какие соединения называют органическими

Органические соединения

Органические вещества — класс соединений, в состав которых входит углерод (за исключением карбидов, карбонатов, оксидов углерода и цианидов).

Название «органические соединения» появилось на ранней стадии развития химии и говорит само за себя — ученые той эпохи считали, что живые существа состоят из особых органических соединений.

Основные классы соединений биологического происхождения — белки, липиды, углеводы — содержат, помимо углерода, преимущественно водород, азот, кислород и серу. Именно поэтому, несмотря на то, что элементами, составляющими органические соединения, помимо углерода, могут быть практически любые элементы, «классические» органические соединения содержат прежде всего водород, кислород, азот и серу.

Соединения углерода с другими элементами составляют особый класс органических соединений — элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений.

Количество известных органических соединений давно перевалило за 10 млн; таким образом, органические соединения — самый обширный класс химических соединений. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов углерода, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Связь углерод-углерод может быть как одинарной, так и кратной: двойной, тройной. При увеличении кратности углерод-углеродной связи возрастает её энергия, т. е. стабильность, а длина уменьшается. Высокая валентность углерода — 4, а также возможность образовывать кратные связи, позволяет образовывать структуры различной размерности (линейные, плоские, объёмные).

Существует несколько важных свойств, которые выделяют органические соединения в отдельный ни на что не похожий класс химических соединений.

Содержание

Органическая номенклатура

Органическая номенклатура —это система классификации и наименований органических веществ.

Классификация

Классификация органических соединений построена на важном принципе, согласно которому физические и химические свойства органического соединения в первом приближении определяются двумя основными критериями — строением углеродного скелета соединения и его функциональными группами. В соответствии с этими критериями построена классификация органических соединений.

Классификация органических веществ.

Алифатические соединения

Алифатические соединения — органические вещества, не содержащие в структуре ароматических систем.

Ароматические соединения

Ароматические соединения или арены — органические вещества, в структуру которых входит одна (или более) ароматическая циклическая система (см. Ароматизация)

Гетероциклические соединения

Гетероциклические соединения — вещества, в молекулярной структуре которых присутствует хотя бы один цикл с одним (или несколькими) гетероатомом

Полимеры

Полимеры представляют собой особый вид веществ, также известный как высокомолекулярные соединения. В их структуру обычно входят многочисленные сегменты меньшего размера. Эти сегменты могут быть идентичны, тогда речь идет о гомополимере. Полимеры относятся к макромолекулам, классу веществ, состоящих из молекул очень большого размера. Полимеры могут быть органическими (полиэтилен, полипропилен, плексиглас и т. д.) или неорганическими (силикон); синтетическими (поливинилхлорид), или природными (целлюлоза, крахмал).

Структурный анализ органических веществ

В настоящее время существует несколько методов характеристики органических соединений. Кристаллография (рентгеноструктурный анализ) — наиболее точный метод, требующий, однако, наличия высококачественного кристалла достаточного размера для получения высокого разрешения. Поэтому пока этот метод не используется слишком часто.

Элементный анализ — деструктивный метод, использующийся для количественного определения содержания элементов в молекуле вещества.

Инфракрасная спектроскопия (ИК): используется главным образом для доказательства наличия (или отсутствия) определенных функциональных групп.

Масс-спектрометрия: используется для определения молекулярных масс веществ и способов их фрагментации.

Спектроскопия ядерного магнитного резонанса ЯМР.

Ультрафиолетовая спектроскопия (УФ): используется для определения степени сопряжения в системе

Про другие методы смотри в разделе Аналитическая химия.

Источник

Органические вещества

Связанные понятия

Бина́рные соедине́ния — химические вещества, образованные двумя химическими элементами. Многоэлементные вещества, в формульной единице которых одна из составляющих содержит несвязанные между собой атомы нескольких элементов, а также одноэлементные или многоэлементные группы атомов (кроме гидроксидов и солей), рассматривают как бинарные соединения.

Упоминания в литературе

Связанные понятия (продолжение)

Галогеноалканы (алкилгалогениды) — органические соединения, которые содержат в своём составе связь «углерод-галоген». Их строение можно представить, исходя из строения углеводорода, в котором связь С-Н заменена на связь С-Х, (Х — фтор, хлор, бром, иод). В силу того, что атомы галогенов являются более электроотрицательными, чем атом углерода, связь С-Х поляризована таким образом, что атом галогена приобретает частичный отрицательный заряд, а атом углерода — частичный положительный. Соответственно.

