какие силы действуют между нуклонами в ядре

Какие силы действуют между нуклонами в ядре

Модели строения ядра.

Как пpедставить ядpо? Это непpостой вопpос, и было пpедложено несколько моделей ядpа. Наиболее популяpными и используемыми к настоящему вpемени являются две модели: капельная и оболочечная.

В оболочечной модели ядpо сpавнивается с атомом, котоpый имеет оболочечную стpуктуpу: центp атома, в котоpом сосpедоточено ядpо, окpужен слоями электpонной оболочки. На пеpвый взгляд кажется, что ядpо ничего общего не должно иметь с атомом, так как в ядpе нет никакого физически выделенного центpа, вокpуг котоpого могли бы pасполагаться слои из нуклонов. Однако нужно учесть квантовую стpуктуpу и ядpа, и атома. Ведь слои электpонной оболочки атома создаются благодаpя тому, что дискpетный энеpгетический спектp атомов таков: его энеpгетические уpовни pаспадаются на pяд сpавнительно близко лежащих гpупп, заполнение уpовней котоpых и составляет слои оболочек из электpонов. Оказалось, что спектpы энеpгии ядеp в этом отношении напоминают спектpы атомов: они также составляют гpуппы близко pасположенных уpовней. Потому постепенное заполнение нуклонами этих гpупп уpовней напоминает электpонные слои атомов. Так стpоится оболочечная модель ядеp.

Для того, чтобы атомные ядра были устойчивыми, протоны и нейтроны должны удерживаться внутри ядер огромными силами, во много раз превосходящими силы кулоновского отталкивания протонов.

Ядерные силы – силы, действующие между ядерными частицами – нуклонами.

Свойства ядерных сил:

1. Это короткодействующие силы, действуют на расстояниях между нуклонами, порядка 10 −15 м, и резко убывают при увеличении расстояния; при расстояниях 1,4 ∙ 10 −15 м они уже практически равны 0.

2. Это самые мощные силы из всех, которыми располагает природа, поэтому взаимодействие частиц в ядре часто называют сильными взаимо­действиями.

3. Ядерным силам свойственно насыщение, т.е. нуклон взаимодействует не со всеми остальными нуклонами, а лишь с некоторыми ближайшими соседями.

4. Ядерным силам свойственна зарядовая независимость. Это значит, что с одинаковой по модулю силой притягиваются друг к другу и заря­женные, и незаряженные частицы, т.е. сила притяжения Fрр между двумя протонами равна силе притяжения Fпп между двумя нейтронами и равна силе притяжения Fрп между протоном и нейтроном.

5. Ядерные силы не являются центральными, т.е. они не направлены вдоль прямой, соединяющей центры этих зарядов.

6. Ядерные силы являются так называемыми обменными силами.

Напоминаю, что различают четыре вида фундаментальных взаимодействий в природе: сильное, электромагнитное, слабое и гравитационное.

Все четыре взаимодействия необходимы и достаточны для построения разнообразного мира.

Без сильных взаимодействий не существовали бы атомные ядра, а звезды и Солнце не могли бы генерировать за счет ядерной энергии теплоту и свет.

Без электромагнитных взаимодействий не было бы ни атомов, ни молекул, ни макроскопических объектов, а также тепла и света.

Без слабых взаимодействий не были бы возможны ядерные реакции в недрах Солнца и звезд, не происходили бы вспышки сверхновых звезд и необходимые для жизни тяжелые элементы не могли бы распространиться во Вселенной. Без гравитационного взаимодействия не только не было бы галактик, звезд, планет, но и вся Вселенная не могла бы эво­люционировать, поскольку гравитация является объединяющим фактором, обеспечивающим единство Вселенной как целого и ее эволюцию.

Это предположение носит чисто теоретический характер, поскольку экспериментальным путем его проверить невозможно. Косвенно эти идеи подтверждаются астрофизическими данными, которые можно рассматривать как экспериментальный материал, накопленный Вселенной.

Открытие нейтрона и протона.

К 20-м годам XX века физики уже не сомневались в том, что атомные ядра, открытые Э. Резерфордом в 1911 г., также как и сами атомы, имеют сложную структуру. В этом их убеждали многочисленные экспериментальные факты, накопленные к этому времени: открытие радиоактивности, экспериментальное доказательство ядерной модели ядра, измерение отношения e / m для электрона, α-частицы и для так называемой H-частицы – ядра атома водорода, открытие искусственной радиоактивности и ядерных реакций, измерение зарядов атомных ядер и т. д. В настоящее время твердо установлено, что атомные ядра различных элементов состоят из двух частиц – протонов и нейтронов.

Первая из этих частиц представляет собой атом водорода, из которого удален единственный электрон. Эта частица наблюдалась уже в опытах Дж. Томсона (1907 г.), которому удалось измерить у нее отношение e / m. В 1919 году Э. Резерфорд обнаружил ядра атома водорода в продуктах расщепления ядер атомов многих элементов. Резерфорд назвал эту частицу протоном. Он высказал предположение, что протоны входят в состав всех атомных ядер.

какие силы действуют между нуклонами в ядре. Смотреть фото какие силы действуют между нуклонами в ядре. Смотреть картинку какие силы действуют между нуклонами в ядре. Картинка про какие силы действуют между нуклонами в ядре. Фото какие силы действуют между нуклонами в ядре

Схема опытов Резерфорда по обнаружению протонов в продуктах расщепления ядер. К – свинцовый контейнер с радиоактивным источником α-частиц, Ф – металлическая фольга, Э – экран, покрытый сульфидом цинка, М – микроскоп.

Прибор Резерфорда состоял из вакуумированной камеры, в которой был расположен контейнер К с источником α-частиц. Окно камеры было закрыто металлической фольгой Ф, толщина которой была подобрана так, чтобы α-частицы не могли через нее проникнуть. За окном располагался экран Э, покрытый сернистым цинком. С помощью микроскопа М можно было наблюдать сцинтилляции в точках попадания на экран тяжелых заряженных частиц. При заполнении камеры азотом при низком давлении на экране возникали световые вспышки, указывающие на появление потока каких-то частиц, способных проникать через фольгу Ф, практически полностью задерживающую поток α-частиц.

Отодвигая экран Э от окна камеры, Резерфорд измерил среднюю длину свободного пробега наблюдаемых частиц в воздухе. Она оказалась приблизительно равной 28 см, что совпадало с оценкой длины пробега H-частиц, наблюдавшихся ранее Дж. Томсоном. Исследования действия на частицы, выбиваемые из ядер азота, электрических и магнитных полей показали, что эти частицы обладают положительным элементарным зарядом и их масса равна массе ядра атома водорода. Впоследствии опыт был выполнен с целым рядом других газообразных веществ. Во всех случаях было обнаружено, что из ядер этих веществ α-частицы выбивают H-частицы или протоны. По современным измерениям, положительный заряд протона в точности равен элементарному заряду e = 1,60217733·10–19 Кл, то есть равен по модулю отрицательному заряду электрона. В настоящее время равенство зарядов протона и электрона проверено с точностью 10–22. Такое совпадение зарядов двух непохожих друг на друга частиц вызывает удивление и остается одной из фундаментальных загадок современной физики.

Масса протона, по современным измерениям, равна mp = 1,67262·10–27 кг. В ядерной физике массу частицы часто выражают в атомных единицах массы (а. е. м.), равной 1/12 массы атома углерода с массовым числом 12:

1 а. е. м. = 1,66057·10 –27 кг.

Это была очень красивая, но, как выяснилось впоследствии, ошибочная идея. Электрон не может входить в состав ядра. Квантово-механический расчет на основании соотношения неопределенностей показывает, что электрон, локализованный в ядре, то есть области размером R ≈ 10 –13 см, должен обладать колоссальной кинетической энергией, на много порядков превосходящей энергию связи ядер в расчете на одну частицу.

Идея о существовании тяжелой нейтральной частицы казалась Резерфорду настолько привлекательной, что он незамедлительно предложил группе своих учеников во главе с Дж. Чедвиком заняться поиском такой частицы. Через 12 лет в 1932 г. Чедвик экспериментально исследовал излучение, возникающее при облучении бериллия α-частицами, и обнаружил, что это излучение представляет собой поток нейтральных частиц с массой, примерно равной массе протона. Так был открыт нейтрон.

какие силы действуют между нуклонами в ядре. Смотреть фото какие силы действуют между нуклонами в ядре. Смотреть картинку какие силы действуют между нуклонами в ядре. Картинка про какие силы действуют между нуклонами в ядре. Фото какие силы действуют между нуклонами в ядре

При бомбардировке бериллия α-частицами, испускаемыми радиоактивным полонием, возникает сильное проникающее излучение, способное преодолеть такую преграду, как слой свинца толщиной в 10 –20 см. Это излучение почти одновременно с Чедвиком наблюдали супруги Жолио-Кюри Ирен и Фредерик (Ирен – дочь Марии и Пьера Кюри), но они предположили, что это γ-лучи большой энергии. Они обнаружили, что если на пути излучения бериллия поставить парафиновую пластину, то ионизирующая способность этого излучения резко возрастает. Они доказали, что излучение бериллия выбивает из парафина протоны, которые в большом количестве имеются в этом водородосодержащем веществе. По длине свободного пробега протонов в воздухе они оценили энергию γ-квантов, способных при столкновении сообщить протонам необходимую скорость.

Она оказалась огромной – порядка 50 МэВ. Дж. Чедвик в 1932 г. выполнил серию экспериментов по всестороннему изучению свойств излучения, возникающего при облучении бериллия α-частицами. В своих опытах Чедвик использовал различные методы исследования ионизирующих излучений. На рис. 2 изображен счетчик Гейгера, предназначенный для регистрации заряженных частиц. Он состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой нити, идущей вдоль оси трубки (анод). Трубка заполняется инертным газом (обычно аргоном) при низком давлении. Заряженная частица, пролетая в газе, вызывает ионизацию молекул. Появившиеся в результате ионизации свободные электроны ускоряются электрическим полем между анодом и катодом до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и через счетчик проходит короткий разрядный импульс тока. Другим важнейшим прибором для исследования частиц является так называемая камера Вильсона, в которой быстрая заряженная частица оставляет след (трек). Траекторию частицы можно наблюдать непосредственно или фотографировать.

Действие камеры Вильсона, созданной в 1912 г., основано на конденсации перенасыщенного пара на ионах, образующихся в рабочем объеме камеры вдоль траектории заряженной частицы. С помощью камеры Вильсона можно наблюдать искривление траектории заряженной частицы в электрическом и магнитном полях. Дж. Чедвик в своих опытах наблюдал в камере Вильсона треки ядер азота, испытавших столкновение с бериллиевым излучением. На основании этих опытов он сделал оценку энергии γ-кванта, способного сообщить ядрам азота наблюдаемую в эксперименте скорость. Она оказалась равной 100–150 МэВ. Такой огромной энергией не могли обладать γ-кванты, испущенные бериллием. На этом основании Чедвик заключил, что из бериллия под действием α-частиц вылетают не безмассовые γ-кванты, а достаточно тяжелые частицы.

Поскольку эти частицы обладали большой проникающей способностью и непосредственно не ионизировали газ в счетчике Гейгера, следовательно, они были электронейтральны. Так было доказано существование нейтрона – частицы, предсказанной Резерфордом более чем за 10 лет до опытов Чедвика. Нейтрон – это элементарная частица. Ее не следует представлять в виде компактной протон-электронной пары, как первоначально предполагал Резерфорд. По современным измерениям, масса нейтрона mn = 1,67493·10–27 кг = 1,008665 а. е. м. В энергетических единицах масса нейтрона равна 939,56563 МэВ. Масса нейтрона приблизительно на две электронные массы превосходит массу протона. Сразу же после открытия нейтрона российский ученый Д. Д. Иваненко и немецкий физик В. Гейзенберг выдвинули гипотезу о протонно-нейтронном строении атомных ядер, которая полностью подтвердилась последующими исследованиями.

Ядро состоит из нуклонов: протонов и нейтронов.

Г. Мозли (Англия) установил, что положительный заряд ядра атома (в условных единицах) равен порядковому номеру элемента в периодической системе Менделеева. Каждый протон имеет заряд +1, поэтому заряд ядра равен числу протонов.

Масса протона, как и масса нейтрона, приблизительно в 1840 раз больше массы электрона. Протоны и нейтроны находятся в ядре, поэтому масса атома почти равна массе ядра. Масса ядра, как и масса атома, определяется суммой числа протонов и числа нейтронов. Эта сумма называется массовым числом атома. Массовое число атома (A) = Число протонов (Z) + Число нейтронов (N) A=Z+N

Протоны и нейтроны, входящие в состав любого ядра, не являются неделимыми элементарными частицами, а состоят из кварков.

какие силы действуют между нуклонами в ядре. Смотреть фото какие силы действуют между нуклонами в ядре. Смотреть картинку какие силы действуют между нуклонами в ядре. Картинка про какие силы действуют между нуклонами в ядре. Фото какие силы действуют между нуклонами в ядре

Энергия связи нуклонов в ядре, дефект массы.

Устойчивость атомного ядра характеризуется энергией связи св.).

Точнейшие измерения показывают, что масса покоя ядра М всегда меньше суммы масс покоя со­ставляющих ее протонов и нейтронов: Мя

Энергия связи минимальная энергия, которую необходимо затратить для полного расщепления ядра на отдельные нуклоны или энергия, выделяющаяся при слиянии свободных нуклонов в ядро. Расчетная формула энергии связи:

Если в результате реакции Е=∆Мc 2 > 0, то энергия выделяется, если Е=∆М c 2

Для характеристики прочности ядра используется величина, которая называется удельной энергией связи εсв.

Удельная энергия связи энергия связи, приходящаяся на один нуклон ядра, равна отношению энергии связи Есв к массовому числу ядра атома А: εсвсв/А, Удельная энергия связи определяется экспериментально.

Ядерные реакции процессы, происходящие при столкновении ядер или элементарных частиц с другими ядрами, в результате которых изменяются квантовое состояние и нуклонный состав ис­ходного ядра, а также появляются новые частицы среди продуктов реакции.

При этом возможны реакции деления, когда ядро одного атома в результате бомбардировки делится на два ядра разных атомов. При реакциях синтеза происходит превращение легких ядер в более тяжелые.

ВНИМАНИЕ: Разница между химическими и ядерными реакциями состоит в том, что в химических реакциях общее число атомов каждого определенного элемента, а также атомы, составляющие определенные вещества, остаются неизменными. В ядерных реакциях изменяются и атомы, и элементы.

Изотопы это разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число протонов Z и различное число нейтронов n. Изотопы занимают одно и то же место в периодической системе элементов, откуда и произошло их название. По своим ядерным свойствам изотопы, как правило, существенно отличаются. Химические (и почти в той же мере физические) свойства изотопов одинаковы. Это объясняется тем, что химические свойства элемента опреде­ляются зарядом ядра, поскольку именно он вли­яет на структуру электронной оболочки атома.

У всех химических элементов имеются изотопы. У некоторых элементов имеются только нестабильные (радиоактивные) изотопы. Для всех элементов искусственно получены радиоактивные изотопы. В атомной индустрии все воз­растающую ценность для человечества представляют радиоактивные изотопы.

Источник

Внутри атомного ядра: сильное и слабое

Читавшие статью про устройство атомов в «Квантике» № 11 за 2018 год знают, что любое вещество состоит всего из трёх типов элементарных частиц — протонов, нейтронов и электронов. Протоны и нейтроны — тяжёлые, гораздо тяжелее электронов. Они образуют ядра атомов, а электроны летают вокруг этих ядер, совсем улететь им не даёт электрическое притяжение протонов: протоны имеют положительный заряд, а электроны — отрицательный, и все частицы с зарядами одного знака отталкиваются друг от друга, а с зарядами разных знаков — притягиваются.

Задача 1

Размер атома в этой модели (10 −10 : 10 −15 ) · 1 мм = 10 5 мм = 100 м. Размер вируса (10 −7 : 10 −15 ) · 1 мм = 10 8 мм = 100 км.

какие силы действуют между нуклонами в ядре. Смотреть фото какие силы действуют между нуклонами в ядре. Смотреть картинку какие силы действуют между нуклонами в ядре. Картинка про какие силы действуют между нуклонами в ядре. Фото какие силы действуют между нуклонами в ядре

Эти «сильные силы» действительно очень велики, иначе ядра не удерживались бы и разваливались. Ведь протоны в них все «отпихиваются» друг от друга электрическими силами. К тому же нуклоны в ядре не стоят на месте, а быстро движутся. Попробуйте втроём-вчетвером взяться за руки и начать беспорядочно прыгать и метаться туда-сюда. Удержать друг друга и не расцепить руки будет гораздо сложнее, чем если бы все спокойно водили хоровод.

Радиоактивность

И всё же иногда сильного взаимодействия не хватает, чтобы удержать ядро, и оно разваливается на части. Это называется распад ядра, или радиоактивный распад, а элементы, или изотопы (помните, что это?), которые норовят распасться, называются радиоактивными. В большинстве атомов вокруг нас ядра устойчивые и никогда не развалятся. Разве что по ядру очень сильно стукнет, например, ещё один протон или нейтрон (это будет вынужденный распад). Они такие стабильные потому, что в них правильное соотношение протонов и нейтронов: у лёгких ядер — протонов и нейтронов примерно поровну, а у тяжёлых — нейтронов чуть больше; чем тяжелее ядро, тем больше доля нейтронов (проверьте по таблице Менделеева). Но ядру вредно быть очень толстым: если протонов в нём совсем много (больше 82), то устойчивой конфигурации уже нет: сколько нейтронов ни клади, ядро развалится.

Если соотношение протонов и нейтронов «неудачное», ядро рано или поздно распадётся. Некоторые, правда, могут перед этим прожить многие миллиарды лет, а другие не проживут и долю секунды. Ядро может развалиться на пару ядер поустойчивей и полегче, но чаще всего от него просто откалывается небольшой кусочек — обычно два протона и два нейтрона, то есть как раз ядро атома гелия. Ядро гелия \(<>^<4>_<2>\mathrm\) иначе называется альфа-частицей, а распад с испусканием этой частицы — альфа-распадом. Вот пример такой ядерной реакции:

Здесь ядро урана превращается в ядро тория.

Задача 2

Вспомните, что значат числа, стоящие возле символа элемента, и проверьте, что ни один протон или нейтрон в этом процессе не пострадал.

Вверху слева — массовое число, то есть число нуклонов (протоны + нейтроны) в ядре, внизу слева — заряд ядра, то есть число протонов.

Задача 3

Источник

ЯДЕРНЫЕ СИЛЫ

С др. стороны, Я. с. как силы взаимодействия между нуклонами включают не только СВ, но и эл.-магн., слабое и гравитац. взаимодействия нуклонов. С точки зрения совр. теории, эл.-магн. и слабое взаимодействия являются проявлениями одного, более фундаментального, электрослабого взаимодействия. Однако при тех пространственно-временных масштабах (

какие силы действуют между нуклонами в ядре. Смотреть фото какие силы действуют между нуклонами в ядре. Смотреть картинку какие силы действуют между нуклонами в ядре. Картинка про какие силы действуют между нуклонами в ядре. Фото какие силы действуют между нуклонами в ядре

Поскольку нуклоны в ядре движутся, как правило, со сравнительно небольшими скоростями (в 3-4 раза меньше скорости света), то для построения модели СВ нуклонов в ядрах можно пользоваться нерелятивистской теорией и приближённо описывать его потенциалом, к-рый является ф-цией расстояния r между нуклонами. В отличие от кулоновского и гравитац. потенциалов, обратно пропорциональных расстоянию, потенциал Я. с. зависит от r гораздо сложнее. Кроме того, потенциал Я. с. зависит от спинов нуклонов и орбитального момента L относительного движения нуклонов.

какие силы действуют между нуклонами в ядре. Смотреть фото какие силы действуют между нуклонами в ядре. Смотреть картинку какие силы действуют между нуклонами в ядре. Картинка про какие силы действуют между нуклонами в ядре. Фото какие силы действуют между нуклонами в ядре

Совр. представления о природе СВ, основанные на КХД, поставили задачу расчёта потенциала СВ нуклонов в рамках КХД, но она пока не решена, поскольку не решена и более простая задача о построении теории одного нуклона. Существует неск. кварковых моделей адронов, из к-рых наиб. известна модель мешков в разл. вариантах. Она позволяет качественно понять природу отталкива-тельного кора, оценить его радиус и высоту, но не позволяет рассчитать вид потенциала на больших расстояниях. Под большим вопросом, с точки зрения КХД, оказывается статус мезонов (за исключением p-мезона) в формировании потенциала СВ нуклонов: обмен тяжёлыми мезонами между нуклонами происходит на столь малых расстояниях, что их кварк-глюонная природа становится существенной. Особое место в КХД-теории СВ принадлежит p-мезону. Согласно совр. представлениям, он интерпретируется как коллективное возбуждение вакуума, состоящее из большого числа кварк-антикварковых пар ( голд-стоуновский бозон, связанный со спонтанным нарушением в КХД киральной симметрии). Поэтому в большинстве совр. моделей все остальные адроны считают состоящими из небольшого числа кварков (антикварков, глюонов), а я-мезон вводят дополнительно как независимую частицу. С такой точки зрения понятен статус потенциалов (1), (2) как описывающих «хвост» потенциала взаимодействия нуклонов.

Гл. часть эл.-магн. взаимодействия нуклонов составляет кулоновское отталкивание между протонами. На больших расстояниях оно определяется только зарядами протонов. СВ приводит к тому, что электрич. заряд протона не является точечным, а распределён на расстояниях какие силы действуют между нуклонами в ядре. Смотреть фото какие силы действуют между нуклонами в ядре. Смотреть картинку какие силы действуют между нуклонами в ядре. Картинка про какие силы действуют между нуклонами в ядре. Фото какие силы действуют между нуклонами в ядре1 Фм (среднеквадратичный радиус протона равен какие силы действуют между нуклонами в ядре. Смотреть фото какие силы действуют между нуклонами в ядре. Смотреть картинку какие силы действуют между нуклонами в ядре. Картинка про какие силы действуют между нуклонами в ядре. Фото какие силы действуют между нуклонами в ядре0,8 Фм; см. «Размер» элементарной частицы). Электрич. взаимодействие на малых расстояниях зависит и от распределения заряда внутри протона. Это распределение совр. теория СВ не может надёжно рассчитать, но оно достаточно хорошо известно из эксперим. данных по рассеянию электронов на протонах. Нейтроны в целом электронейтральны, но из-за СВ распределение заряда внутри нейтрона также существует, что приводит к электрич. взаимодействию между двумя нейтронами и между нейтроном и протоном. Магн. взаимодействие между нейтронами такого же порядка, что и между протонами, из-за большой величины аномального магнитного момента, обусловленного СВ. Менее ясна ситуация со слабым взаимодействием нуклонов. Хотя гамильтониан слабого взаимодействия известен хорошо, СВ приводит к перенормировке соответствующих констант взаимодействия (аналог аномального магн. момента) и возникновению формфакторов. Как и в случае эл.-магн. взаимодействия, эффекты слабого взаимодействия не могут быть достоверно рассчитаны, но в этом случае они не известны и экспериментально. Имеющиеся данные о величине эффектов несохранения чётности в 2-нуклонной системе позволяют установить интенсивность этого взаимодействия, но не его структуру. Существует неск. альтернативных моделей слабого взаимодействия нуклонов, к-рые одинаково хорошо описывают 2-нуклонные эксперименты, но приводят к разл. следствиям для атомных ядер.

Лит.: Бор О., Моттельсон Б., Структура атомного ядра, пер. с англ., т. 1-2, М., 1971-77; Калоджеро Ф., Симонов Ю. А., Ядерные силы, насыщение и структура ядер, в сб.: Будущее науки, в. 9, М., 1976. Э. Е. Саперштейн.

Источник

Какие силы действуют между нуклонами в ядре

В квантовой физике взаимодействие между частицами передается с помощью частиц, которые называются переносчиками взаимодействий.

какие силы действуют между нуклонами в ядре. Смотреть фото какие силы действуют между нуклонами в ядре. Смотреть картинку какие силы действуют между нуклонами в ядре. Картинка про какие силы действуют между нуклонами в ядре. Фото какие силы действуют между нуклонами в ядре

Нуклон-нуклонное взаимодействие можно описать в рамках концепции потенциала.
Радиальная зависимость NN-потенциала V(r) показана на рис. 4. Минимум потенциала при
r
≈ 0.8 Фм, глубина в этой точке − (70–80) МэВ. При r 0.8 Фм отрицательный потенциал приближается с ростом r к нулю. Этот участок NN‑потенциала отвечает силам притяжения. Среднее расстояние между нуклонами в ядре около 2 Фм.

какие силы действуют между нуклонами в ядре. Смотреть фото какие силы действуют между нуклонами в ядре. Смотреть картинку какие силы действуют между нуклонами в ядре. Картинка про какие силы действуют между нуклонами в ядре. Фото какие силы действуют между нуклонами в ядре
Рис. 4. Радиальная зависимость нуклон-нуклонного потенциала

Взаимодействие между нуклонами имеет кварк-глюонную природу. На относительно больших расстояниях между адронами (≈1 Фм), т.к. цветные частицы не могут вылетать из адрона, взаимодействие адронов происходит в результате коллективного взаимодействия всех кварков и глюонов одного адрона со всеми кварками и глюонами другого. Переносчиками этого взаимодействия должны быть бесцветные адроны. Такой механизм взаимодействия реализуется только на расстояниях

0.5–2 Фм.
Нуклон-нуклонные взаимодействия описывают как обмен виртуальными мезонами. Мезоны бесцветны и состоят из кварк-антикварковых пар.
Концепция мезонного обмена хорошо работает на сравнительно больших расстояниях ≈2 Фм, на которых можно не учитывать внутреннюю структуру мезонов и рассматривать их как точечные частицы.
На рис. 5 показана диаграмма np-взаимодействия, осуществляемого однопионным обменом. Диаграмма этого же взаимодействия на кварковом уровне представлена на рис. 6. Обмен происходит парой кварков (qкакие силы действуют между нуклонами в ядре. Смотреть фото какие силы действуют между нуклонами в ядре. Смотреть картинку какие силы действуют между нуклонами в ядре. Картинка про какие силы действуют между нуклонами в ядре. Фото какие силы действуют между нуклонами в ядре), объединенных в пион.

какие силы действуют между нуклонами в ядре. Смотреть фото какие силы действуют между нуклонами в ядре. Смотреть картинку какие силы действуют между нуклонами в ядре. Картинка про какие силы действуют между нуклонами в ядре. Фото какие силы действуют между нуклонами в ядре
Рис. 5. Однопионное np-взаимодействие

Диаграмма рис. 6 – простейшая из возможных диаграмм np‑взаимодействия. В него в данном случае вовлечены по одному валентному кварку каждого нуклона – d (нейтрон) и u (протон).
Используя связь между радиусом сил а и массой m переносчика взаимодействия

которая следует из соотношения неопределенностей для виртуальной частицы, получаем при характерном ядерном расстоянии а ≈ 1.5 Фм

какие силы действуют между нуклонами в ядре. Смотреть фото какие силы действуют между нуклонами в ядре. Смотреть картинку какие силы действуют между нуклонами в ядре. Картинка про какие силы действуют между нуклонами в ядре. Фото какие силы действуют между нуклонами в ядре
какие силы действуют между нуклонами в ядре. Смотреть фото какие силы действуют между нуклонами в ядре. Смотреть картинку какие силы действуют между нуклонами в ядре. Картинка про какие силы действуют между нуклонами в ядре. Фото какие силы действуют между нуклонами в ядре
Рис. 6. Кварковая диаграмма np-взаимодействия

какие силы действуют между нуклонами в ядре. Смотреть фото какие силы действуют между нуклонами в ядре. Смотреть картинку какие силы действуют между нуклонами в ядре. Картинка про какие силы действуют между нуклонами в ядре. Фото какие силы действуют между нуклонами в ядре
Рис. 7. Диаграммы NN взаимодействий

Потенциал, создаваемый облаком испускаемых нуклоном мезонов, носит название потенциала Юкавы и имеет вид

какие силы действуют между нуклонами в ядре. Смотреть фото какие силы действуют между нуклонами в ядре. Смотреть картинку какие силы действуют между нуклонами в ядре. Картинка про какие силы действуют между нуклонами в ядре. Фото какие силы действуют между нуклонами в ядре

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *