какие силы называются консервативными
Консервативные и неконсервативные силы: определение и примеры
Простейшие и знакомые явления повседневности объясняет классическая механика. Отдельные теории в физике применяются, считаются в целом верными для сфер с разнообразными системами, но при установленных дополнительных ограничениях (не могут иметь всеобъемлющего проявления).
Классическая механика в границах областей исследования верна при условиях:
Ньютоновская механика определяет класс полей, обладающих общими свойствами. Потенциал – возможная величина, характеризующая поле силой (векторные поля), которая осуществляет работу. Потенциальным называется стационарное силовое поле, в нем работа сил поля на пути промежду двух точек не зависит от формы пути, а определяется только началом и концом расположения этих точек. Консервативные силы имеют постоянные направление и модуль (скорость, ускорение, направление перемещения не влияют). В таком поле работают потенциальные усилия, а система считается замкнутой, сумма внешних воздействий равна нулю. Cила – мера взаимодействия тел (векторная). Масса – инерционное свойство объекта (скаляр). Материя существует в виде полей.
Виды консервативных сил
Свойством консервативности обладают: сила упругости, тяжести, гравитационная сила, электростатическое взаимодействие и другие центральные. Для этих систем свойственно – работа cил при перемещении по замкнутому контуру равняется нулю. При упругих деформациях пружина возвращает свое исходное состояние по прекращению воздействия (работа =0). Если работают лишь консервативные силы, энергия общая механическая при этом не изменяется.
Потенциальные силы зависят только от положения взаимодействующих тел. Объекты притягиваются или отталкиваются. Положение точки отсчета 0 произвольное, выбирается в зависимости от задачи. Разные поля имеют различные начальные уровни потенциальной энергии. В однородном поле тяжести – от поверхности, для гравитационных полей – от далёких точек, для деформации упругости – от начального недеформированного состояния.
Сила тяжести
Еще до конца XVI в. Галилео Галилей изучал свободное падение тел под влиянием притяжения Земли. При устранении сопротивления воздуха разные тела достигают поверхности с одинаковым ускорением g, которое округленно является константой. Потенциальную энергию считают от поверхности Земли. Работа определяет изменение с противоположным знаком энергии тела.
Работа консервативных сил (тяжести) зависит только от координат двух точек пути, при замкнутом контуре = 0.
Планета Земля не круглая, а приплюснута, как груша, на полюсах. Расстояния до центра Земли от поверхности разные, поэтому ускорение на полюсах побольше, чем на экваторе. Меньшим оно будет на большей высоте над Землей. Принято усредненное число 9,81 м/с2. Притяжение к Земле вблизи ее поверхности (тяжесть) – проявление силы всемирного тяготения (гравитации).
Сила упругости
В деформируемом теле появляется сила упругости, как отклик внутренних взаимодействий частей в строении вещества. Наглядный пример – деформация растяжения или сжатия пружины. При упругих изменениях (деформациях) тело возвращает свои изначальные размеры состояния покоя по окончании действия внешней силы. При небольших смещениях x по формуле Гука упругость пропорциональна абсолютному удлинению и определяется:
Работа с полем упругой силы равна
Сила гравитации
Ньютон в 1682 году открыл Закон всемирного тяготения, объясняющий движение планет. Фундаментальный закон силы тяготения был сформулирован при решении обратной задачи по движению спутника Земли Луны.
Гравитационное силовое поле притяжения порождает массивное тело. Между телами, обладающими массой, есть только силы гравитационного притяжения. Гравитация действует на массы, но массы самостоятельно не совершат ничего.
Силы зависят только от массы и расстояния в квадрате между объектами.
Закон приблизительно справедлив для тел со значительно меньшими скоростями (к световой) и малой силой тяготения. Для сил гравитации в масштабах космоса, пространства и времени лишь спустя 2 века родилась теория относительности Эйнштейна.
Вектор силы тяготения, которая действует на тело через влияния других тел, равен сумме векторов сил
Сила электростатического взаимодействия
Электрическим полем называется особый вид материи, воздействующий на заряженные частицы и тела. Давно замечено свойство янтаря или эбонитовой палочки притягивать мелкие бумажки, предметы. При трении тела наэлектризовываются, приобретают электрические заряды, так, например, при печати прилипают листы бумаги в принтерах. Существует два типа зарядов: положительные и отрицательные. Одноименные заряды отталкиваются, а разные притягиваются.
Электрические заряды – источники поля, они не сами действуют, а создают электрическое поле, которое и передает их действие. Неподвижные заряды взаимодействуют с силой, нарастающей при увеличении зарядов и уменьшающейся с квадратичным ростом расстояния между ними. Закон Кулона для вакуума с двумя точечными зарядами похож на закон тяготения масс, но у последнего только сила притяжения.
Центральные кулоновские силы находятся на прямой линии, соединяющей точки центров зарядов. В потенциальных центральных полях равна 0 работа силы по замкнутой линии.
Неконсервативные силы
Поле не является потенциальным, а в нем неконсервативные силы, если не выполняется основное условие консервативности. Работа сил сопротивления воздуха и трения (не 0) будет тем больше, чем длиннее путь движения, она всегда отрицательна.
Трением добывают огонь благодаря преобразованию энергии в тепловую.
Сила трения
Направление трения противоположно скорости, работа — отрицательна и сумма не 0. Трение приводит к передаче части энергии от движения тела к движениям внутренним (тепловым молекул). Трение нагревает тело, но внутреннюю энергию тел и ее изменения не учитывают в классической механике.
Воздействие трения — неконсервативное. Длинный путь потребует больше работы для преодоления сопротивления движению. Но, если учитывать в системе все тела, трущиеся рядом, то она будет замкнутой, все усилия станут консервативными.
Сила сопротивления воздуха
В «Началах» Ньютона при доказательствах говорилось о текучих средах и применимости законов к воде и к воздуху. Кажется, что воздушная среда, которая даже не чувствуется, не может заметно мешать движению, полету. Но воздух серьезное препятствие. Сила воздушного сопротивления зависит не только от направления скорости тела (противоположна), но и от ее величины. Чем больше скорость, тем значительнее сопротивление, возрастает оно непропорционально, а быстрее, по второй степени скорости для определенного интервала.
Сопротивление F зависит от плотности среды — p, от площади сечения тела перпендикулярно направлению движения — S, от квадрата скорости движения — U и от угла атаки, наклона пластины к потоку.
Почему неконсервативных сил не существует?
Энергия не возникает и не пропадает. Для потенциальных сил справедливо сохранение энергии. Трение нагревает тело, а температура – показатель энергии внутри объекта. При трении разгоняются молекулы, увеличивается их мощь движения, но механика не учитывает это состояние. Если включить в состав системы дополнительно все контактируемые трущиеся соседние объекты, силы станут консервативными, а область действия замкнутой.
Трение создает сопротивление, направление его противоположно движению, работа этой силы по пути отрицательная (не 0). Энергия при этом теряется, рассеивается. Она не исчезает, а превращается в другой вид. Для неконсервативных сил невозможно определить потенциальную энергию системы.
Многообразна окружающая действительность происходящими процессами. Но для решения возникшей задачи при построении ее модели невозможно учесть все влияния, поэтому выделяется главное и важное с ограничениями, что-то упрощается или вовсе не рассматривается. Так исследования сил, действующих на расстоянии в различных точках пространства (гравитационное и электростатическое взаимодействия), объяснили многие явления, но и определили новые вопросы и парадоксы.
Консервативные и неконсервативные силы
Физика > Консервативные и неконсервативные силы
Консервативная сила отображает собою те же свойства, что и работа при смещении частицы между двумя точками. Она не зависит от пути.
Задача обучения
Основные пункты
Термин
По своим свойствам консервативная сила соответствует работе, осуществляемой в момент смещения частички между двумя точками. Она не завит от проделанной дистанции. Если происходит перемещение в замкнутой плоскости, то выполняется сетевая работа, где консервативная сила равняется нулю.
На нее влияет только позиция объекта. Если сила консервативна, то можно придать ей числовое значение потенциала в любой точке. Когда объект меняет позицию, сила трансформирует потенциальную энергию в величину.
Если сила не выступает консервативной, то нельзя определить скалярный потенциал, так как использование различных путей приведет к конфликту потенциалов между стартовой и финальной точками. Такие силы передают энергию от перемещающегося объекта, но они не возвращают ее в потенциальную энергию системы во время обратного движения. Они используют энергию из системы (например, трение).
Путь независимой консервативной силы
Если работа выполняется гравитацией при движении в замкнутом поле, тогда она равняется нулю. Эти наблюдения можно применить и на других системах с консервативными силами. Представим, что замкнутое перемещение делится на два движения между А и В, как отмечено на рисунке. Тогда общая работа консервативной силы при поездке в оба конца приравнивается к нулю.
Движение по разным путям. Для консервативной силы работа, выполняемая по другому пути, одинакова
Теперь изменим путь перемещения к третьему пути. Тогда общая работа консервативной силы все равно достигает нуля:
Сравниваем два уравнения: WAB1 + WAВ3. Это соответствует произвольному пути. Так что работа для движений от А к В при консервативной силы приравнивается. Теперь вы знаете, какие силы называются консервативными и рассмотрели примеры.
Физика Б1.Б8.
Электронное учебное пособие по разделу курса физики Механика
Механика – это раздел физики, который изучает наиболее простой вид движения материи – механическое движение и причины, вызывающие или изменяющие это движение.
Механика состоит из трех разделов: кинематики, динамики и статики. Кинематика дает математическое описание движения, не касаясь причин, которыми вызвано движение. Динамика – основной раздел механики, она изучает законы движения тел и причины, которыми вывзывается движение и его изменение. Статика изучает законы равновесия системы тел под действием приложенных сил. Мы ограничимся изучением двух основных разделов – кинематики и динамики.
Введение
Механика – это раздел физики, который изучает наиболее простой вид движения материи – механическое движение и причины, вызывающие или изменяющие это движение.
Механическое движение – это изменение во времени взаимного расположения тел или частей одного и того же тела. Причиной, вызывающей механическое движение тела или его изменение, является воздействие со стороны других тел.
Развитие механики началось еще в древние времена, однако, как наука она формировалась в средние века. Основные законы механики установлены итальянским физиком и астрономом Г. Галилеем (1564-1642) и английским ученым И. Ньютоном (1643-1727).
Механику Галилея-Ньютона принято называть классической механикой. В ней изучается движение макроскопических тел, скорости которых значительно меньше скорости света с в вакууме. Законы движения тел со скоростями, близкими к скорости света сформулированы А. Эйнштейном (1879-1955), они отличаются от законов классической механики. Теория Эйнштейна называется специальной теорией относительности и лежит в основе релятивистской механики. Законы классической механики неприемлемы к описанию движения микроскопических тел (элементарных частиц – электронов, протонов, нейтронов, атомных ядер, самих атомов и т.д.) их движение описывается законами квантовой механики.
Механика состоит из трех разделов: кинематики, динамики и статики. Кинематика дает математическое описание движения, не касаясь причин, которыми вызвано движение. Динамика – основной раздел механики, она изучает законы движения тел и причины, которыми вывзывается движение и его изменение. Статика изучает законы равновесия системы тел под действием приложенных сил. Мы ограничимся изучением двух основных разделов – кинематики и динамики.
В механике для описания движения в зависимости от условий решаемой задачи пользуются различными упрощающими моделями: материальная точка, абсолютно твердое тело, абсолютно упругое тело, абсолютно неупругое тело, и т.д. Выбор той или иной модели диктуется необходимостью учесть в задаче все существенные особенности реального движения и отбросить несущественные, усложняющие решение.
Материальная точка – это тело обладающее массой, размеры и форма которого несущественны в данной задаче. Любое твердое тело или систему тел можно рассматривать как систему материальных точек. Для этого любое тело или тела системы нужно мысленно разбить на большое число частей так, чтобы размеры каждой части были пренебрежимо малы по сравнению с размерами самих тел.
Абсолютно твердое тело – это тело, расстояние между любыми точками которого остается неизменным в процессе движения или взаимодействия. Эта модель пригодна, когда можно пренебречь деформацией тел в процессе движения.
Абсолютно упругое и абсолютно неупругое тело – это два предельных случая реальных тел, деформациями которых можно и нельзя пренебречь в изучаемых процессах.
Любое движение рассматривается в пространстве и времени. В пространстве определяется местоположение тела, во времени происходит смена местоположений или состояний тела в пространстве, время выражает длительность состояния движения или процесса. Пространство и время –это два фундаментальных понятия, без которых теряется смысл понятия движения: движения не может быть вне времени и пространства.
Консервативные силы (физика)
Если в системе действуют только консервативные силы, то механическая энергия системы сохраняется.
Для консервативных сил выполняются следующие тождества:
— ротор консервативных сил равен 0;
— работа консервативных сил по произвольному замкнутому контуру равна 0;
— консервативная сила является градиентом некой скалярной функции
, называемой силовой. Эта функция равна потенциальной энергии
взятой с обратным знаком. Соответственно,
и
связаны соотношением
Таким образом, потенциальная сила всегда направлена против направления возрастания потенциальной энергии.
В школьной программе по физике силы разделяют на консервативные и неконсервативные. Примерами консервативных сил являются: сила тяжести, сила упругости, сила кулоновского (электростатического) взаимодействия. Примерами неконсервативных сил являются сила трения и сила сопротивления среды.
В теоретической физике выделяют только четыре типа сил, каждая из которых является консервативной (см. Фундаментальные взаимодействия).
Консервативные силы
Всего получено оценок: 106.
Всего получено оценок: 106.
Силы, действующие в механике, можно разделить на два класса, в зависимости от того, как изменяется работа этих сил при изменении формы траектории пути. Рассмотрим это деление более подробно.
Консервативные и неконсервативные силы
Заметим, что если тело движется перпендикулярно направлению силы, работа равна нулю, а если противоположно – работа получается отрицательной. А это значит, что если тело, на которое действует сила, переместилось по прямой сперва в одну сторону, а потом обратно, вернувшись в исходную точку, суммарная работа силы на этом пути будет равна нулю.
Это происходит потому, что направление и модуль силы постоянны и не зависят ни от скорости, ни от ускорения, ни от направления перемещения. Такие силы называются консервативными (сохраняющимися).
Сила тяжести
В качестве хорошего примера консервативной силы можно рассмотреть силу тяжести. Ее направление и величина всегда постоянны. А значит, она является консервативной, и ее работа по замкнутой траектории будет равна нулю, а если траектория незамкнута – то работа силы зависит только от координат начала и конца пути. Проверим это.
Рис. 2. Работа силы тяжести.
Сила упругости
Диссипативные силы
Если тело переместилось в одну сторону, а потом вернулось, работа силы трения будет состоять из двух отрицательных компонент, равных по модулю. Их сумма не будет равна нулю. Таким образом, сила трения не является консервативной.
Еще одним примером диссипативной силы является сила воздушного сопротивления. Эта сила зависит не только от направления вектора скорости тела, но и от его модуля. Точно так же, работа силы сопротивления при движении никогда не будет равна нулю.
Рис. 3. Диссипативные силы.
Что мы узнали?
Силы, работа которых зависит только от начальной и конечной координаты перемещения, называются консервативными. Работа консервативных сил по замкнутому контуру равна нулю. Примером таких сил являются силы тяжести и упругости. Силы, зависящие от скорости перемещения, неконсервативны (диссипативны). Их работа по замкнутому контуру отлична от нуля.