какие составные части образуют микропроцессорную систему

Структура микропроцессорной системы

Структура микропроцессорной системы

В широком смысле интерфейс включает также механическую часть (совместимость по типоразъемам) и вспомогательные схемы, обеспечивающие электрическую совместимость устройств по уровням логических сигналов, входным и выходным токам и т. д.

Подробное изучение интерфейсов и системных шин не входит в задачи данного курса. Поэтому эти вопросы мы будем рассматривать лишь с точки зрения общего представления об организации работы микропроцессорной системы и принципах взаимодействия составляющих ее устройств.

какие составные части образуют микропроцессорную систему. Смотреть фото какие составные части образуют микропроцессорную систему. Смотреть картинку какие составные части образуют микропроцессорную систему. Картинка про какие составные части образуют микропроцессорную систему. Фото какие составные части образуют микропроцессорную систему

На интерфейсные схемы модулей возлагаются следующие задачи:

Эти интерфейсные схемы могут быть достаточно сложными. Обычно они выполняются в виде специализированных микропроцессорных БИС. Такие схемы принято называть контроллерами.

Контроллеры обладают высокой степенью автономности, что позволяет обеспечить параллельную во времени работу периферийных устройств и выполнение программы обработки данных микропроцессором.

Кроме того, предварительно буферируя данные, контроллеры обеспечивают пересылку сразу для многих слов, расположенных по подряд идущим адресам, что позволяет использование так называемого «взрывного»

Недостатком магистрально-модульного способа организации ЭВМ является невозможность одновременного взаимодействия более двух модулей, что ставит ограничение на производительность компьютера.

Взаимодействие микропроцессора с оперативной памятью (ОП) и внешними устройствами (ВУ) проиллюстрировано на рис. 8.2.

какие составные части образуют микропроцессорную систему. Смотреть фото какие составные части образуют микропроцессорную систему. Смотреть картинку какие составные части образуют микропроцессорную систему. Картинка про какие составные части образуют микропроцессорную систему. Фото какие составные части образуют микропроцессорную систему

Для обмена информацией с внешними устройствами в МП имеются только 2 команды:

Сигналы IOR/ IOW формируются при выполнении только этих команд.

В связи с этим возможны два основных способа организации адресного пространства микропроцессорной системы:

Рассмотрим особенности обмена информацией микропроцессора с внешними устройствами. Упрощенная временная диаграмма этого процесса представлена на рис. 8.3.

какие составные части образуют микропроцессорную систему. Смотреть фото какие составные части образуют микропроцессорную систему. Смотреть картинку какие составные части образуют микропроцессорную систему. Картинка про какие составные части образуют микропроцессорную систему. Фото какие составные части образуют микропроцессорную систему

Источник

Микропроцессорные системы

Всё это обязывает электрика знать хотя бы основы работы микропроцессорной техники.

Микропроцессорные системы предназначены для автоматизации обработки информации и управления различными процессами.

Понятие «Микропроцессорная система» очень широко и объединяет такие понятия как «Электронно-вычислительная машина (ЭВМ)», «управляющая ЭВМ», «Компьютер» и т.п.

Необходимо понимать, что система счисления – это всего лишь правила записи чисел, и выбор типа системы определятся удобством применения. Выбор двоичной системы обусловлен её простотой, а значит надёжностью работы цифровых устройств и лёгкостью их технической реализации.

Рассмотрим единицы измерения цифровой информации:

Бит – наименьшая единица представления информации.

Два взаимосвязанных байта называется словом, 4 байта – двойное слово, 8 байт – учетверённое слово.

Почти вся информация, которая нас окружает, является аналоговой. Поэтому, прежде чем информация попадёт на обработку в процессор, она подвергается преобразованию посредством АЦП (аналого-цифровой преобразователь). Кроме того, информация кодируется в определённом формате и может быть числовой, логической, текстовой (символьной), графической, видео и д.р.

Кроме двоичной и десятичной системы в МС используют шестнадцатеричную систему, в которой для записи чисел используются символы 0. 9 и A. F. Её применение обуславливается тем, что один байт описывается двухразрядным шестнадцатеричным числом, что значительно сокращает запись цифрового кода и делает его более читаемым (11111111 – FF).

Таблица 1 – Запись чисел в различных системах счисления

какие составные части образуют микропроцессорную систему. Смотреть фото какие составные части образуют микропроцессорную систему. Смотреть картинку какие составные части образуют микропроцессорную систему. Картинка про какие составные части образуют микропроцессорную систему. Фото какие составные части образуют микропроцессорную систему

Перевод чисел из одной системы в другую и основные арифметические и логические операции над числами позволяет производить инженерный калькулятор (стандартное приложение операционной системы Windows).

Структура микропроцессорной системы

Основу микропроцессорной системы составляет микропроцессор (процессор), который выполняет функции обработки информации и управления. Остальные устройства, входящие в состав микропроцессорной системы, обслуживают процессор, помогая ему в работе.

Структура микропроцессорной системы представлена на рисунке 1. В упрощённом виде процессор состоит из арифметически-логического устройства (АЛУ), осуществляющего обработку цифровой информации и устройства управления (УУ).

Память обычно включает постоянно-запоминающее устройство (ПЗУ), являющееся энергонезависимым и предназначенное для долговременного хранения информации (например, программ), и оперативно-запоминающее устройство (ОЗУ), предназначенное для временного хранения данных.

какие составные части образуют микропроцессорную систему. Смотреть фото какие составные части образуют микропроцессорную систему. Смотреть картинку какие составные части образуют микропроцессорную систему. Картинка про какие составные части образуют микропроцессорную систему. Фото какие составные части образуют микропроцессорную систему

Рисунок 1 – Структура микропроцессорной системы

шину данных DB (Data Bus), по которой производится обмен данными между ЦП, памятью и портами;

шину адреса AB (Address Bus), используемой для адресации процессором ячеек памяти и портов;

шину управления CB (Control Bus), набор линий, передающих различные управляющие сигналы от процессора на внешние устройства и обратно.

Приставка «микро» в названии процессора означает, что выполняется он по микронной технологии.

какие составные части образуют микропроцессорную систему. Смотреть фото какие составные части образуют микропроцессорную систему. Смотреть картинку какие составные части образуют микропроцессорную систему. Картинка про какие составные части образуют микропроцессорную систему. Фото какие составные части образуют микропроцессорную систему

Рисунок 2 – Внешний вид микропроцессора Intel Pentium 4

В ходе работы микропроцессор считывает команды программы из памяти или порта ввода и исполняет их. Что означает каждая команда, определяется системой команд процессора. Система команд заложена в архитектуре микропроцессора и выполнение кода команды выражается в проведении внутренними элементами процессора определённых микроопераций.

Основные характеристики микропроцессоров:

1) Тактовая частота (единица измерения МГц или ГГц) – количество тактовых импульсов за 1 секунду. Тактовые импульсы вырабатывает тактовый генератор, который чаще всего находится внутри процессора. Т.к. все операции (инструкции) выполняются по тактам, то от значения тактовой частоты зависит производительность работы (количество выполняемых операций в единицу времени). Частотой процессора можно варьировать в определённых пределах.

2) Разрядность процессора (8, 16, 32, 64 бит и т.д.) – определяет число байтов данных, обрабатываемых за один такт. Разрядность процессора определяется разрядностью его внутренних регистров. Процессор может быть 8-разрядным, 16-разрядным, 32-разрядным, 64-разрядным и т.д., т.е. данные обрабатываются порциями по 1, 2, 4, 8 байт. Понятно, что чем больше разрядность, тем выше производительность работы.

Внутренняя архитектура микропроцессора

Упрощенная внутренняя архитектура типового 8-разрядного микропроцессора показана на рисунке 3. В структуре микропроцессора можно выделить три основных части:

1) Регистры для временного хранения команд, данных и адресов;

какие составные части образуют микропроцессорную систему. Смотреть фото какие составные части образуют микропроцессорную систему. Смотреть картинку какие составные части образуют микропроцессорную систему. Картинка про какие составные части образуют микропроцессорную систему. Фото какие составные части образуют микропроцессорную систему

Как видно из схемы, основу процессора составляют регистры, которые делятся на специальные (имеющие определенное назначение) и регистры общего назначения.

Аккумулятор – регистр, используемый в подавляющем большинстве команд логической и арифметической отработки; он одновременно является и источником одного из байт данных, которые требуются для операции АЛУ, и местом, куда помещается результат операции АЛУ.

Регистр признаков (или регистр флагов) содержит информацию о внутреннем состоянии микропроцессора, в частности о результате последней операции АЛУ. Регистр флагов не является регистром в обычном смысле, а представляет собой просто набор триггер-защелок (флаг поднят или опущен. Обычно имеются флаж¬ки нуля, переполнения, отрицательного результата и переноса.

Регистр команды содержит текущий командный байт, который декодируется дешифратором команды.

Линии внешних шин изолированы от линий внутренней шины с помощью буферов, а основные внутренние элементы связаны быстродействующей внутренней шиной данных.

Лидирующими компаниями по разработке и изготовлению процессоров являются Intel и AMD.

Алгоритм работы микропроцессорной системы

Алгоритм — точное предписание, однозначно задающее процесс преобразования исходной информации в последовательность операций, позволяющих решать совокупность задач определённого класса и получать искомый результат.

Рассмотрим последовательность действий микропроцессор во время выполнения команд программы:

1) Перед выполнением очередной команды микропроцессор содержит ее адрес в программном счетчике РС.

2) МП обращается к памяти по адресу, содержащемуся в РС, и считывает из памяти первый байт очередной команды в регистр команд.

3) Дешифратор команд декодирует (расшифровывает) код команды.

4) В соответствии с полученной от дешифратора информацией устройство управления вырабатывает упорядоченную во времени последовательность микроопераций, реализующих предписания команды, в том числе:

— извлекает операнды из регистров и памяти;

— выполняет над ними предписанные кодом команды арифметические, логические или другие операции;

— в зависимости от длины команды модифицирует содержимое РС;

— передает управление очередной команде, адрес которой снова находится в программном счетчике РС.

Совокупность команд микропроцессора можно разделить на три группы:

1) Команды перемещения данных

Перемещение происходит между памятью, процессором, портами ввода/вывода (каждый порт имеет свой собственный адрес), между регистрами процессора.

2) Команды преобразования данных

Любые данные (текст, рисунок, видеоролик и т.д.) представляют собой числа, а с числами можно выполнять только арифметические и логические операции. Поэтому к командам этой группы относятся сложение, вычитание, сравнение, логические операции и т.п.

3) Команда передачи управления

Очень редко программа состоит из одной последовательной команд. Подавляющее число алгоритмов требуют разветвления программы. Для того, чтобы программа имела возможность менять алгоритм своей работы в зависимости от какого-либо условия, и служат команды передачи управления. Данные команды обеспечивают протекание выполнения программы по разным путям и организуют циклы.

К внешним, относятся все устройства, находящиеся вне процессора (кроме оперативной памяти) и подключаемые через порты ввода/вывода. Внешние устройства можно подразделить на три группы:

1) устройства для связи человек-ЭВМ (клавиатура, монитор, принтер и т.д.);

2) устройства для связи с объектами управления (датчики, исполнительные механизмы, АЦП и ЦАП);

3) внешние запоминающие устройтсва большой ёмкости (жёсткий диск, дисководы).

Для взаимодействия процессора и внешних устройств применяется система (механизм) прерываний.

Это специальный механизм, который позволяет в любой момент, по внешнему сигналу заставить процессор приостановить выполнение основной программы, выполнить операции, связанные с вызывающим прерывание событием, а затем вернуться к выполнению основной программы.

Рассмотрим пример взаимодействия процессора персонального компьютера с клавиатурой (рисунок 4).

какие составные части образуют микропроцессорную систему. Смотреть фото какие составные части образуют микропроцессорную систему. Смотреть картинку какие составные части образуют микропроцессорную систему. Картинка про какие составные части образуют микропроцессорную систему. Фото какие составные части образуют микропроцессорную систему

Рисунок 4 – Работа процессора с клавиатурой

1) При нажатии клавиши контроллер клавиатуры формирует цифровой код. Этот сигнал поступает в микросхему порта клавиатуры.

2) Порт клавиатуры посылает процессору сигнал прерывания. Каждое внешнее устройство имеет свой номер прерывания, по которому процессор его и распознаёт.

3) Получив прерывание от клавиатуры, процессор прерывает выполнение программы (например, редактор Microsoft Office Word) и загружает из памяти программу обработки кодов с клавиатуры. Такая программа называет драйвер.

4) Эта программа направляет процессор к порту клавиатуры, и цифровой код загружается в регистр процессора.

5) Цифровой код сохраняется в памяти, и процессор переходит к выполнению другой задачи.

Благодаря высокой скорости работы, процессор выполняет одновременно большое количество процессов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Структура микропроцессорной системы.

Микропроцессорной системой (МПС) называется система цифровой обработки информации и управления, содержащая в своем составе, по крайней мере, один микропроцессор (МП), один или несколько модулей основной (ОЗУ и ПЗУ) и дополнительной памяти, устройства ввода и вывода, блоки сопряжения (контроллеры) с устройствами ввода и вывода, которые связаны друг с другом с помощью системной магистрали, состоящей, в общем случае, из магистралей (шин) адресов (МА, ША), магистралей (шин) данных (МД, ШД) и магистралей (шин) управления (МУ, ШУ).

Логическая структура МПС приведена на рис. 1.1, где ОУ – объект управления, Д – датчики, ИМ – исполнительные механизмы, ИК – информационные контроллеры, БСД – блок сопряжения с датчиками, БСИК – блок сопряжения с информационными контроллерами, ОП – основная память, ДП – дополнительная память.

какие составные части образуют микропроцессорную систему. Смотреть фото какие составные части образуют микропроцессорную систему. Смотреть картинку какие составные части образуют микропроцессорную систему. Картинка про какие составные части образуют микропроцессорную систему. Фото какие составные части образуют микропроцессорную систему

Рис. 1.1. Логическая структура МПС

ОЗУ МПС обеспечивает чтение и запись информации и реализуется как энергозависимая память, содержимое которой стирается при выключении МПС. ПЗУ обеспечивает только чтение информации и реализуется в виде энергонезависимой памяти. Контроллеры представляют собой устройства сопряжения аппаратуры ввода-вывода с системной магистралью и реализуют определенный интерфейс. Магистраль обеспечивает коммуникацию аппаратных средств МПС и представляет собой набор проводников и усилителей сигналов.

В зависимости от областей применения МПС подразделяются на специализированные и универсальные, встроенные и автономные.

По способу реализации микроЭВМ подразделяются на однокристальные, одноплатные и многоплатные. В одноплатных микроЭВМ МП выполняется в виде кристалла БИС (СБИС), на котором кроме самого МП могут располагаться и другие компоненты микроЭВМ (ПЗУ, ОЗУ, контроллеры и т.п.).

По назначению микроЭВМ разделяются на универсальные и специализированные (проблемно-ориентированные).

По организации структуры различают одно- и многомагистральные микроЭВМ (рис. 1.2).

какие составные части образуют микропроцессорную систему. Смотреть фото какие составные части образуют микропроцессорную систему. Смотреть картинку какие составные части образуют микропроцессорную систему. Картинка про какие составные части образуют микропроцессорную систему. Фото какие составные части образуют микропроцессорную систему

Рис. 1.2. Общая структура ЭВМ: а – одномагистральная; б – многомагистральная

В одномагистральных микроЭВМ все устройства имеют одинаковый интерфейс и подключены к единой информационной магистрали, по которой передаются данные, адреса и управляющие сигналы. В многомагистральных микроЭВМ устройства группами подключаются к своей информационной магистрали, что позволяет осуществить одновременную передачу по нескольким (или всем) магистралям и тем самым увеличить быстродействие системы.

ЛИТЕРАТУРА

2. Основы промышленной электроники /Под ред. В.Г. Герасимова.- М.: Высшая школа, 1985.

3. Основы теории цепей; Учебник для ВУЗов. /В.П.Бакалов и др. 2-ое изд. перераб. и доп. – М.; 2000.

4. Сборник задач по электротехнике и основам электроники / Под ред. В.Г. Герасимова.- М.: Высшая школа, 1987.

6. Хоровиц П., Хилл У.. Искусство схемотехники.- М.:Мир, 1997.

7. Амочаева Г.Г. Электронный конспект лекций.

1. Алексеенко А.Г., Шагурин Н.И. Микросхемотехника. Учебное пособие для вузов.- М.: Радио и связь, 1990.

2. Жеребцов И.П. Основы электроники.- Л.: Энергоатомиздат, 1990.

3. Попов В.П., Основы теории цепей.- Учебник для ВУЗов.- 3-е изд. испр.-М.: Высшая школа, 2000.

4. Электротехника и электроника в экспериментах и упражнениях: Практикум на Electronics Workbench. в 2-х томах, Под ред. Д.И. Панфилова ДОДЭКА, 1999.-т.1-Электроника.

5. Электротехника/Ю.М. Борисов, Д.Н. Липатов, Ю.Н. Зорин. Учебник для вузов.- 2-е изд., перераб. и доп.- М.: Энергоатомиздат, 1985.

Источник

Какие составные части образуют микропроцессорную систему

Основные характеристики микропроцессора

Микропроцессор характеризуется:
1) тактовой частотой, определяющей максимальное время выполнения переключения элементов в ЭВМ;
2) разрядностью, т.е. максимальным числом одновременно обрабатываемых двоичных разрядов.

В общем случае под архитектурой ЭВМ понимается абстрактное представление машины в терминах основных функциональных модулей, языка ЭВМ, структуры данных.

Структура типового микропроцессора

Архитектура типичной небольшой вычислительной системы на основе микроЭВМ показана на рис. 2.1 Такая микроЭВМ содержит все 5 основных блоков цифровой машины: устройство ввода информации, управляющее устройство (УУ), арифметико-логическое устройство (АЛУ) (входящие в состав микропроцессора), запоминающие устройства (ЗУ) и устройство вывода информации.

какие составные части образуют микропроцессорную систему. Смотреть фото какие составные части образуют микропроцессорную систему. Смотреть картинку какие составные части образуют микропроцессорную систему. Картинка про какие составные части образуют микропроцессорную систему. Фото какие составные части образуют микропроцессорную систему

Рис. 2.1. Архитектура типового микропроцессора.

Микропроцессор координирует работу всех устройств цифровой системы с помощью шины управления (ШУ). Помимо ШУ имеется 16-разрядная адресная шина (ША), которая служит для выбора определенной ячейки памяти, порта ввода или порта вывода. По 8-разрядной информационной шине или шине данных (ШД) осуществляется двунаправленная пересылка данных к микропроцессору и от микропроцессора. Важно отметить, что МП может посылать информацию в память микроЭВМ или к одному из портов вывода, а также получать информацию из памяти или от одного из портов ввода.

Постоянное запоминающее устройство (ПЗУ) в микроЭВМ содержит некоторую программу (на практике программу инициализации ЭВМ). Программы могут быть загружены в запоминающее устройство с произвольной выборкой (ЗУПВ) и из внешнего запоминающего устройства (ВЗУ). Это программы пользователя.

В качестве примера, иллюстрирующего работу микроЭВМ, рассмотрим процедуру, для реализации которой нужно выполнить следующую последовательность элементарных операций:
1. Нажать клавишу с буквой «А» на клавиатуре.
2. Поместить букву «А» в память микроЭВМ.
3. Вывести букву «А» на экран дисплея.

Это типичная процедура ввода-запоминания-вывода, рассмотрение которой дает возможность пояснить принципы использования некоторых устройств, входящих в микроЭВМ.

На рис. 2.2 приведена подробная диаграмма выполнения процедуры ввода-запоминания-вывода. Обратите внимание, что команды уже загружены в первые шесть ячеек памяти. Хранимая программа содержит следующую цепочку команд:
1. Ввести данные из порта ввода 1.
2. Запомнить данные в ячейке памяти 200.
3. Переслать данные в порт вывода 10.

какие составные части образуют микропроцессорную систему. Смотреть фото какие составные части образуют микропроцессорную систему. Смотреть картинку какие составные части образуют микропроцессорную систему. Картинка про какие составные части образуют микропроцессорную систему. Фото какие составные части образуют микропроцессорную систему

Рис. 2.2. Диаграмма выполнения процедуры ввода-запоминания-вывода.

Итак, при выполнении типичной процедуры ввода-запоминания-вывода в микроЭВМ происходит следующая последовательность действий:
1. МП выдает адрес 100 на шину адреса. По шине управления поступает сигнал, устанавливающий память программ (конкретную микросхему) в режим считывания.
2. ЗУ программ пересылает первую команду («Ввести данные») по шине данных, и МП получает это закодированное сообщение. Команда помещается в регистр команд. МП декодирует (интерпретирует) полученную команду и определяет, что для команды нужен операнд.
3. МП выдает адрес 101 на ША; ШУ используется для перевода памяти программ в режим считывания.
4. Из памяти программ на ШД пересылается операнд «Из порта 1». Этот операнд находится в программной памяти в ячейке 101. Код операнда (содержащий адрес порта 1) передается по ШД к МП и направляется в регистр команд. МП теперь декодирует полную команду («Ввести данные из порта 1»).
5. МП, используя ША и ШУ, связывающие его с устройством ввода, открывает порт 1. Цифровой код буквы «А» передается в аккумулятор внутри МП и запоминается.Важно отметить, что при обработке каждой программной команды МП действует согласно микропроцедуре выборки-декодирования-исполнения.
6. МП обращается к ячейке 102 по ША. ШУ используется для перевода памяти программ в режим считывания.
7. Код команды «Запомнить данные» подается на ШД и пересылается в МП, где помещается в регистр команд.
8. МП дешифрирует эту команду и определяет, что для нее нужен операнд. МП обращается к ячейке памяти 103 и приводит в активное состояние вход считывания микросхем памяти программ.
9. Из памяти программ на ШД пересылается код сообщения «В ячейке памяти 200». МП воспринимает этот операнд и помещает его в регистр команд. Полная команда «Запомнить данные в ячейке памяти 200» выбрана из памяти программ и декодирована.
10. Теперь начинается процесс выполнения команды. МП пересылает адрес 200 на ША и активизирует вход записи, относящийся к памяти данных.
11. МП направляет хранящуюся в аккумуляторе информацию в память данных. Код буквы «А» передается по ШД и записывается в ячейку 200 этой памяти. Выполнена вторая команда. Процесс запоминания не разрушает содержимого аккумулятора. В нем по-прежнему находится код буквы «А».
12. МП обращается к ячейке памяти 104 для выбора очередной команды и переводит память программ в режим считывания.
13. Код команды вывода данных пересылается по ШД к МП, который помещает ее в регистр команд, дешифрирует и определяет, что нужен операнд.
14. МП выдает адрес 105 на ША и устанавливает память программ в режим считывания.
15. Из памяти программ по ШД к МП поступает код операнда «В порт 10», который далее помещается в регистр команд.
16. МП дешифрирует полную команду «Вывести данные в порт 10». С помощью ША и ШУ, связывающих его с устройством вывода, МП открывает порт 10, пересылает код буквы «А» (все еще находящийся в аккумуляторе) по ШД. Буква «А» выводится через порт 10 на экран дисплея.

В большинстве микропроцессорных систем (МПС) передача информации осуществляется способом, аналогичным рассмотренному выше. Наиболее существенные различия возможны в блоках ввода и вывода информации.

Подчеркнем еще раз, что именно микропроцессор является ядром системы и осуществляет управление всеми операциями. Его работа представляет последовательную реализацию микропроцедур выборки-дешифрации-исполнения. Однако фактическая последовательность операций в МПС определяется командами, записанными в памяти программ.

Таким образом, в МПС микропроцессор выполняет следующие функции:
— выборку команд программы из основной памяти;
— дешифрацию команд;
— выполнение арифметических, логических и других операций, закодированных в командах;
— управление пересылкой информации между регистрами и основной памятью, между устройствами ввода/вывода;
— отработку сигналов от устройств ввода/вывода, в том числе реализацию прерываний с этих устройств;
— управление и координацию работы основных узлов МП.

Источник

Микропроцессорные системы

Вы будете перенаправлены на Автор24

Микропроцессорная система (МПС) представляет собой систему, включающую в себя хотя бы 1 микропроцессор (МП), запоминающее устройство (ЗУ), устройства ввода/вывода (УВВ), устройства сопряжения системной шины с устройствами ввода/вывода (контроллеры), системную шину.

Данную систему можно рассматривать как пример электронной системы, которая предназначена для обрабатывания входных сигналов и выдачи выходных сигналов. В роли входных и выходных сигналов возможно использование аналоговых сигналов, одиночных цифровых сигналов, цифровых кодов, последовательности цифровых кодов. В данной системе, как в любой цифровой системе, входные аналоговые сигналы преобразуют в последовательности кодов с помощью аналогово-цифровых преобразователей (АЦП), а выходные аналоговые сигналы формируют из последовательности кодов с помощью цифровых аналоговых преобразователей (ЦАП). Обрабатывается и хранится информация в цифровом виде.

Общие сведения о микропроцессорных системах

В связи с множеством областей применения МП и микроЭВМ можно классифицировать МПС на системном уровне. Они могут быть представлены:

Исходя из вышесказанного, в наше время определились следующие приоритетные области, в которых применяются МПС:

Процесс внедрения МПС в область контрольно-измерительной аппаратуры позволил значительно повысить точность измерений и надежность, а также расширил функциональные возможности приборов и обеспечил выполнение следующих функций: калибровки, коррекции и температурной компенсации, контроля и управления измерительным комплексом, принятия решений и обработки данных, диагностики неисправностей, индикации, испытания и проверки приборов.

Готовые работы на аналогичную тему

Внедрение МПС в системах связи обусловило все большее вытеснение цифровыми методами аналоговых, что привело к их широкому использованию в преобразователях кодов, мультиплексорах, устройствах контроля ошибок, блоках управления приемной и передающей аппаратуры.

Все более широко стали использоваться МПС в таких устройствах, как терминалы и кассовые аппараты банков, контрольно-расчетные терминалы торговых центров и т.п. Использование МП и МПС в бытовой технике позволяет открыть ее широкие возможности в области эффективности, повышения надежности и разнообразного применения.

Основные типы микропроцессорных систем

Различают следующие основные типы МПС:

Четкую границу между названными типами иногда провести достаточно сложно, поскольку быстродействие всех типов МП постоянно растет, и бывает, что новый микроконтроллер может оказаться быстрее, к примеру, устаревшего компьютера. Но принципиальные отличия между ними все же существуют.

Микроконтроллеры являются универсальными устройствами, практически всегда использующимися в составе более сложных устройств, в том числе и контроллеров. Системная шина микроконтроллера находится внутри микросхемы. Возможности подключения внешних устройств к микроконтроллеру ограничены. Устройства, построенные на микроконтроллерах, как правило, используются для выполнения одной задачи.

Контроллеры обычно создают для решения отдельной задачи или группы близких задач. Они не имеют возможности подключения дополнительных узлов и устройств (большой памяти, средств ввода/вывода). Их системная шина, как правило, недоступна для пользователя. По структуре контроллер прост и оптимизирован под максимальное быстродействие. В основном выполняемые им программы хранятся в постоянной памяти и не меняются. Конструктивно контроллеры выпускаются в виде одной платы.

Микрокомпьютеры отличает от контроллеров более открытая структура, поскольку в них допускается подключение к системной шине нескольких дополнительных устройств. Выпускаются микрокомпьютеры в каркасе, корпусе с разъемами системной магистрали, которые доступны для пользователя. Микрокомпьютеры имеют средства хранения информации на магнитных носителях (магнитные диски) и развитые средства связи с пользователем (видеомонитор, клавиатуру). Микрокомпьютеры предназначены для решения более широкого круга задач, чем контроллеры, однако к каждой новой задаче их нужно приспосабливать заново. Программы, выполняемые микрокомпьютером, можно легко заменять.

Компьютеры, в том числе и персональные, представляют собой самые универсальные из МПС. В них предусмотрена возможность усовершенствования, а также широкие возможности подключения новых устройств. Системная шина компьютеров является доступной для пользователя. Помимо этого внешние устройства (ВУ) имеют возможность подключения к компьютеру через несколько встроенных портов связи (количество портов может доходить до 10). Компьютер обладает высоко развитыми средствами связи с пользователем, средствами длительного хранения информации большого объема, средствами связи с другими компьютерами по информационным сетям. Области применения компьютеров самые разнообразные: от математических расчетов и обслуживания доступа к БД до управления работой сложных электронных систем, компьютерных игр и т.д.

какие составные части образуют микропроцессорную систему. Смотреть фото какие составные части образуют микропроцессорную систему. Смотреть картинку какие составные части образуют микропроцессорную систему. Картинка про какие составные части образуют микропроцессорную систему. Фото какие составные части образуют микропроцессорную систему

Рисунок 1. Логическая схема МПС

где Д – датчики, ОУ – объект управления, ИМ – исполнительные механизмы, БСД – блок сопряжения с датчиками, ИК – информационные контроллеры, БСИК – блок сопряжения с информационными контроллерами, ОП – основная память, ДП – дополнительная память В зависимости от области применения МПС бывают специализированные и универсальные, встроенные и автономные.

Архитектура Фон-Неймана

В соответствии с организацией процессов выборки и исполнения команды в современных МПС применяют одну из двух архитектур: фон-неймановскую (принстонскую) или гарвардскую.

Основная особенность архитектуры Фон-Неймана заключается в использовании общей памяти для хранения программ и данных.

какие составные части образуют микропроцессорную систему. Смотреть фото какие составные части образуют микропроцессорную систему. Смотреть картинку какие составные части образуют микропроцессорную систему. Картинка про какие составные части образуют микропроцессорную систему. Фото какие составные части образуют микропроцессорную систему

Рисунок 2. Структура МПС архитектуры Фон-Неймана

Основным преимуществом данной архитектуры является упрощение устройства МПС, поскольку реализовано обращение только к одной общей памяти. Помимо этого использование единой области памяти позволило оперативно перераспределить ресурсы между областями программ и данных, что существенно повысило гибкость МПС со стороны программного обеспечения. Размещение стека в общей памяти облегчило доступ к его содержимому. Поэтому данный тип архитектуры стал основным для универсальных компьютеров, в том числе и персональных.

Гарвардская архитектура

Основная особенность гарвардской архитектуры заключается в использовании раздельных адресных пространств для хранения команд и данных, как изображено на рис. 3.

какие составные части образуют микропроцессорную систему. Смотреть фото какие составные части образуют микропроцессорную систему. Смотреть картинку какие составные части образуют микропроцессорную систему. Картинка про какие составные части образуют микропроцессорную систему. Фото какие составные части образуют микропроцессорную систему

Рисунок 3. Структура МПС с гарвардской архитектурой

Гарвардской архитектурой обеспечивается потенциально более высокая скорость выполнения программ в сравнении с фон-неймановской за счет возможности реализовывать параллельные операции. Процесс выборки следующей команды может проходить параллельно выполнению предыдущей. Данный метод реализации операций дает возможность обеспечивать выполнение различных команд за одинаковое число тактов, что дает возможность более просто определить время выполнения циклов и критичных участков программы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *