΈ ΠΎΠΏΠ΅ΡΠ΅ΠΆΠ°ΡΡΠ΅Π³ΠΎ ΠΎΠ±ΡΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ, Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° Π±Π΅ΡΠ΅ΡΡΡ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ Β«+Β».
Π Π΅ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ΄Π²ΠΈΠ½ΡΡΠ° Π²ΠΏΡΠ°Π²ΠΎ ΠΈ Π·Π°ΠΏΠ°Π·Π΄ΡΠ²Π°Π΅Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΠ±ΡΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π²Π΅Π»ΠΈΡΠΈΠ½Ρ \(\large \varphi_ <0>\) Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ ΡΠΎ Π·Π½Π°ΠΊΠΎΠΌ Β«-Β».
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΡ:
ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΠ°ΠΊΠΈΠΌ Π΄ΠΎΠΏΡΡΠ΅Π½ΠΈΡΠΌ Π³ΡΠ°ΡΠΈΠΊ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° Π·Π°Π΄Π°Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ°ΡΡ, Π½Π°ΡΠΈΠ½Π°Ρ ΠΈΠ· ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ Π½ΡΠ»Ρ ΠΈ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π² ΠΏΡΠ°Π²ΠΎΠΉ ΠΏΠΎΠ»ΡΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΅ΡΠ΅ ΡΠ°Π· ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΡΠ΅ Π΄Π΅ΡΡΠΊΠΈΠ΅ ΠΊΠ°ΡΠ΅Π»ΠΈ (ΡΠΈΡ. 9) ΠΈ ΡΠ³ΠΎΠ» ΠΈΡ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. Π‘ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΡΠΎΡ ΡΠ³ΠΎΠ» ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ, ΡΠΎ Π΅ΡΡΡ, ΠΎΠ½ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠ³ΠΎΠ» ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. ΠΡΠΎΡ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠΈΠΉΡΡ ΡΠ³ΠΎΠ» Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ°Π·ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡ \(\varphi\).
Π Π°Π·Π»ΠΈΡΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π·ΠΎΠΉ ΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·ΠΎΠΉ
Π‘ΡΡΠ΅ΡΡΠ²ΡΡΡ Π΄Π²Π° ΡΠ³Π»Π° ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ β Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ, ΠΎΠ½ Π·Π°Π΄Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠ΅Π΄ Π½Π°ΡΠ°Π»ΠΎΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΈ, ΡΠ³ΠΎΠ», ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠΈΠΉΡΡ Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ΅ΡΠ²ΡΠΉ ΡΠ³ΠΎΠ» Π½Π°Π·ΡΠ²Π°ΡΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ \( \varphi_<0>\) ΡΠ°Π·ΠΎΠΉ (ΡΠΈΡ. 10Π°), ΠΎΠ½Π° ΡΡΠΈΡΠ°Π΅ΡΡΡ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ. Π Π²ΡΠΎΡΠΎΠΉ ΡΠ³ΠΎΠ» β ΠΏΡΠΎΡΡΠΎ \( \varphi\) ΡΠ°Π·ΠΎΠΉ (ΡΠΈΡ. 10Π±) β ΡΡΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ.
ΠΠ°ΠΊ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΡΠΌΠ΅ΡΠΈΡΡ ΡΠ°Π·Ρ
ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°Π·Π° \(\large \varphi\) Π²ΡΠ³Π»ΡΠ΄ΠΈΡ, ΠΊΠ°ΠΊ ΡΠΎΡΠΊΠ° Π½Π° ΠΊΡΠΈΠ²ΠΎΠΉ. Π‘ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΡΠ° ΡΠΎΡΠΊΠ° ΡΠ΄Π²ΠΈΠ³Π°Π΅ΡΡΡ (Π±Π΅ΠΆΠΈΡ) ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΡΠ»Π΅Π²Π° Π½Π°ΠΏΡΠ°Π²ΠΎ (ΡΠΈΡ. 11). Π’ΠΎ Π΅ΡΡΡ, Π² ΡΠ°Π·Π½ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΠ½Π° Π±ΡΠ΄Π΅Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡΡ Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΠ°ΡΡΠΊΠ°Ρ ΠΊΡΠΈΠ²ΠΎΠΉ.
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ ΠΎΡΠΌΠ΅ΡΠ΅Π½Ρ Π΄Π²Π΅ ΠΊΡΡΠΏΠ½ΡΠ΅ ΠΊΡΠ°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ, ΠΎΠ½ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ ΡΠ°Π·Π°ΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π² ΠΌΠΎΠΌΠ΅Π½ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t1 ΠΈ t2.