Реа́кция конденса́ции — исторически сложившееся название некоторых реакций с различными механизмами в органической химии. В более узком значении под реакцией конденсации понимают взаимодействие двух и более органических соединений, проходящее с образованием новой межуглеродной связи вида C—C.

Ко второ́му пери́оду периоди́ческой систе́мы относятся элементы второй строки (или второго периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических) трендов в химических свойствах элементов при увеличении атомного числа: новая строка начинается тогда, когда химические свойства повторяются, что означает, что элементы с аналогичными свойствами попадают в один и тот же вертикальный столбец. Второй период содержит.

Источник

Органические и неорганические вещества – что это и отличия

какие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическими

Органические и неорганические вещества – эти термины знакомы каждому человеку из школьной программы по биологии или химии. Также о них слышали садоводы. Что представляют собой и чем отличаются подобные вещества, способны объяснить не все. Для того чтобы лучше разобраться в особенностях и понять нюансы, рекомендуется сначала дать определение для каждого из рассматриваемых понятий, а затем провести сравнение по ключевым характеристикам.

Определение понятий

Органические вещества – соединения, которые имеют сложную химическую структуру (молекулярное строение). Они имеют невысокую температуру плавления, при воздействии высоких температур распадаются на несколько простых компонентов. Реакция протекает с выделением углекислого газа и воды. В молекулах присутствуют углерод и водород. Происхождение природное.

Неорганические вещества – химические соединения, имеющие простое молекулярное строение и небольшую массу. Температуры плавления высокие. Разложение происходит длительное время. Природа происхождения как биологическая, так и искусственная (промышленность).

Сравнение

Некоторые отличия между органикой и неорганическими веществами стала понятна из приведенных определений, но для более подробного разбора и выявления отличий, следует провести сравнение. Органика распадается за короткий промежуток времени на простые составные элементы – белки, углеводы, липиды. Разнообразие органики – результат наличия в ее молекулах углерода. Органические вещества способны к процессу изометрии. В результате образуются соединения, которые имеют одинаковый набор атомов в молекулах. Достичь разнообразия в этом случае позволяет различное положение атомов в молекулах образовавшихся веществ. Самыми распространенными являются такие соединения, как фруктоза и глюкоза. В них находится одинаковый набор атомов, но расположение отличается, поэтому свойства этих компонентов и их работа в химических реакциях различаются.

Неорганические вещества, самым распространенным из которых является вода, обладают небольшой молекулярной массой. Неорганики по современной классификации насчитывается всего около 100 тысяч, против органических соединений, которых представлено более 18 млн. Неорганические составляющие не способы к процессам изометрии. К неорганике также относятся различные металлы, соли, оксиды, различные смеси и простые вещества.

Выводы

Проведя сравнение, можно с уверенностью сказать, что различия между органическими и неорганическими веществами выражены в особенностях молекулярной структуры. Температура плавления и скорость разложения также являются факторами, указывающими на различия между рассматриваемыми понятиями. Наличие таких составляющих как водород и углерод характерны для органических соединений. Происхождение неорганики не всегда природное, многие компоненты являются плодом технических, производственных и научных изысканий. Общее количество неорганических веществ составляет по современной классификации 100 тысяч. Органика же превосходит числом, таких элементов в классификации представлено более чем в 10 раз больше. Органика имеет сложную структуру молекулярной сетки, неорганика — простую. Для того чтобы запустить процессы разложения в первом случае не требуется нагрева до высоких температур (например, мясо портиться при комнатной температуре, а для плавления металлов требуется длительный нагрев).

В состав молекул всех органических веществ входит углерод, но нужно учитывать и особенности этой группы компонентов. Так в карбидах или цианидах нет этого элемента. Уникальным свойством углерода является способность образовывать цепочки из атомов. Благодаря подобной способности соединений из одного и того же атомного набора может появляться очень много.

Источник

3.3. Классификация органических веществ. Номенклатура органических веществ (тривиальная и международная).

Классификация органических веществ

В зависимости от типа строения углеродной цепи органические вещества подразделяют на:

какие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическими

Ациклические соединения — органические соединения, в молекулах которых отсутствуют циклы и все атомы углерода соединены друг с другом в прямые или разветвленные открытые цепи.

В свою очередь среди ациклических соединений выделяют предельные (или насыщенные), которые содержат в углеродном скелете только одинарные углерод-углеродные (С-С) связи и непредельные (или ненасыщенные), содержащие кратные — двойные (С=С) или тройные (С≡С) связи.

Циклические соединения — химические соединения, в которых присутствует три или более связанных атомов, образующие кольцо.

В зависимости от того, какими атомами образованы циклы различают карбоциклические соединения и гетероциклические соединения.

Карбоциклические соединения (или изоциклические) содержат в своих циклах только атомы углерода. Эти соединения в свою очередь делятся на алициклические соединения (алифатические циклические) и ароматические соединения.

Гетероциклические соединения содержат в составе углеводородного цикла один или несколько гетероатомов, чаще всего которыми являются атомы кислорода, азота или серы.

Простейшим классом органических веществ являются углеводороды – соединения, которые образованы исключительно атомами углерода и водорода, т.е. формально не имеют функциональных групп.

Поскольку углеводороды, не имеют функциональных групп для них возможна только классификация по типу углеродного скелета. Углеводороды в зависимости от типа их углеродного скелета делят на подклассы:

1) Предельные ациклические углеводороды носят название алканы. Общая молекулярная формула алканов записывается как CnH2n+2, где n — количество атомов углерода в молекуле углеводорода. Данные соединения не имеют межклассовых изомеров.

2) Ациклические непредельные углеводороды делятся на:

а) алкены — в них присутствует только одна кратная, а именно одна двойная C=C связь, общая формула алкенов CnH2n,

б) алкины – в молекулах алкинов также присутствует только одна кратная, а именно тройная С≡С связь. Общая молекулярная формула алкинов CnH2n-2

в) алкадиены – в молекулах алкадиенов присутствуют две двойные С=С связи. Общая молекулярная формула алкадиенов CnH2n-2

3) Циклические предельные углеводороды называются циклоалканы и имеют общую молекулярную формулу CnH2n.

Остальные органические вещества в органической химии рассматривают как производные углеводородов, образуемые при введении в молекулы углеводородов так называемых функциональных групп, которые содержат другие химические элементы.

Таким образом, формулу соединений с одной функциональной группой можно записать как R-X, где R – углеводородный радикал, а Х – функциональная группа. Углеводородным радикалом называют фрагмент молекулы какого-либо углеводорода без одного или нескольких атомов водорода.

По наличию тех или иных функциональных групп соединения подразделяют на классы. Основные функциональные группы и классы соединений, в состав которых они входят, представлены в таблице:

какие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическими

Таким образом, различные комбинации типов углеродных скелетов с разными функциональными группами дают большое разнообразие вариантов органических соединений.

Галогенпроизводные углеводородов

Галогенпроизводными углеводородов называют соединения, получаемые при замене одного или нескольких атомов водорода в молекуле какого-либо исходного углеводорода на один или несколько атомов какого-либо галогена соответственно.

Пусть некоторый углеводород имеет формулу CnHm, тогда при замене в его молекуле X атомов водорода на X атомов галогена формула галогенпроизводного будет иметь вид CnHm-XHalX. Таким образом, монохлорпроизводные алканов имеют формулу CnH2n+1Cl, дихлорпроизводные CnH2nCl2 и т.д.

Спирты и фенолы

какие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическими

Спирты могут быть и ароматическими. Например:

какие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическимибензиловый спирт

Общая формула таких одноатомных ароматических спиртов CnH2n-6O.

Однако, следует четко понимать, что производные ароматических углеводородов, в которых на гидроксильные группы заменены один или несколько атомов водорода при ароматическом ядре не относятся к спиртам. Их относят к классу фенолы. Например, это данное соединение является спиртом:

какие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическими

А это представляет собой фенол:

какие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическими

Причина, по которой фенолы не относят к спиртам, кроется в их специфических химических свойствах, сильно отличающих их от спиртов. Как легко заметить, однотомные фенолы изомерны одноатомным ароматическим спиртам, т.е. тоже имеют общую молекулярную формулу CnH2n-6O.

Амины

Аминами называют производные аммиака, в которых один, два или все три атома водорода замещены на углеводородный радикал.

Амины, в которых только один атом водорода замещен на углеводородный радикал, т.е. имеющие общую формулу R-NH2, называют первичными аминами.

Амины, в которых два атома водорода замещены на углеводородные радикалы, называют вторичными аминами. Формулу вторичного амина можно записать как R-NH-R’. При этом радикалы R и R’ могут быть как одинаковые, так и разные. Например:

СH3-NH-CH3СH3-NH-CH2-CH3
диметиламинметилэтиламин

Если в аминах отсутствуют атомы водорода при атоме азота, т.е. все три атома водорода молекулы аммиака замещены на углеводородный радикал, то такие амины называют третичными аминами. В общем виде формулу третичного амина можно записать как:

какие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическими

При этом радикалы R, R’, R’’ могут быть как полностью одинаковыми, так и все три разные.

Общая молекулярная формула первичных, вторичных и третичных предельных аминов имеет вид CnH2n+3N.

Ароматические амины с только одним непредельным заместителем имеют общую формулу CnH2n-5N

Альдегиды и кетоны

Альдегидами называют производные углеводородов, у которых при первичном атоме углерода два атома водорода заменены на один атом кислорода, т.е. производные углеводородов в структуре которых имеется альдегидная группа –СН=О. Общую формулу альдегидов можно записать как R-CH=O. Например:

какие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическимикакие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическими
этанальметаналь

Кетонами называют производные углеводородов, у которых при вторичном атоме углерода два атома водорода заменены на атом кислорода, т.е. соединения, в структуре которых есть карбонильная группа –C(O)-.

Общая формула кетонов может быть записана как R-C(O)-R’. При этом радикалы R, R’ могут быть как одинаковыми, так и разными.

какие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическимикакие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическими
пропанонбутанон

Как можно заметить, альдегиды и кетоны весьма схожи по строению, однако их все-таки их различают как классы, поскольку они имеют существенные различия в химических свойствах.

Общая молекулярная формула предельных кетонов и альдегидов одинакова и имеет вид CnH2nO

Карбоновые кислоты

Карбоновыми кислотами называют производные углеводородов, в которых есть карбоксильная группа –COOH.

Если кислота имеет две карбоксильные группы, такую кислоту называют дикарбоновой кислотой.

Ароматические монокарбоновые кислоты имеют общую формулу CnH2n-8O2

Простые эфиры

Простые эфиры – органические соединения, в которых два углеводородных радикала опосредованно соединены через атом кислорода, т.е. имеют формулу вида R-O-R’. При этом радикалы R и R’ могут быть как одинаковыми, так и разными.

Общая формула предельных простых эфиров такая же, как у предельных одноатомных спиртов, т.е. CnH2n+1OH или CnH2n+2О.

Сложные эфиры

Сложные эфиры – класс соединений на основе органических карбоновых кислот, у которых атом водорода в гидроксильной группе замещен на углеводородный радикал R. Фомулу сложных эфиров в общем виде можно записать как:

какие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическими

какие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическимикакие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическими
метилацетатметилформиат

Нитросоединения

Нитросоединения – производные углеводородов, у которых один или несколько атомов водорода заменены на нитрогруппу –NO2.

Предельные нитросоединения с одной нитрогруппой имеют общую молекулярную формулу CnH2n+1NO2

Аминокислоты

Соединения, имеющие в своей структуре одновременно две функциональные группы – амино NH2 и карбоксильную – COOH. Например,

Предельные аминокислоты с одной карбоксильной и одной аминогруппой изомерны соответствующим предельными нитросоединениям т.е. как и они имеют общую молекулярную формулу CnH2n+1NO2

В заданиях ЕГЭ на классификацию органических веществ важно уметь записывать общие молекулярные формулы гомологических рядов разных типов соединений, зная особенности строения углеродного скелета и наличия тех или иных функциональных групп. Для того, чтобы научиться определять общие молекулярные формулы органических соединений разных классов, будет полезен материал по этой теме.

Номенклатура органических соединений

Особенности строения и химических свойств соединений находят отражение в номенклатуре. Основными типами номенклатуры считаются систематическая и тривиальная.

Систематическая номенклатура фактически прописывает алгоритмы, в соответствии с которыми то или иное название составляется в строгом соответствии с особенностями строения молекулы органического вещества или, грубо говоря, его структурной формулы.

Рассмотрим правила составления названий органических соединений по систематической номенклатуре.

При составлении названий органических веществ по систематической номенклатуре наиболее важным является правильно определить число атомов углерода в наиболее длинной углеродной цепи или посчитать число атомов углерода в цикле.

В зависимости от количества атомов углерода в основной углеродной цепи, соединения, будут иметь в своем названии различный корень:

Количество атомов С в главной углеродной цепи

Корень названия

Вторая важная составляющая, учитываемая при составлении названий, — наличие/отсутствие кратных связей или функциональной группы, которые перечислены в таблице выше.

Попробуем дать название веществу, имеющему структурную формулу:

какие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическими

1. В главной (и единственной) углеродной цепи данной молекулы содержится 4 атома углерода, поэтому название будет содержать корень бут-;

3. Наличие функциональной группы –OH при условии, что нет более старших функциональных групп добавляет после корня и суффикса из п.2. еще один суффикс – «ол»;

4. В молекулах содержащих кратные связи или функциональные группы, нумерация атомов углерода главной цепи начинается с той стороны молекулы, к которой они ближе.

Рассмотрим еще один пример:

какие соединения называют органическими. Смотреть фото какие соединения называют органическими. Смотреть картинку какие соединения называют органическими. Картинка про какие соединения называют органическими. Фото какие соединения называют органическими

Наличие в главной углеродной цепи четырех атомов углерода говорит нам о том, что основой названия является корень «бут-», а отсутствие кратных связей говорит о суффиксе «-ан», который будет следовать сразу после корня. Старшая группа в данном соединении – карбоксильная, она и определяет принадлежность этого вещества к классу карбоновых кислот. Следовательно, окончание у названия будет «-овая кислота». При втором атоме углерода находится аминогруппа NH2, поэтому данное вещество относится к аминокислотам. Также при третьем атоме углерода мы видим углеводородный радикал метил (CH3). Поэтому по систематической номенклатуре данное соединение называется 2-амино-3-метилбутановая кислота.

Тривиальная номенклатура, в отличие от систематической, как правило, не имеет связи со строением вещества, а обусловлена по большей части его происхождением, а также химическими или физическими свойствами.

Источник

Органическое соединение

Органические вещества — класс соединений, в состав которых входит углерод (за исключением карбидов, карбонатов, оксидов углерода и цианидов).

Название «органические соединения» появилось на ранней стадии развития химии и говорит само за себя — ученые той эпохи считали, что живые существа состоят из особых органических соединений.

Основные классы соединений биологического происхождения — белки, липиды, углеводы — содержат, помимо углерода, преимущественно водород, азот, кислород и серу. Именно поэтому, несмотря на то, что элементами, составляющими органические соединения, помимо углерода, могут быть практически любые элементы, «классические» органические соединения содержат прежде всего водород, кислород, азот и серу.

Соединения углерода с другими элементами составляют особый класс органических соединений — элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений.

Количество известных органических соединений давно перевалило за 10 млн; таким образом, органические соединения — самый обширный класс химических соединений. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов углерода, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Связь углерод-углерод может быть как одинарной, так и кратной: двойной, тройной. При увеличении кратности углерод-углеродной связи возрастает её энергия, т. е. стабильность, а длина уменьшается. Высокая валентность углерода — 4, а также возможность образовывать кратные связи, позволяет образовывать структуры различной размерности (линейные, плоские, объёмные).

Существует несколько важных свойств, которые выделяют органические соединения в отдельный ни на что не похожий класс химических соединений.

Содержание

Органическая номенклатура

Органическая номенклатура —это система классификации и наименований органических веществ.

Классификация

Классификация органических соединений построена на важном принципе, согласно которому физические и химические свойства органического соединения в первом приближении определяются двумя основными критериями — строением углеродного скелета соединения и его функциональными группами. В соответствии с этими критериями построена классификация органических соединений.

Классификация органических веществ.

Алифатические соединения

Алифатические соединения — органические вещества, не содержащие в структуре ароматических систем.

Ароматические соединения

Ароматические соединения или арены — органические вещества, в структуру которых входит одна (или более) ароматическая циклическая система (см. Ароматизация)

Гетероциклические соединения

Гетероциклические соединения — вещества, в молекулярной структуре которых присутствует хотя бы один цикл с одним (или несколькими) гетероатомом

Полимеры

Полимеры представляют собой особый вид веществ, также известный как высокомолекулярные соединения. В их структуру обычно входят многочисленные сегменты меньшего размера. Эти сегменты могут быть идентичны, тогда речь идет о гомополимере. Полимеры относятся к макромолекулам, классу веществ, состоящих из молекул очень большого размера. Полимеры могут быть органическими (полиэтилен, полипропилен, плексиглас и т. д.) или неорганическими (силикон); синтетическими (поливинилхлорид), или природными (целлюлоза, крахмал).

Структурный анализ органических веществ

В настоящее время существует несколько методов характеристики органических соединений. Кристаллография (рентгеноструктурный анализ) — наиболее точный метод, требующий, однако, наличия высококачественного кристалла достаточного размера для получения высокого разрешения. Поэтому пока этот метод не используется слишком часто.

Элементный анализ — деструктивный метод, использующийся для количественного определения содержания элементов в молекуле вещества.

Инфракрасная спектроскопия (ИК): используется главным образом для доказательства наличия (или отсутствия) определенных функциональных групп.

Масс-спектрометрия: используется для определения молекулярных масс веществ и способов их фрагментации.

Спектроскопия ядерного магнитного резонанса ЯМР.

Ультрафиолетовая спектроскопия (УФ): используется для определения степени сопряжения в системе

Про другие методы смотри в разделе Аналитическая химия.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *