какие силы действуют на человека на земле
Гравитация, или На чём держится мир
Гравитация — это сила, которая действует на каждого обитателя Земли, впрочем, как и на саму Землю. Утрируя, можно сказать, текущий вид Вселенной существует благодаря силе притяжения. А значит пора разобраться, что такое гравитация простыми словами.
Определение гравитации
Слово «гравитация» происходит от латинского gravitas — вес.
Гравитация — сила, с помощью которой планета или другое тело притягивает объекты к своему центру. Именно благодаря ей мы не улетаем в космос, всегда притягиваясь к Земле. Так и планеты Солнечной системы всегда испытывают притяжение звезды и остаются на своих местах.
Как работает гравитация
Сила притяжения зависит от массы объектов и расстояния межу ними. Все, что имеет массу, имеет и гравитацию. Объекты с большей массой имеют большую гравитацию. Она ослабевает с расстоянием, и чем ближе объекты друг к другу, тем сильнее их тяготение.
Исаак Ньютон был первым, кто математически описал гравитацию и то, что она одинаково действует на все объекты во Вселенной: от падающего яблока до планет, которые движутся вокруг звезды. Так и появился закон всемирного тяготения, которого придерживались веками.
Сила притяжения F между двумя материальными точками с массами и
, разделёнными расстоянием
, действует вдоль соединяющей их прямой, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния.
Здесь — гравитационная постоянная, равная 6,67408(31)·10 −11 м³/(кг·с²).
Кстати, падение яблока на голову Ньютона — это миф. Он действительно любил отдыхать под яблоней, и наблюдения за падающими яблоками натолкнуло его на мысль о всемирном тяготении. Но по голове Ньютона ничего не било.
Теория Ньютона объясняла гравитацию как некую силу. Но в последствии появилась теория Эйнштейна, в основе которой подход геометрический. Если простыми словами: крупные объекты искривляют пространство-время вокруг себя, а в это «искривление» попадают другие объекты.
Этот принцип хорошо показан в этом ролике:
Теория Энштейна — является действующей на сегодня.
Насколько важна гравитация?
Очень важна! Гравитация — это одна из сил фундаментальных взаимодействий, которым подчиняется всё, что есть во Вселенной. Вот эти взаимодействия:
Именно благодаря им мир такой, каким мы его знаем. Гравитация в этом списке является самым крупномасштабным, но одновременно и самым слабым взаимодействием, остальные — определяют взаимодействия на уровне частиц.
Как гравитация повлияла на Вселенную
Именно сила притяжение создает звезды и планеты, собирая вместе материал, из которого они сделаны. Гравитация — это то, что удерживает планеты на орбите вокруг Солнца и то, что удерживает Луну на орбите вокруг Земли.
Роль гравитации для землян
Те условия, в которых мы живём, были бы невозможны без неё. Она удерживает нашу планету на одинаковом расстоянии от Солнца, не позволяет атмосфере покинуть пределы Земли, как и всему, что находится на её поверхности. Гравитационное притяжение Луны притягивает к себе моря, вызывая приливы океана.
Луна и приливы на Земле
Гравитация очень важна для нас. Мы не могли бы жить на Земле без неё. Тяготение Солнца удерживает Землю на орбите вокруг него на постоянном комфортном для жизни расстоянии. Сила притяжения удерживает нашу атмосферу и воздух, которым мы дышим.
Гравитация — это то, что скрепляет наш мир.
Однако гравитация не везде одинакова на Земле. Она немного сильнее в местах с большей массой под землей, чем в местах с меньшей массой.
Есть ли гравитация у человека?
У каждого материального объекта есть своя сила притяжения, и человек не является исключением.
О выходе новых статей рассказываем в соцсетях
3. Физическая сущность гравитации
Анализируя современные теории гравитации, начиная с Ньютона и его последователей, мы видим сложность восприятия этого явления. Она заключается в том, что термин «тяготение» ассоциируется с термином «гравитационное излучение». Но если это излучение, т.е. нечто, исходящее от гравитирующего тела (например, Земли), то, как оно может действовать в обратном направлении, т.е. притягивать? Гегель указывал на это несоответствие ещё 200 лет назад. Он считал, что притяжение есть производное от отталкивания, однако, обосновать это теоретически не удосужился.
Физика не может использовать интуитивные прозрения, если их нельзя сформулировать последовательным математическим языком и дополнить описанием на обычном языке. Кроме того, существующие сегодня теории гравитации, включая закон всемирного тяготения Ньютона и общую теорию относительности Эйнштейна, не отвечают на самый главный вопрос – откуда берётся энергия на создание и поддержание гравитационного поля. По расчётам учёных сила притяжения Солнца, удерживающая Землю на орбите, составляет 3,6х10^(21)кгс. Но кроме Земли надо притягивать и другие планеты. Учёные попали в тупик, выяснив, что Солнце не в состоянии энергетически обеспечить притяжение планет солнечной системы. Ньютон, да и Эйнштейн долго бились над этим вопросом, но так и не нашли разумного ответа. В конце концов, Ньютон решил, что сама масса является источником силы притяжения. Так появилась гравитационная масса, которую он отделил от веса. Но при этом ему пришлось внести в свою теорию другую массу – инертную, как количество вещества. К его удивлению, математические вычисления показали, что эти массы в точности равны друг другу. Так родился закон эквивалентности тяжёлой и инертной массы, который Эйнштейн использовал для построения общей теории относительности. Таким образом, Ньютон отказался от физического объяснения наблюдаемых явлений, заменив его математическим. По его пути пошёл и Эйнштейн, создавая свою теорию гравитации, в которой доминирующую роль играет не масса, а пространство и время, как физические объекты. Поэтому его теорию называют ещё геометрической. Конечно, геометрия может определять параметры сил, но она не может быть причиной движения.
В ХХ веке появилась, и начала быстро развиваться квантовая теория микромира и отдельная её ветвь – квантовая теория гравитации. Её трудность, прежде всего, заключается в том, что она основана на математическом формализме довольно высокого уровня, когда по результатам вычислений судят о физической сущности рассматриваемого явления. Кроме того, она постулирует наличие в природе элементарных частиц – гравитонов, ответственных за гравитационное взаимодействие. Как известно, несмотря на долгие поиски, эти частицы так и не были обнаружены. К тому же, эта теория, как и все предыдущие, не отвечает на вопрос – где находится источник энергии, питающий гравитационное поле. Итак, все перечисленные выше теории, а также подобные им (сегодня их насчитывается более десятка) являются чисто математическими, с невыявленной физической сущностью. Такие теории не дают выхода на проведение экспериментов, подтверждающих их. Объясняя отсутствие широкомасштабных экспериментов с гравитацией, учёные ссылаются на то, что, согласно теории Ньютона, для их проведения требуется огромная масса, поскольку именно она является источником гравитационных сил, а это практически невыполнимо. Что же касается общей теории относительности Эйнштейна, то в ней, как уже отмечалось, одна математика, а физической сущностью выступают пространство и время, которые не поддаются экспериментам. Не в лучшем виде в этом вопросе выглядит и квантовая теория гравитации. А, как уже говорилось в главе 1, при использовании математических методов в решении задач, необходимо соблюдать осторожность.
В первую очередь, для проверки термодинамической природы гравитации необходимо создать искусственное гравитирующее тело. До сих пор такая идея не могла прийти в голову ни одному исследователю, поскольку она противоречила бы всем известным на сегодня теориям гравитации. Однако, согласно ТМГ, процессы, связанные с излучением гравитационных волн Землёй можно сымитировать в миниатюре. Сама природа подсказывает, как это можно осуществить, причём очень просто и наглядно. Для этого необходимо взять шар, желательно побольше, из материала, выдерживающего высокую температуру. Внутрь его поместить источник тепловой энергии и установить этот шар на весы. Предположительно, он должен терять в весе (конечно незначительно) вследствие того, что своим гравитационным излучением будет отталкиваться от подобного излучения Земли (так же как Луна). Так и произошло. Для решающего эксперимента был изготовлен стальной шар диаметром 100мм. В шаре было сделано конусное отверстие до центра. Затем его поставили на лабораторные весы рычажного типа ВЛТ-5 с ценой деления 0,3г и уравновесили обычными гирями. Вес шара составил 4,2кг. В качестве источника тепловой энергии был использован лазер ЛТ1-2 с энергией луча 5 кВт. Луч был направлен в конусное отверстие шара сверху вниз. По мере повышения температуры поверхности шара (измерение проводилось термопарой) стрелка весов, как и предполагалось, медленно отклонялась в сторону уменьшения веса. Приблизительно через полтора часа, при достижении температуры поверхности шара 300°С лазер был выключен. Разница (уменьшение) в весе шара по сравнению с первоначальным показанием (в холодном состоянии) составила 3г (десять делений шкалы). При отключении лазера, вес вернулся к исходному.
Далее, чтобы разнообразить эксперименты, гравитирующее тело было изготовлено в форме тора, или, попросту говоря, большого бублика из каолинового волокна с «запеченной» внутри по оси электроспиралью мощностью 500Вт. Тепловой поток в нём, как и в шаре, распространяется изнутри по радиусу, т.е. будет направленным. Взвешивание «бублика» производилось на тех же весах, что и в предыдущем опыте. В этом эксперименте, как и в опыте с шаром, тепловая энергия на создание гравитационного излучения расходовалась со всей поверхности тора. При этом рабочая часть поверхности, которая взаимодействует с гравитационным излучением Земли, составляет 20-25% от всей его поверхности. Если бы вся энергия спирали была направлена в рабочую, нижнюю, зону тора, то эффект потери веса тора увеличился бы раз в 10. Это предположение можно отнести и к эксперименту с шаром. Выводы, полученные из этих двух опытов, послужили толчком для создания гравитирующего тела в виде «тарелки». Эта «летающая тарелка» была изготовлена из двух алюминиевых полусфер диаметром 350мм. В нижней полусфере установили графитовый сердечник (излучатель) диаметром и высотой 100мм. Нижний его торец выпустили на 10мм наружу, а на верхнем уложили электроспираль в фарфоровых бусах мощностью 0,8кВт. Всё остальное пространство обеих полусфер было заполнено каолиновым волокном. Вес «тарелки» в холодном состоянии составил 3,5кг, а гравитирующая способность (уменьшение веса) к концу эксперимента составила 5г. Взвешивание проводилось всё на тех же весах. Надо сказать, что здесь я ожидал лучшего результата. Очевидно, большая часть теплового потока, проходящего через сердечник, отклонялась в стороны для прогрева теплоизоляции его боковой поверхности. В результате, только часть теплового потока преобразовалась в гравитационное излучение, которое взаимодействовало с подобным излучением Земли.
Наилучшие результаты, т.е. потеря веса, были получены на модели гравитирующего тела, в шутку названного «летающая кастрюля», по аналогии с «летающей тарелкой». Эта модель и в самом деле была изготовлена из кастрюли с диаметром и высотой 160мм. В днище вырезали отверстие диаметром 100мм, на которое уложили диск из графита диаметром 130мм и толщиной 35мм. На диск, как и в предыдущем эксперименте, уложили электроспираль в фарфоровых бусах мощностью 600Вт. Всё свободное пространство «кастрюли» заполнили каолиновым волокном. Вес модели в холодном состоянии составил 2,534кг. На этот раз взвешивание проводилось на электронных весах МК-6-А20 с ценой деления 2г. Это позволило наблюдать за изменением веса модели во времени вплоть до минут в процессе её нагревания, а затем остывания в естественных условиях. Модель была установлена на специальной подставке, исключающей возможность нагрева механизма весов. Результаты эксперимента сведены в таблицу.(см. таблицу изменения веса модели при нагреве и остывании)
Закон всемирного тяготения
Гравитационное взаимодействие
Земля — это большой магнит. Причем на самом деле магнит, с настоящим магнитным полем. Но сейчас речь пойдет о другом явлении, которое притягивает к Земле тела — от прыгающего с дерева котика до летящего мимо астероида. Называется это явление гравитацией.Земля — это большой магнит. Причем на самом деле магнит, с настоящим магнитным полем. Но сейчас речь пойдет о другом явлении, которое притягивает к Земле тела — от прыгающего с дерева котика до летящего мимо астероида. Называется это явление гравитацией.
Возьмем два тела — одно с большой массой, другое с маленькой. Натянем гигантское полотно ткани и положим на него тело с большей массой. После чего положим туда тело с массой поменьше. Мы будем наблюдать примерно такую картину:
Маленькое тело начнет притягиваться к тому, что больше, — это и есть гравитация. По сути, Земля — это большой шарик, а все остальные предметы — маленький (даже если это вовсе не шарики).
Гравитационное взаимодействие универсально. Оно справедливо для всех видов материи. Гравитация проявляется только в притяжении — отталкивание тел гравитация не предусматривает.
Из всех фундаментальных взаимодействий гравитационное — самое слабое. Хотя гравитация действует между всеми элементарными частицами, она настолько слаба, что ее принято не учитывать. Все дело в том, что гравитационное взаимодействие зависит от массы объекта, а у частиц она крайне мала. Эту зависимость впервые сформулировал Исаак Ньютон.
Закон всемирного тяготения
В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.
Формула силы тяготения согласно этому закону выглядит так:
Закон всемирного тяготения
F — сила тяготения [Н]
M — масса первого тела (часто планеты) [кг]
m — масса второго тела [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз.
Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.
Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.
Приливы и отливы существуют благодаря закону всемирного тяготения. В этом видео я рассказываю, что общего у приливов и прыщей.
Задачка раз
Две планеты с одинаковыми массами обращаются по круговым орбитам вокруг звезды. У первой из них радиус орбиты вдвое больше, чем у второй. Каково отношение сил притяжения первой и второй планеты к звезде?
Решение
По закону всемирного тяготения сила притяжения планеты к звезде обратно пропорциональна квадрату радиуса орбиты. Таким образом, в силу равенства масс отношение сил притяжения к звезде первой и второй планет обратно пропорционально отношению квадратов радиусов орбит:
По условию, у первой планеты радиус орбиты вдвое больше, чем у второй, то есть R1=2R2.
Ответ: отношение сил притяжения первой и второй планет к звезде равно 0,25.
Задачка два
У поверхности Луны на космонавта действует сила тяготения 144 Н. Какая сила тяготения действует со стороны Луны на того же космонавта в космическом корабле, движущемся по круговой орбите вокруг Луны на расстоянии трех лунных радиусов от ее центра?
Решение
По закону всемирного тяготения сила притяжения космонавта со стороны Луны обратно пропорциональна квадрату расстояния между ним и центром Луны. У поверхности Луны это расстояние совпадает с радиусом спутника. На космическом корабле, по условию, оно в три раза больше. Таким образом, сила тяготения со стороны Луны, действующая на космонавта на космическом корабле, в 9 раз меньше, чем у поверхности Луны, то есть:
Ответ: на расстоянии трех лунных радиусов от центра сила притяжения космонавта будет равна 16 Н.
Правильно говорить не «на тело действует сила тяготения», а «Земля притягивает тело с силой тяготения».
Ускорение свободного падения
Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.
Сила тяжести — сила, с которой Земля притягивает все тела.
Сила тяжести
F — сила тяжести [Н]
m — масса тела [кг]
g — ускорение свободного падения [м/с 2 ]
На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.
Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.
Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.
Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.
На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.
Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к этой планете притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:
Приравниваем правые части:
Делим на массу левую и правую части:
Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.
Закон всемирного тяготения
g — ускорение свободного падения [м/с 2 ]
M — масса планеты [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.
Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.
Но разве это не зависит еще и от массы предмета?
Нет, не зависит. На самом деле все тела падают одинаково вне зависимости от массы. Если мы возьмем перо и мяч, то перо, конечно, будет падать медленнее, но не из-за ускорения свободного падения. Просто из-за небольшой массы пера сопротивление воздуха оказывает на него большее воздействие, чем на мяч. А вот если бы мы поместили перо и мяч в вакуум, они бы упали одновременно.
Третий закон Ньютона
Третий закон Ньютона обобщает огромное количество опытов, которые показывают, что силы — результат взаимодействия тел.
Он звучит так: тела действуют друг на друга с силами, равными по модулю и противоположными по направлению.
Если попроще — сила действия равна силе противодействия.
Если вам вдруг придется объяснять физику во дворе, то можно сказать и так: на каждую силу найдется другая сила. 🙈
Третий закон Ньютона
F1 — сила, с которой первое тело действует на второе [Н]
F2 — сила, с которой второе тело действует на первое [Н]
Так вот, для силы тяготения третий закон Ньютона тоже справедлив. С какой силой Земля притягивает тело, с той же силой тело притягивает Землю.
Задачка для практики
Земля притягивает к себе подброшенный мяч с силой 5 Н. С какой силой этот мяч притягивает к себе Землю?
Решение
Согласно третьему закону Ньютона, сила, с которой Земля притягивает мяч, равна силе, с которой мяч притягивает Землю.
Ответ: мяч притягивает Землю с силой 5 Н.
Поначалу это кажется странным, потому что мы ассоциируем силу с перемещением: мол, если сила такая же, то на то же расстояние подвинется Земля. Формально это так, но у мяча масса намного меньше, чем у Земли. И Земля смещается на такое крошечное расстояние, притягиваясь к мячу, что мы его не видим, в отличие от падения мяча.
Если каждый брошенный мяч смещает Землю на какое-то расстояние, пусть даже крошечное, возникает вопрос — как она еще не слетела с орбиты из-за всех этих смещений. Но тут как в перетягивании каната: если его будут тянуть две равные по силе команды, канат никуда не сдвинется. Так же и с нашей планетой.
Как невесомость меняет человека и для чего она науке
Что такое невесомость и бывает ли она на Земле
Невесомость не равно антигравитация. Это популярное заблуждение. В 400 км от Земли, где со скоростью почти 8 км/с летит Международная космическая станция (МКС), сила притяжения сохраняется на 90% от привычной. Космонавты и предметы парят в воздухе, потому что вместе с МКС находятся в состоянии свободного падения, одновременно опускаясь и смещаясь в сторону. Наша планета их постоянно притягивает: корабль непременно рухнул бы, но поскольку Земля круглая, сохраняется орбитальное движение и постоянная высота. За счет формы планеты МКС постоянно «промахивается» мимо поверхности и продолжает двигаться по орбите дальше. Иначе говоря, падает и не может упасть.
Эффект свободного падения можно ощутить на аттракционах вроде «американских горок» или в скоростном лифте, который стремительно спускается с высокого этажа. На секунды они дарят состояние невесомости или, как ее еще принято называть, микрогравитации.
Чуть дольше — около 25 секунд — в невесомости можно оказаться в специальном самолете-лаборатории ИЛ-76 МДК. Он поднимается до 6 тыс. метров, после за 15 секунд с резким ускорением под углом 45º набирает высоту до 9 тыс. метров, а потом по плавной дуге (баллистической траектории) при отключенном моторе уходит вниз. В этот момент и наступает невесомость. На высоте 6 тыс. метров двигатели снова заводят и самолет переводится в обычный горизонтальный полет. Пилот выполняет такие «горки» (так называемые параболы Кеплера) 10-15 раз, он удерживает штурвал, не допуская даже малейших отклонений, что физически очень непросто.
Взлетает ИЛ-76 МДК с военного аэродрома «Чкаловский» в Подмосковье. Поучаствовать может любой более-менее здоровый человек, этим занимаются специальные коммерческие агентства, стоимость полета — ₽280 тыс.
В 2016 году альтернативная рок-группа Ok Go из Чикаго сняла в ИЛ-76 МДК клип на песню Upside down and Inside Out. Это первое профессиональное музыкальное видео в условиях невесомости. Самолет-лаборатория имитировал салон пассажирского S7 Airlines, роль стюардесс исполняли многократные призеры чемпионатов по художественной гимнастике Анастасия Бурдина и Татьяна Мартынова.
Как невесомость меняет человека
Невесомость — состояние из малоприятных. Отсутствие привычной силы тяжести для человеческого тела большой стресс. Начинается «космическая» болезнь: тошнота, головокружение, головная боль, дезориентация. На Земле человек всегда знает, где верх, а где низ. Данные об ориентации тела в пространстве мозгу подсказывают «датчики» во внутреннем ухе, которые являются частью вестибулярной системы. В космосе «прицел» сбивается, организм не чувствует знакомой силы тяжести и не может определить где стоят ноги — на полу или на потолке. Поэтому на МКС все надписи нанесены в одном направлении.
«Я чувствовал, что падаю, — делится впечатлениями астронавт NASA Майк Хопкинс (провел на МКС 166 дней в 2013-2014 гг.) — Это было, как если бы вы висели на стропилах в здании 24 часа. Моему мозгу потребовалось время, чтобы привыкнуть, что теперь так будет всегда. Это почти как заново научиться ходить. Однако довольно быстро это прошло».
В невесомости человек вырастает на 2-5 см, что объясняется низкой гравитацией. После возвращения земная сила притяжения возвращает все обратно, однако в самом полете новый рост может стать проблемой, он вызывает мышечные и суставные боли.
Основной дискомфорт причиняет изменение давления жидкости в организме, кровь приливает к груди и голове, сердце увеличивается в размерах, почки работают так, как будто человек выпил много воды. Лицо становится опухшим и одутловатым, а поскольку стоять или ходить в космосе не нужно, мышцы спины и ног начинают терять силу и уменьшаются в размерах.
Средняя продолжительность полета на МКС — 6 месяцев. За это время человек теряет в весе, снижается работоспособность, а утомляемость, наоборот, повышается. Кости истончаются примерно на 1% каждый месяц, проведенный в невесомости, идет потеря мышечной массы. Например, антигравитационные мышцы практически не используются, т.к. поддерживать осанку ни к чему, большую часть времени тело находится в позе зародыша: человек немного сгибается, руки и ноги в полусогнутом состоянии.
Проблемы со здоровьем могут вызвать даже несколько дней в невесомости. В 2006 году американская астронавт Хайдемари Стефанишин-Пайпер побывала 2 недели в космосе. После приземления Пайпер давала пресс-конференцию, во время которой дважды падала, т.к. организм не справился с земной гравитацией.
» Невесомость гораздо вреднее, чем космическая радиация, о которой ходит много мифов и слухов, — говорит Виталий Егоров, популяризатор космонавтики, известный как блогер Zelenyikot. — Медицинские исследования показывают, что после длительного пребывания в невесомости 100%-го возвращения организма в прежнее состояние нет, т.е. изменения, которые происходят в организме даже после недели нахождения в космосе практически необратимы. Но в целом они настолько незначительны, что человек не замечает разницы, что было до и стало после. По рассказам космонавтов, возвращение организма к земной норме происходит примерно за то же самое время, которое проведено наверху: был неделю, восстанавливаешься неделю, был год — год и адаптируешься».
Есть ли польза от невесомости
Практически все исследования на МКС связаны с невесомостью. В конце июля 2021 года к МКС присоединился новый 20-тонный российский модуль «Наука», предназначенный для множества экспериментов: от производства полупроводников до отработки технологий, важных для будущих пилотируемых полетов к дальним планетам.
Например, в эксперименте «Перепел» в условиях микрогравитации россияне попытаются вывести птенцов японского перепела. Если все удастся — птенцы родятся, выживут и сумеют приспособиться к невесомости, это снимет острый вопрос пополнения рациона экипажа свежими продуктами в потенциальных дальних пилотируемых экспедициях, к тому же продолжит исследования размножения живых организмов в космосе.
С растениями все получилось еще в 2015-м, тогда космонавты впервые съели урожай, выращенный в невесомости. Им стал красный салат ромэн. Поскольку понятий верха и низа в космосе нет, корни растут во всех направлениях. Чтобы вода, субстрат и удобрения не разлетались повсюду, их упаковали в специальные пакеты, которые удерживают корни и «выталкивают» побеги. Свет для фотосинтеза дают светодиоды, они же указывают стеблям, в какую сторону расти.
Каждый космический экипаж сначала на советском «Салюте», американском Skylab, российском «Мире», теперь на международной МКС провел больше сотни научных экспериментов. Желающих же гораздо больше. Перед очередным стартом рассматриваются тысячи предложений: получить разрешение на проведение опытов в невесомости мечтает практически каждая отрасль современной науки. Космическая среда уникальна и обладает огромным потенциалом для открытий во многих областях: от исследования раковых клеток и биопечати органов до создания новых сплавов и военной разведки.
Чем же невесомость так привлекательна для исследований? Взять для примера биопечать, с помощью которой человек может создать клеточную ткань (в 2018 году на МКС были напечатаны щитовидная железа грызуна и человеческий хрящ), эксперимент инициировала российская компания 3D Bioprinting Solutions. Если заниматься этим на Земле, то сила тяжести при формировании биообъекта может заставить конструкцию «наклониться» и целостность органа окажется нарушенной. В космосе с влиянием гравитации проблем нет, на МКС «собрать» трехмерный тканевый экземпляр можно идеальной формы, сделать это на Земле пока практически нереально.
Какие секреты хранит микрогравитация
В 2019 году космическое агентство NASA на мышах изучало влияние невесомости на биологические объекты. На МКС грызуны быстро адаптировались к новой среде обитания и неожиданно начали «плавать» компанией по периметру клетки, будто развлекаясь. Такое нетипичное поведение ученые связывают с двумя причинами: тренировкой равновесия в условиях невесомости и игрой. Стресс, как одно из объяснений, исключили сразу, потому что после возвращения в земную лабораторию вес подопытных практически не изменился, шерсть была в отличном состоянии, а сами грызуны не демонстрировали никаких признаков волнения.
И хотя вроде бы влияние невесомости на человеческий организм изучено достаточно глубоко, космонавты сами иной раз удивляются некоторым результатам пребывания в космосе. «Невесомость оказывает самое благоприятное воздействие на кожу. Космонавты говорят, старая кожа слезает практически слоями, на ее месте появляется новая, молодая, и она остается гладкой, так как в космосе влияние силы тяжести на нее гораздо меньше. Прилетаешь с МКС — кожа, как у младенца. — говорит Виталий Егоров, — Но потом под воздействием земных факторов все возвращается на место. Хотя я предполагаю, что эффект молодой кожи может быть связан с тем, что космонавты гораздо меньше подвержены солнечному свету, чем дома».
Невесомость еще способна удивить человечество и отворить ему двери в мир новых, возможно, неожиданных открытий. И пусть еще не придумали, как воссоздать длительную микрогравитацию на Земле, зато предложили решение, как в 10 раз удешевить доставку к ней в космос. С €1 млн до €100 тыс. снизил присутствие на МКС американский стартап Yuriy Gravity, который для исследований предлагает клиентам использовать многоразовую коробочку размером всего 10 кубических см., представляющую собой миниатюрную лабораторию. Ее вместе с материалом внутри (например, опухолевыми клетками) астронавты возьмут с собой на космическую станцию. Так опытным путем будет выяснено, как поведет себя определенное вещество или материя в невесомости. Участие экипажа не предполагается, все опыты осуществляются автоматически.