Π Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ, ΠΊΠ°ΠΊ ΠΌΠ΅ΡΡΠΎ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΡΠΎΡΠΊΠ°, Π»Π΅ΠΆΠ°ΡΠ°Ρ Π½Π° ΠΊΡΠΈΠ²ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, Π² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t=0. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΈΡΡΡΡΡΠ²ΡΠ΅Ρ ΠΎΠ΄Π½Π° ΠΌΠ΅Π»ΠΊΠ°Ρ ΠΊΡΠ°ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ°, ΠΎΠ½Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ°Π·Π΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
ΠΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ°Π·Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ
ΠΡΡΡΡ Π½Π°ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ \(\large \omega\) β ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ°ΡΡΠΎΡΠ° ΠΈ \(\large \varphi_<0>\) β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π°. ΠΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΡΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ, ΡΠΎ Π΅ΡΡΡ, ΡΠ²Π»ΡΡΡΡΡ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ°ΠΌΠΈ.
ΠΡΠ΅ΠΌΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ t Π±ΡΠ΄Π΅Ρ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
Π€Π°Π·Ρ \(\large \varphi\), ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΡΡ Π»ΡΠ±ΠΎΠΌΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΡΡΠ΅ΠΌΡ Π½Π°Ρ ΠΌΠΎΠΌΠ΅Π½ΡΡ t Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΈΠ· ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ:
ΠΠ΅Π²Π°Ρ ΠΈ ΠΏΡΠ°Π²Π°Ρ ΡΠ°ΡΡΠΈ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈΠΌΠ΅ΡΡ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΡΠ³Π»Π° (Ρ. Π΅. ΠΈΠ·ΠΌΠ΅ΡΡΡΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ , ΠΈΠ»ΠΈ Π³ΡΠ°Π΄ΡΡΠ°Ρ ). Π ΠΏΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ Π²ΠΌΠ΅ΡΡΠΎ ΡΠΈΠΌΠ²ΠΎΠ»Π° t Π² ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΡΡΠΈΠ΅ Π½Π°Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ°Π·Ρ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°Π·Π½ΠΎΡΡΡ ΡΠ°Π·
ΠΠ±ΡΡΠ½ΠΎ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΡΠ°Π· ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΡΠ°Π²Π½ΠΈΠ²Π°ΡΡ Π΄Π²Π° ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΄Π²Π° ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠ° (ΡΠΈΡ. 12). ΠΠ°ΠΆΠ΄ΡΠΉ ΠΈΠΌΠ΅Π΅Ρ ΡΠ²ΠΎΡ Π½Π°ΡΠ°Π»ΡΠ½ΡΡ ΡΠ°Π·Ρ.
\( \large \varphi_<01>\) β Π΄Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΈ,
\( \large \varphi_<02>\) β Π΄Π»Ρ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΠ°Π·Π½ΠΎΡΡΡ ΡΠ°Π· ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠ΅ΡΠ²ΡΠΌ ΠΈ Π²ΡΠΎΡΡΠΌ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ°ΠΌΠΈ:
ΠΠ΅Π»ΠΈΡΠΈΠ½Π° \(\large \Delta \varphi \) ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, Π½Π° ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΡΠ°Π·Ρ Π΄Π²ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΠΎΠ½Π° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°Π·Π½ΠΎΡΡΡΡ ΡΠ°Π·.
ΠΠ°ΠΊ ΡΠ²ΡΠ·Π°Π½Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β ΡΠΎΡΠΌΡΠ»Ρ
ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΈ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ ΡΡ ΠΎΠΆΠ΅ΡΡΡ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΈ Π²ΠΈΠ΄Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ.
ΠΠΎΡΡΠΎΠΌΡ, ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΡΠ΅ Π΄Π»Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΠΏΠΎΠ΄ΠΎΠΉΠ΄ΡΡ ΡΠ°ΠΊ ΠΆΠ΅, Π΄Π»Ρ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
\( \large T \left( c \right) \) β Π²ΡΠ΅ΠΌΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ (ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ);
\( \large N \left( \text <ΡΡ>\right) \) β ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ;
\( \large t \left( c \right) \) β ΠΎΠ±ΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ Π΄Π»Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ;
\(\large \nu \left( \text <ΠΡ>\right) \) β ΡΠ°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
\(\large \displaystyle \omega \left( \frac<\text<ΡΠ°Π΄>>
\(\large \varphi_ <0>\left( \text <ΡΠ°Π΄>\right) \) β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π°;
\(\large \varphi \left( \text <ΡΠ°Π΄>\right) \) β ΡΠ°Π·Π° (ΡΠ³ΠΎΠ») Π² Π²ΡΠ±ΡΠ°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t;
\(\large \Delta t \left( c \right) \) β ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ t=0 ΡΠ΄Π²ΠΈΠ½ΡΡΠΎ Π½Π°ΡΠ°Π»ΠΎ Π±Π»ΠΈΠΆΠ°ΠΉΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π°.
ΠΠ°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ. Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ
Π£ΡΠΎΠΊ 36. ΠΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° ΠΊ ΠΠΠ ΠΏΠΎ ΡΠΈΠ·ΠΈΠΊΠ΅. Π§Π°ΡΡΡ 1. ΠΠ΅Ρ Π°Π½ΠΈΠΊΠ°.
Π Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΠΈΠ»ΠΈ ΡΠ°Π·Π΄Π°ΡΡ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊ ΡΡΠ΅Π½ΠΈΠΊΠ°ΠΌ
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π΄ΠΎΡΡΡΠΏ ΠΊ ΡΡΠΎΠΌΡ ΠΈ Π΄ΡΡΠ³ΠΈΠΌ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊΠ°ΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°, Π²Π°ΠΌ Π½ΡΠΆΠ½ΠΎ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ Π΅Π³ΠΎ Π² Π»ΠΈΡΠ½ΡΠΉ ΠΊΠ°Π±ΠΈΠ½Π΅Ρ, ΠΏΡΠΈΠΎΠ±ΡΠ΅Π² Π² ΠΊΠ°ΡΠ°Π»ΠΎΠ³Π΅.
ΠΠΎΠ»ΡΡΠΈΡΠ΅ Π½Π΅Π²Π΅ΡΠΎΡΡΠ½ΡΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ
ΠΠΎΠ½ΡΠΏΠ΅ΠΊΡ ΡΡΠΎΠΊΠ° «ΠΠ°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ. Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ»
ΠΠ°Π½Π½Π°Ρ ΡΠ΅ΠΌΠ° ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΠΌ ΠΈ ΠΈΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌ.
ΠΠΊΡΡΠΆΠ°ΡΡΠΈΠΉ Π½Π°Ρ ΠΌΠΈΡ Π½Π°ΠΏΠΎΠ»Π½Π΅Π½ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΠΌΠΈ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ Π΄Π²ΠΈΒΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ°ΠΌΠΈ: ΠΊΠΎΠ»Π΅Π±Π»ΡΡΡΡ Π²Π΅ΡΠΊΠΈ Π΄Π΅ΡΠ΅Π²ΡΠ΅Π² ΠΈ ΠΊΡΠ·ΠΎΠ² Π°Π²ΡΠΎΠ±ΡΡΠ° ΠΏΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΡΡΡΠ½ ΠΏΠΎΠ΄ ΡΡΠΊΠ°ΠΌΠΈ ΡΠΌΠ΅Π»ΠΎΠ³ΠΎ ΠΌΡΠ·ΡΠΊΠ°Π½ΡΠ° Π²ΡΠ·ΡΠ²Π°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Π²ΠΎΠ·Π΄ΡΡ Π°, ΠΈ ΡΠ»ΡΡΠΈΡΡΡ ΠΏΡΠ΅ΠΊΡΠ°ΡΠ½Π°Ρ ΠΌΡΠ·ΡΠΊΠ°.
ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Π²Π°ΠΆΠ½Π΅ΠΉΡΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ Π²Π½ΡΡΡΠΈ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ° ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° ΡΠ²Π»ΡΒΡΡΡΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ: ΡΠ΅ΡΠ΄ΡΠ΅ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Π² ΡΠΏΠΎΠΊΠΎΠΉΠ½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΎΠΊΠΎΒΠ»ΠΎ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ, ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΡ ΡΡ Π½Π΅ΡΠ²Π½ΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΌΡΡΡΠ° Π² ΡΠ΅Π»Π΅ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎ ΡΠΎ ΡΠΎΠΊΡΠ°ΡΠ°Π΅ΡΡΡ, ΡΠΎ ΡΠ°ΡΡΡΠ³ΠΈΠ²Π°Π΅ΡΡΡ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΊΠ°ΠΊΠ°Ρ-Π»ΠΈΠ±ΠΎ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠ°Ρ ΡΡΠΎΡ ΠΏΡΠΎΡΠ΅ΡΡ, ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠΎ Π² ΠΎΠ΄Π½Ρ, ΡΠΎ Π² Π΄ΡΡΠ³ΡΡ ΡΡΠΎΡΠΎΠ½Ρ ΠΎΠΊΠΎΠ»ΠΎ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ²ΠΎΠ΅Π³ΠΎ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π½Π° ΠΊΠ°ΡΠ΅Π»ΡΡ , ΠΏΠΎΠ΄Π²Π΅ΡΠ΅Π½Π½ΡΡ Π½Π° Π²Π΅ΡΠ΅Π²ΠΊΠ°Ρ , ΡΠ΅Π»ΠΎΠ²Π΅ΠΊ ΠΎΡΠΊΠ»ΠΎΠ½ΡΠ΅ΡΡΡ ΡΠΎ Π²ΠΏΠ΅ΡΠ΅Π΄ ΠΈ Π²Π²Π΅ΡΡ , ΡΠΎ Π½Π°Π·Π°Π΄ ΠΈ Π²Π²Π΅ΡΡ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ. ΠΠΎΠ²ΠΎΡΡΡ, ΡΡΠΎ ΠΊΠ°ΡΠ΅Π»ΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ ΡΠ΅Π», Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΌΠΎΠ³ΡΡ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ.
ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΡΠΎΡΡΡΠΌΠΈ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ: Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΒΠ½ΡΠΉ ΠΏΡΡΠΆΠΈΠ½Π½ΡΠΉ ΠΌΠ°ΡΡΠ½ΠΈΠΊ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΠ±ΡΠ°Π·ΡΡΡ ΠΠ΅ΠΌΠ»Ρ, ΡΡΠ°ΡΠΈΠ², ΠΏΡΡΠΆΠΈΠ½Π° ΠΈ Π³ΡΡΠ·; ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ°ΡΡΠ½ΠΈΠΊ, ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΡΠΉ ΠΠ΅ΠΌΠ»Π΅ΠΉ, ΡΡΠ°ΡΠΈΠ²ΠΎΠΌ ΠΈ ΡΠ°ΡΠΈΠΊΠΎΠΌ Π½Π° Π½ΠΈΡΠΈ; ΠΈ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΡΠΉ ΠΏΡΡΠΆΠΈΠ½Π½ΡΠΉ ΠΌΠ°ΡΡΠ½ΠΈΠΊ β ΡΡΠΎ Π΄Π²Π° ΡΡΠ°ΡΠΈΠ²Π°, Π΄Π²Π΅ ΠΏΡΡΠΆΠΈΒΠ½Ρ ΠΈ ΡΠ°ΡΠΈΠΊ.
ΠΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΠΊΠ°ΠΊ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ , ΡΠ°ΠΊ ΠΈ Π²Π½Π΅ΡΠ½ΠΈΡ ΡΠΈΠ». ΠΡΠ»ΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ ΡΠΈΠ», ΡΠΎ ΠΈΡ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΌΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΠΌΠΈ.
Π Π΅ΡΠ»ΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠ΅Π»Π° ΠΏΠΎΠ²ΡΠΎΡΡΡΡΡΡ ΡΠ΅ΡΠ΅Π· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΒΠ½ΡΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΎ ΠΈΡ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠ»ΠΎΠ²ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡ Π΄Π»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΌΠΎΠ³Π»ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΡΡΡ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ:
1) ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°Π»ΠΈΡΠΈΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ.
2) ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°Π»ΠΈΡΠΈΠ΅ Ρ ΡΠ΅Π»Π° ΠΈΠ·Π±ΡΡΠΎΡΠ½ΠΎΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π΅Π΅ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΠ°ΠΌΠΎΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎ (ΡΠΎ Π΅ΡΡΡ Π±Π΅Π· Π²Π½Π΅ΡΠ½Π΅Π³ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ) ΡΠΈΡΡΠ΅ΠΌΠ° Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π²ΡΠΉΡΠΈ ΠΈΠ· ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ.
3) Π½Π° ΡΠ΅Π»ΠΎ Π΄ΠΎΠ»ΠΆΠ½Π° Π΄Π΅ΠΉΡΡΠ²ΠΎΠ²Π°ΡΡ Π²ΠΎΠ·Π²ΡΠ°ΡΠ°ΡΡΠ°Ρ ΡΠΈΠ»Π°, ΡΠΎ Π΅ΡΡΡ ΡΠΈΠ»Π°, Π²ΡΠ΅Π³Π΄Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½Π°Ρ ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ.
4) Π ΠΈΠ΄Π΅Π°Π»ΡΠ½ΡΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌΠ°Ρ Π΄ΠΎΠ»ΠΆΠ½Ρ ΠΎΡΡΡΡΡΡΠ²ΠΎΠ²Π°ΡΡ ΡΠΈΠ»Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ.
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ Π²Π°ΠΆΠ½ΡΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
ΠΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠΎΠ²Π΅ΡΡΠ°Π΅ΡΡΡ ΠΎΠ΄Π½ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠ΅.
Π§Π°ΡΡΠΎΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β ΡΡΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ±ΒΡΠ°ΡΠ½Π°Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ, ΡΠ°Π²Π½Π°Ρ ΡΠΈΡΠ»Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΡΠΎΠ²Π΅ΡΡΠ΅Π½Π½ΡΡ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ Π·Π° ΠΎΠ΄Π½Ρ ΡΠ΅ΠΊΡΠ½Π΄Ρ.
Π Π‘Π ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ , Π° ΡΠ°ΡΡΠΎΡΠ° β Π² Π³Π΅ΡΡΠ°Ρ .
Π‘ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π»ΡΠ±ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΒΠ½Π΅Π½ΠΈΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡ Π΅Π΅ Π·Π½Π°ΡΠ΅ΒΠ½ΠΈΡ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ ΠΈ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΠΌΠ°Ρ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ΠΌ ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ Π΄ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ Π² Π·Π°Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠΌΠΏΠ»ΠΈΡΡΠ΄ΠΎΠΉ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΒΠ½ΠΎΠ΅ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ.
ΠΡΠΎΡΡΠ΅ΠΉΡΠΈΠΌ Π²ΠΈΠ΄ΠΎΠΌ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ²Π»ΡΡΡΡΡ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ. Π’Π΅ΡΠΌΠΈΠ½ Β«Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΒ» Π²ΠΏΠ΅ΡΠ²ΡΠ΅ Π±ΡΠ» Π²Π²Π΅Π΄Π΅Π½ Π² Π½Π°ΡΠΊΡ ΡΠ²Π΅ΠΉΡΠ°ΡΡΠΊΠΈΠΌ ΡΠΈΠ·ΠΈΠΊΠΎΠΌ ΠΠ°Π½ΠΈΠΈΠ»ΠΎΠΌ ΠΠ΅ΡΠ½ΡΠ»Π»ΠΈ. ΠΠ°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ ΠΊΠ°ΠΊΠ°Ρ-Π»ΠΈΠ±ΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Ρ ΡΠ΅ΡΠ΅ΒΠ½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΡΠΈΠ½ΡΡΠ° ΠΈΠ»ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ°.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΡΠΈΒΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΡΠ΅Π³ΠΈΡΡΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π³ΡΡΠ·Π° Π²Π·ΡΡΡ Π½Π΅Π±ΠΎΠ»ΡΡΠΎΠΉ ΡΡΠ°ΠΊΠ°Π½ Ρ ΠΏΠ΅ΡΠΊΠΎΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΠΎΒΠΆΠ΅Ρ Π²ΡΡΡΠΏΠ°ΡΡΡΡ ΡΠ΅ΡΠ΅Π· ΠΎΡΠ΅Π½Ρ ΠΌΠ°Π»Π΅Π½ΡΠΊΠΎΠ΅ ΠΎΡΠ²Π΅ΡΡΡΠΈΠ΅ ΡΠ½ΠΈΠ·Ρ.
ΠΡΠ»ΠΈ ΠΏΠΎΠ΄ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠΈΠΌΡΡ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠΎΠΌ Π΄Π²ΠΈΠ³Π°ΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎ ΠΏΠΎ ΡΡΠΎΠ»Ρ Π±ΡΠΌΠ°ΠΆΠ½ΡΡ Π»Π΅Π½ΡΡ, ΡΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½Π°Ρ Π½Π° Π±ΡΠΌΠ°Π³Π΅ ΠΊΡΠΈΒΠ²Π°Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΡΠΈΠ½ΡΡΠΎΠΈΠ΄Ρ ΠΈΠ»ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠΈΠ΄Ρ Π² Π·Π°Π²ΠΈΡΠΈΒΠΌΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ±ΠΎΡΠ° Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ (ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΎΡΡΡΠ΅ΡΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ).
Π§ΡΠΎΠ±Ρ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅ΒΠ±Π°Π½ΠΈΠΉ, ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΒΠΊΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½, Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ. ΠΠ°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΏΠΎΠΌΠ΅ΡΡΠΈΠΌ Π² ΡΠ΅Π½ΡΡΠ΅ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ°Π΄ΠΈΡΡΠ° R. ΠΡΡΡΡ Π² Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ° Π½Π°Ρ ΠΎΠ΄ΠΈΠ»Π°ΡΡ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ M0 ΠΈ Π΅Π΅ ΡΠ°Π΄ΠΈΡΡ-Π²Π΅ΠΊΡΠΎΡ ΡΠΎΡΡΠ°Π²Π»ΡΠ» Ρ ΠΎΡΡΡ Ox ΡΠ³ΠΎΠ» j0.
Π§Π΅ΡΠ΅Π· ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t ΡΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΡΡΡ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ M, Π° Π΅Π΅ ΡΠ°Π΄ΠΈΡΡ-Π²Π΅ΠΊΡΠΎΡ ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΏΠΎΠ²Π΅ΡΠ½Π΅ΡΡΡ Π½Π° ΡΠ³ΠΎΠ» Dj ΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ Π² Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Ρ ΠΎΡΡΡ Ox ΡΠ³ΠΎΠ»
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΡΠ΅ΠΏΠ΅ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ Π² ΡΡΠΎΡ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ Π΄ΡΡΠ³ ΠΊ Π΄ΡΡΠ³Ρ Π΄Π²Π° ΡΠΊΡΠ°Π½Π° ΠΈ Π±ΡΠ΄Π΅ΠΌ ΠΎΡΠ²Π΅ΡΠ°ΡΡ Π΄Π²ΠΈΠΆΡΡΠΈΠΉΡΡ ΡΠ°ΡΠΈΠΊ. ΠΠ° Π²Π΅ΡΒΡΠΈΠΊΠ°Π»ΡΠ½ΠΎΠΌ ΡΠΊΡΠ°Π½Π΅ ΡΠ΅Π½Ρ ΠΎΡ ΡΠ°ΡΠΈΠΊΠ° Π±ΡΠ΄Π΅Ρ Π΄Π²ΠΈΠ³Π°ΡΡΡΡ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Oy ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρ:
Π’ΠΎ Π΅ΡΡΡ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Π²ΠΎΠ·Π»Π΅ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΠ° Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΌ ΡΠΊΡΠ°Π½Π΅ ΡΠ΅Π½Ρ ΡΠ°ΡΠΈΠΊΠ° Π±ΡΠ΄Π΅Ρ Π΄Π²ΠΈΠ³Π°ΡΡΡΡ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Ox ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρ:
Π ΡΠ°ΠΊΠΆΠ΅ ΡΠΎΠ²Π΅ΡΡΠ°ΡΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΎΠΊΠΎΠ»ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ΅Π»ΠΈΡΠΈΠ½Π°, ΡΡΠΎΡΡΠ°Ρ ΠΏΠΎΠ΄ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΠΈΠ½ΡΡΠ° ΠΈΠ»ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΠΈΠ»ΠΈ, Π² Π²ΡΒΠ±ΡΠ°Π½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΡΡΡΠ΅ΡΠ°, ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π΄ΠΈΡΡ-Π²Π΅ΠΊΡΠΎΡΠΎΠΌ ΠΈ ΠΎΡΡΡ Π°Π±ΡΡΠΈΡΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°Π·ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ.
ΠΠ°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ j0 Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠΊΠΈ Π² Π½Π°ΡΠ°Π»ΡΒΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π’ΠΎΠ³Π΄Π° ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ x ΠΈ y, ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΒΠ²Π°ΡΡ ΠΊΠ°ΠΊ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°ΡΠΈΠΊΠ° ΠΎΡ Π½ΡΠ»Π΅Π²ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, Π° ΠΌΠΎΠ΄ΡΠ»Ρ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΎΠ±Π΅ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΡΠ°Π²Π΅Π½ ΡΠ°Π΄ΠΈΡΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π·Π°ΠΊΠΎΠ½ Π»ΡΠ±ΠΎΠ³ΠΎ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π² Π²ΠΈΠ΄Π΅:
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ ΡΠΎΡΠΊΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ°Π΅ΡΡΡ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠΈΠ΄ΠΎΠΉ ΠΈΠ»ΠΈ ΡΠΈΠ½ΡΡΠΎΠΈΠ΄ΠΎΠΉ.
Π Π·Π°ΠΏΠΈΡΠ°Π½Π½ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ w β ΡΡΠΎ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ (ΠΈΠ»ΠΈ ΠΊΡΡΠ³ΠΎΠ²Π°Ρ) ΡΠ°ΡΡΠΎΡΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ° Π·Π° 2p ΡΠ΅ΠΊΡΠ½Π΄. Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ Π‘Π ΠΎΠ½Π° ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ Π½Π° ΡΠ΅ΠΊΡΠ½Π΄Ρ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ, ΠΊΠ°ΠΊ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅ΠΉΡΡ ΡΠΎΡΠΊΠΈ ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ Π΄Π»Ρ ΡΠ»ΡΡΠ°Ρ, ΠΊΠΎΠ³Π΄Π° Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°Π·Π° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΠ°ΡΠ½Π΅ΠΌ ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡ ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π° Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
Π ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ ΠΈ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ β ΡΡΠΎ Π΅ΡΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° ΠΎΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π²ΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ ΠΏΡΠΈ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΎΡΡ ΡΠΎΠΆΠ΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΏΠΎ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ Ρ ΡΠΎΠΉ ΠΆΠ΅ ΡΠ°ΡΡΠΎΡΠΎΠΉ, Π½ΠΎ Ρ Π΄ΡΡΠ³ΠΎΠΉ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄ΠΎΠΉ ΠΈ ΠΎΠΏΠ΅ΡΠ΅ΠΆΠ°Π΅Ρ ΠΏΠΎ ΡΠ°Π·Π΅ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π½Π° p/2.
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ΅Π»ΠΈΡΠΈΠ½Π°, ΡΠ°Π²Π½Π°Ρ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΡΡΠΎΡΡ ΠΈ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, ΡΠ²Π»ΡΠ΅ΡΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄ΠΎΠΉ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ.
ΠΠ°ΠΊ Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· ΡΠΎΡΠΌΡΠ»Ρ, ΠΏΡΠΈ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΎΠΏΠ΅ΡΠ΅ΠΆΠ°Π΅Ρ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΡΠ°Π·Π΅ Π½Π° p. ΠΠΎΠ²ΠΎΡΡΡ, ΡΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΈΠ·ΠΌΠ΅ΒΠ½ΡΠ΅ΡΡΡ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π² ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ°Π·Π΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ.
Π£ΡΠΈΡΡΠ²Π°Ρ ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π·Π°ΠΊΠΎΠ½ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠΈΠΌ, ΡΡΠΎ ΠΏΡΠΈ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½Π° ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Π° Π΅ΠΌΡ ΠΏΠΎ Π·Π½Π°ΠΊΡ, ΡΠΎ Π΅ΡΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΎ Π² ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΡ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ.
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ β ΡΡΠΎ Π²ΡΠΎΡΠ°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΎ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π² Π²ΠΈΠ΄Π΅:
ΠΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΠΎΡΠ΅ΡΡ ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΏΡΠΈ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΡ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΈΠ΄Π΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ°. ΠΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΡΠΉ ΡΡΠΎΠ²Π΅Π½Ρ, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠΌ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΌΠ°ΡΡΠ½ΠΈΠΊ, Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ Π·Π° Π½ΡΠ»Π΅Π²ΠΎΠΉ ΡΡΠΎΠ²Π΅Π½Ρ ΠΎΡΡΡΠ΅ΡΠ° ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° Π² ΠΏΠΎΠ»Π΅ ΡΠΈΠ»Ρ ΡΡΠΆΠ΅ΡΡΠΈ.
ΠΡΠ»ΠΈ Π²ΡΠ²Π΅ΡΡΠΈ ΡΠ΅Π»ΠΎ ΠΈΠ· ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠΆΠ°Π² ΠΏΡΡΠΆΠΈΠ½Ρ Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΡΠΎ ΡΠΎΠΎΠ±ΡΠ°Π΅ΡΡΡ ΡΡΠΎΠΌΡ ΡΠ΅Π»Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΠΉ Π·Π°ΠΏΠ°Ρ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ.
ΠΠΎΡΠ»Π΅ ΠΏΡΠ΅ΠΊΡΠ°ΡΠ΅Π½ΠΈΡ Π²Π½Π΅ΡΠ½Π΅Π³ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ, ΡΠ΅Π»ΠΎ ΠΏΡΠΈΠ΄Π΅Ρ Π² Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ Π΅Π³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ±ΡΠ²Π°Π΅Ρ, Π° ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π½Π°ΠΎΠ±ΠΎΡΠΎΡ, Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΏΡΡΠΆΠΈΠ½Ρ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ, Π° ΡΠΊΠΎΡΠΎΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ. Π ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΡΠΎΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΠ΅Π»ΠΎΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ Π΅Π³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, Π° Π²ΠΎΡ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ Π±ΡΠ΄Π΅Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°.
ΠΠΎΡΠ»Π΅ ΠΏΡΠΎΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° Π½Π°ΡΠΈΠ½Π°Π΅Ρ ΡΠΌΠ΅Π½ΡΡΠ°ΡΡΡΡ, Π° ΠΏΡΡΠΆΠΈΠ½Π° ΡΠ°ΡΡΡΠ³ΠΈΠ²Π°Π΅ΡΡΡ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ΅Π»Π° Π½Π°ΡΠΈΠ½Π°Π΅Ρ ΡΠ±ΡΠ²Π°ΡΡ, Π° ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ Π½Π°ΠΎΠ±ΠΎΡΠΎΡ β Π²ΠΎΠ·ΡΠ°ΡΡΠ°ΡΡ. Π ΡΠΎΡΠΊΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΡΠ΅Π»Π° Π΅Π³ΠΎ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, Π° ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ β ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΡΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π² ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΡΡ ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ.
ΠΠΎΠ»Π½Π°Ρ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠ°ΠΊΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ Π΅Π³ΠΎ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΉ.
ΠΡΠ»ΠΈ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ, ΡΠΎΠ²Π΅ΡΡΠ°ΡΡΠ΅ΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ, ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠΎ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ, ΡΠΎ, ΠΊΠ°ΠΊ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΠΈ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΡΡ ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅Π³ΠΎΡΡ ΡΠ΅Π»Π° ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ
ΠΠ· ΡΡΠΈΡ ΡΠΎΡΠΌΡΠ» Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ ΡΠΎΠΆΠ΅ ΠΏΠΎ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ, Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄ΠΎΠΉ ΠΈ Π² ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ°Π·Π΅ Π΄ΡΡΠ³ Ρ Π΄ΡΡΠ³ΠΎΠΌ.
Π Π²ΠΎΡ ΠΏΠΎΠ»Π½Π°Ρ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ, ΡΠ°Π²Π½Π°Ρ ΡΡΠΌΠΌΠ΅ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠ΅Π»Π° ΠΈ ΡΠΏΡΡΠ³ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΏΡΡΠΆΠΈΠ½Ρ, ΠΎΡΡΠ°Π΅ΡΡΡ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈ ΡΠ°Π²Π½ΠΎΠΉ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ, Π»ΠΈΠ±ΠΎ Π΅Π³ΠΎ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π² ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΡΠΎΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ.
Π ΡΠ΅Π°Π»ΡΠ½ΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡΡ Π½Π° ΠΌΠ°ΡΡΠ½ΠΈΠΊ Π²ΡΠ΅Π³Π΄Π° Π΄Π΅ΠΉΡΡΠ²ΡΡΡ ΡΠΈΠ»Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΠΎΠ»Π½Π°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ, ΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ ΠΌΠ°ΡΡΠ½ΠΈΠΊΠ° Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π·Π°ΡΡΡ Π°ΡΡ, ΡΠΎ Π΅ΡΡΡ ΠΈΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄Π° ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ Π΄ΠΎ Π½ΡΠ»Ρ. Π’Π°ΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ Π·Π°ΡΡΡ Π°ΡΡΠΈΠΌΠΈ.
Π Π°ΡΡΠΌΠΎΡΡΠ΅Π»ΠΈ, ΠΊΠ°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΡΠΌ ΠΈ ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΌΠΈ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΠΌΠΈ. ΠΠΎΠ²ΡΠΎΡΠΈΠ»ΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΊΠΎΠ»Π΅Π±Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΡΠΏΠΎΠΌΠ½ΠΈΠ»ΠΈ, ΠΊΠ°ΠΊΠΈΠ΅ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π»ΠΈ, ΠΊΠ°ΠΊΠΈΠ΅ ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΡΡ ΠΏΡΠΈ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡΡ .