какие связи не нарушаются при денатурации белка

Денатура – определение, типы, функции и примеры

Определение денатурирования

Денатурирующий биологический молекула относится к потере своей трехмерной (3-D) структуры. Поскольку молекулы, такие как белки и ДНК, зависят от своей структуры для выполнения своей функции, денатурация сопровождается потерей функции. Однако денатурация не оказывает влияния на аминокислотную последовательность самого белка.

Структура белков

Структуру белка можно разделить на четыре уровня – первичный, вторичный, третичный и четвертичный. Белки изготовлены из линейных полимеров аминокислоты и это формирует их первичную структуру. Даже когда полипептид синтезируется на рибосома, он начинает складываться и формировать элементы своей вторичной структуры. Наиболее распространенными признаками вторичной структуры белка являются альфа-спирали и бета-складчатые листы, образованные посредством обширной водородной связи. Эти локальные структуры, образованные соседними аминокислотами, затем собираются вместе, образуя третичная структура где остатки, которые находятся далеко друг от друга в первичной структуре, могут объединяться в одной и той же пространственной области. Это позволяет определенным аминокислотам присутствовать в активный сайт или для взаимодействия с другими молекулами и для поддержки других частей белка, которые складываются в отличительную форму.

какие связи не нарушаются при денатурации белка. Смотреть фото какие связи не нарушаются при денатурации белка. Смотреть картинку какие связи не нарушаются при денатурации белка. Картинка про какие связи не нарушаются при денатурации белка. Фото какие связи не нарушаются при денатурации белка

какие связи не нарушаются при денатурации белка. Смотреть фото какие связи не нарушаются при денатурации белка. Смотреть картинку какие связи не нарушаются при денатурации белка. Картинка про какие связи не нарушаются при денатурации белка. Фото какие связи не нарушаются при денатурации белка

Примеры денатурированных белков

Хотя денатурация белка вредна для клетка выживание, это часто встречается в повседневной жизни. Например, яичный белок в основном состоит из растворимых белков и является жидким и прозрачным в свежих яйцах. При кипячении тепло денатурирует белки и теряет их растворимость. Денатурированные белки агрегируют и образуют массу, которая теперь непрозрачна и тверда. Аналогичным образом, изменение рН молока путем добавления кислот, таких как лимонная кислота, из лимонного сока, приводит к денатурации молочных белков и сгущает молоко. Твердая белая часть, которая отделяется от сыворотки, представляет собой денатурированный белок. Это также можно увидеть, когда молоко естественным образом сжимается из-за бактериальной колонизации. бактерии может производить молочную кислоту как побочный продукт обмена веществ. При правильном контроле этот процесс денатурации используется для приготовления йогурта и свежего сыра.

Денатурированные белки участвуют в ряде заболеваний, от болезни Паркинсона, болезни Альцгеймера до хореи Хантингтона. Люди, страдающие от этих болезней, имеют ненормально свернутые белки в некоторой части своего тела, с головной мозг а также нервная система быть особенно восприимчивым. Кроме того, одной из основных причин слепоты является наличие денатурированных белков в хрусталике глаза. В этом случае считается, что денатурация возникает из-за старения или из-за чрезмерного воздействия УФ-излучения.

Типы денатурации

Денатурация может быть классифицирована на основе агента, который заставляет белок терять свою вторичную, третичную или четвертичную структуру. Водородные связи, ионные взаимодействия, гидрофобный взаимодействия и силы Ван дер Ваала участвуют в удержании этих структур вместе. Такие нековалентные взаимодействия нарушаются рядом факторов, включая тепло, излучение, органические растворители, кислоты, основания и соли, поскольку они могут изменять гидрофобные взаимодействия внутри белка, влиять на водородные связи и мешать ионным взаимодействиям.

Тип I: денатурация по изменению рН

РН решение оказывает важное влияние на структуру белка, потому что он изменяет количество и характер водородных связей и ионных взаимодействий, которые имеют место между различными аминокислотами. При физиологическом pH многие аминокислотные боковые цепи заряжаются из-за потери или усиления иона водорода.

На самом деле, большинство аминокислот существуют в виде цвиттериона внутри клеток.

какие связи не нарушаются при денатурации белка. Смотреть фото какие связи не нарушаются при денатурации белка. Смотреть картинку какие связи не нарушаются при денатурации белка. Картинка про какие связи не нарушаются при денатурации белка. Фото какие связи не нарушаются при денатурации белка

Когда атом водорода ковалентно связан с сильно электроотрицательным атомом, таким как кислород или азот, он получает частичный положительный заряд. Из-за небольшого размера атома водорода этот частичный заряд достаточен для создания высокой плотности заряда, которая может оказывать сильное притяжение неподеленной пары электронов на другом атоме. Это притяжение лежит в основе водородной связи. Он чувствителен к изменениям рН, потому что изменение концентрации ионов водорода может изменить природу функциональных групп. Например, аминокислоты, такие как аспарагин, цистеин или тирозин, содержат полярные группы в своих боковых цепях. Эти атомы могут взаимодействовать друг с другом посредством водородных связей на основе их пространственной близости и ориентации различных боковых цепей. Однако при изменении pH эти полярные группы могут протонироваться или депротонироваться, изменяя их способность образовывать водородные связи. Кроме того, образование альфа-спирали или бета-плиссированного листа включает образование водородных связей между карбоксилатными и аминными группами каждой аминокислоты. Если большое количество таких взаимодействий прерывается, белок разворачивается и становится денатурированным.

Наконец, pH влияет на общий заряд полипептида, и это влияет на растворимость белка. Если суммарный заряд белка становится равным нулю, он может накапливаться и выпадать в осадок.

Тип II: Химическая денатурация

Некоторые химические вещества и органические растворители могут вызывать денатурацию белка. Органические растворители разрушают структуру белка, потому что большинство белков изолируют свои гидрофобные остатки по направлению к центру молекулы, когда они складываются в свою уникальную форму. По существу, трехмерная структура полипептида оптимизирует энергию молекулы, снижая взаимодействие гидрофобных боковых цепей с водной средой. Присутствие химических веществ, таких как бензол или этанол, изменяет эти взаимодействия и может иногда приводить к «переворачиванию» белка, когда внутренние остатки присутствуют снаружи с потерей структуры и функции.

Моющие средства и другие амфипатический молекулы также могут быть особенно разрушительными. Эти молекулы имеют тот же эффект, разрушая гидрофобные взаимодействия и водородные связи. Вспенивание, наблюдаемое во время экстракции белка в лабораториях, а также пена, связанная с бытовыми моющими средствами, частично объясняется их денатурирующим действием на белки. Тяжелые металлы и высокие концентрации соли могут влиять на образование ионных связей, в то время как хаотропные агенты, такие как мочевина, могут оказывать значительное разрушительное воздействие на сеть водородных связей.

Тип III: денатурация теплом и радиацией

Когда температура биологического образца увеличивается, это приводит к общему увеличению кинетической энергии каждого атома и увеличению энтропии системы. Все атомы и молекулы начинают сталкиваться друг с другом с более высокой энергией, а также с увеличением поступательного, вращательного и вибрационного движения. Это снижает прочность водородных связей и ослабляет влияние неполярных гидрофобных взаимодействий. Это одна из причин, по которой организм использует высокую температуру для борьбы с инфекциями. Это попытка замедлить или остановить рост микроорганизмов, чтобы иммунная система могла очистить болезнетворные микроорганизмы. Тем не менее, длительная высокая температура может также нанести вред белкам внутри хозяина, поэтому температуры выше 104 градусов по Фаренгейту (40 градусов Цельсия) считаются опасными. Длительное воздействие солнечного излучения также приводит к потере структуры белка. Солнечные ожоги и катаракта в глазу – только два примера его вредных эффектов. Излучение от других источников (таких как рентгеновский аппарат или от радиоактивных материалов) также может вызвать повреждение белков и привести к ряду заболеваний.

Функции денатурации

Кроме того, денатурация также участвует в изменениях в трехмерной структуре нуклеиновых кислот. Когда две нити ДНК раскручиваются, говорят, что они подвергаются денатурации. Этот тип денатурации важен для транскрипция и репликация ДНК. Он также используется в лабораторных методах, таких как полимеразная цепная реакция, для получения большого количества копий ДНК за короткий промежуток времени.

Эффекты денатурации

Денатурация приводит к потере функции белка. В ферменте на основе белка это может быть небольшое изменение в конформации активный сайт что делает его неспособным катализировать реакцию. Для белков, подобных антителам, потеря формы лишает их способности распознавать и связывать антигены. Когда большое количество белков в клетке денатурируется, клетка подвергается серьезному стрессу при удалении этих молекул и синтезе функционального белка. Когда этот процесс переполняет клетку, она либо подвергается апоптоз или вызывает болезнь. В связи с влиянием денатурации белка на формирование заболевания было интересно проанализировать, возможно ли побудить белок переродиться в свою первоначальную форму после денатурации. До сих пор исследованиям in vitro удалось добиться такого изменения только в нескольких белках, таких как сывороточный альбумин, РНКаза и гемоглобин.

викторина

1. Какие из этих связей НЕ обычно участвуют в создании вторичной или третичной структуры белка?A. Водородные связиB. Ковалентные связиC. Ионные взаимодействияD. Ни один из вышеперечисленных

Ответ на вопрос № 1

В верно. Ковалентные связи обычно не участвуют в создании вторичной или третичной структуры белка. Хотя ковалентные связи важны для формирования линейных полимеров аминокислот, они не имеют первостепенного значения в структурах более высокого порядка. Дисульфидные мостики являются исключениями из этого правила. Тем не менее, в восстановительной среде, такой как цитозоль Дисульфидные мостики встречаются не часто.

2. Почему изменение рН приводит к денатурации белка?A. Изменяет первичную аминокислотную последовательностьB. Изменяет электроотрицательность атомаC. Изменяет образование водородной связи между различными остаткамиD. Все вышеперечисленное

Ответ на вопрос № 2

С верно. Изменения pH напрямую не влияют на ковалентные связи. Следовательно, они не изменяют первичную аминокислотную последовательность. Электроотрицательность атома не изменяется и не зависит от рН.

3. Какой из этих белков был успешно перенесен?A. ГемоглобинB. РНКазыC. Сывороточный альбуминD. Все вышеперечисленное

Ответ на вопрос № 3

D верно. Сообщалось, что все три белка проходят успешную ренатурацию in vitro с возвращением функции и трехмерной структуры.

Источник

Денатурация: особенности процесса, влияющие факторы, механизмы и последствия

какие связи не нарушаются при денатурации белка. Смотреть фото какие связи не нарушаются при денатурации белка. Смотреть картинку какие связи не нарушаются при денатурации белка. Картинка про какие связи не нарушаются при денатурации белка. Фото какие связи не нарушаются при денатурации белка

Что такое белки?

Человеческий организм нуждается в различных типах молекул, и наиболее важными являются молекулы белков, которые содержат азот и состоят из аминокислот. Молекулы белка образуют основной строительный блок мышц и других тканей в организме человека. Их название указывает на то, что они имеют решающее значение для здоровья человека. Слово «белок» происходит от греческого «протеос», что означает «первый» или «первом месте». Каждый белок имеет свое место действия и задачи, которые он выполняет. Функции белка можно разделить на 9 основных:

Молекулы белка имеют разные размеры, в зависимости от количества аминокислот. Малые молекулы включают, например, инсулин из 51 аминокислоты, в то время как очень большие молекулы включают титан из почти 27 000 аминокислот.Однако размер молекул не имеет значения, для правильного функционирования они должны быть в подходящей форме. Каждый тип белка имеет уникальную форму, которая определяет роль белка в организме. Попробуйте представить белки как ключи, которые принадлежат только определенным дверям в человеческом организме.

Человеческий метаболизм расщепляет белки на более простые частицы – аминокислоты. 20 аминокислот необходимы для роста мышц и обмена веществ, 11 из которых не являются необходимыми. Это означает, что наш организм может создавать их сам, и их не нужно употреблять в пищу. Остальные аминокислоты помечены как незаменимые, и организм человека получает их из пищи и пищевых добавок. Мышечная ткань не может расти или регенерировать без них.

Что такое денатурация белка?

какие связи не нарушаются при денатурации белка. Смотреть фото какие связи не нарушаются при денатурации белка. Смотреть картинку какие связи не нарушаются при денатурации белка. Картинка про какие связи не нарушаются при денатурации белка. Фото какие связи не нарушаются при денатурации белка

Денатурация – это процесс, при котором структура белковой молекулы нарушается, тем самым теряя свою функцию. Различия в форме белка могут быть вызвать:

Денатурация меняет форму белка, но последовательность аминокислот остается прежней. Цель протеина в форме пищевой добавки состоит в том, чтобы восполнить достаточное количество белка, и чтобы пищеварительная система могла разрушиться, тем самым снабжая мышечную ткань. Эта функция не теряется при термообработке белков.

Хорошим примером также является белок пепсин, который действует как фермент и расщепляет белки в желудке. Он работает только при низком pH, теряет свою функцию в среде с высоким pH и денатурирует. По этой причине pH желудка поддерживается на очень низком уровне, чтобы обеспечить правильное функционирование пепсина.

Тепло используется для разрыва водородных связей и неполярных гидрофобных взаимодействий в молекуле белка. Более высокая температура увеличивает кинетическую энергию и заставит молекулы вибрировать очень быстро, пока связи между ними не будут разрушены. Молекула белка разворачивается из своей трехмерной структуры, обеспечивая лучший доступ пищеварительного фермента к белковым связям.

Вот почему мы готовим продукты, чтобы изменить структуру белка и облегчить его переваривание. Например, этот процесс происходит, когда вы готовите яйца. В это время белок из яиц денатурируется и во время варки. После употребления вареных яиц переваривание и усвоение содержащихся в них питательных веществ происходит быстрее. Вы можете быть удивлены тем, что такой же процесс происходит при стерилизации медицинских инструментов. Тепло денатурирует белки в бактериях, которые затем уничтожают бактерии и дезинфицируют объекты.

Особенности процесса

Он сопровождается разворачиванием полипептидной связи, которая в растворе изначально представлена в виде беспорядочного клубка.

Процесс денатурации белка сопровождается утрачиванием гидратной оболочки, выпадением белка в осадок, утрачиванием им нативных свойств.

Среди основных факторов, которые провоцируют процесс денатурации, выделим физические параметры: давление, температуру, механическое действие, ионизирующее и ультразвуковое излучение.

Денатурация белка происходит под воздействием органических растворителей, минеральных кислот, щелочей, солей тяжелых металлов, алкалоидов.

какие связи не нарушаются при денатурации белка. Смотреть фото какие связи не нарушаются при денатурации белка. Смотреть картинку какие связи не нарушаются при денатурации белка. Картинка про какие связи не нарушаются при денатурации белка. Фото какие связи не нарушаются при денатурации белка

Свойства денатурированных белков, виды денатурации

При денатурации утрачивается гидратная оболочка и белок выпадает в осадок и при этом утрачивает нативные свойства.

Денатурацию вызывают физические факторы: температура, давление, механические воздействия, ультразвуковые и ионизирующие излучения; химические факторы: кислоты, щелочи, органические растворители, алкалоиды, соли тяжелых металлов.

Различают 2 вида денатурации:

Свойства денатурированных белков:

Ферментные методы гидролиза основаны на избирательности действия протеолитических ферментов расщепляющих пептидные связи между определенными аминокислотами.

Пепсин расщепляет связи, образованные остатками фенилаланина, тирозина и глутаминовой кислоты.

Трипсин расщепляет связи между аргинином и лизином.

Химотрипсин гидролизует связи триптофана, тирозина и фенилаланина.

Гидрофобные взаимодействия, а также ионные и водородные связи относятся к числу слабых, тк энергия их лишь ненамного превосходит энергию теплового движения атомов при комнатной температуре(т е уже при данной температуре возможен разрыв связей ).

Поддержание характерной для белка конформации возможно благодаря возникновению множества слабых связей между различными участками полипептидной цепи.

Факторы, вызывающие денатурацию белков

Факторы, которые вызывают денатурацию белков, можно разделить на физические и химические.

Воздействие факторами денатурации применяют для стерилизации оборудования и инструментов, а также как антисептики.

Что происходит в процессе денатурации белков

какие связи не нарушаются при денатурации белка. Смотреть фото какие связи не нарушаются при денатурации белка. Смотреть картинку какие связи не нарушаются при денатурации белка. Картинка про какие связи не нарушаются при денатурации белка. Фото какие связи не нарушаются при денатурации белка

В процессе денатурации белка имеет место разрыв химических связей (дисульфидных, водородных, ван-дер-ваальсовых, электростатических и др.), которые стабилизируют высшие уровни организации белковой молекулы, что обуславливает изменение пространственной структуры белка. Следует отметить, то в большинстве случаев первичная структура белка в процессе денатурации не нарушается, поэтому после раскрутки цепи полипептидов (стадия нити), протеин может снова стихийно скручиваться, при этом образуя «случайный клубок», то есть переходит к хаотическому состоянию, отличного от нативной конформации.

Процесс денатруации белков происходит при температуре выше, чем 56 °С.

Типичными признаками необратимой денатурации белков является снижение гидрофильности и растворимости белков, увеличение оптической активности, изменение изоэлектрической точки, уменьшение устойчивости белковых растворов и молекулярной массы и изменение формы белковых молекул, увеличение вязкости и усиление способности к расщеплению ферментами, переход молекулы в хаотическое состояние, при котором наблюдается агрегация частиц белка и выпадение их в осадок.

Схема денатурации белка: а — нативная молекула; б — развертывание полипептидной цепи; в — стадия нити; г — случайный клубок

При непродолжительном действии денатурирующего агента (например, органического растворителя) возможно восстановление нативной структуры белка. Этот процесс называется ренатурацией. При ренатурации происходит восстанавлениене только структуры, но и биологических функций белка. С денатурацией связаны процессы переработки продуктов питания, изготовления одежды, обуви, консервирования и сушки овощей и фруктов. Результатом необратимой денатурацией протеинов является потеря способности к прорастанию семян при длительном хранении, особенно при неблагоприятных условиях. Процесс денатурации белков широко применяется в медицине, ветеринарии, фармации, клинике и биохимических исследованиях с целью осаждения протеина в биологическом материале с целью дальнейшей идентификации в нем низкомолекулярных и небелковых субстанций, с целью как установления наличия протеина, так и его количественного определения, для обеззараживания слизистых покровов и кожи, для конъюгации солей тяжелых металлов при терапии отравлений солями свинца, ртути, меди и т.п. или с целью профилактики подобных токсикозов на предприятии.

Процесс денатурации белков происходит также при приеме фармакологических препаратов танальбина и танина, на чем базируются их противовоспалительное и вяжущее действие. Вяжущие свойства танина базируются на его способности осаждать протеины с синтезом плотных альбуминатов, защищающих от раздражения тканей, в частности чувствительные нервные окончания. При этом уменьшается проявление воспалительной реакции, а также снижаются болевые ощущения и происходит непосредственное уплотнение мембран клеток. Препарат танальбин представляет собой продукт взаимодействия белка казеина с танином — в отличие от танина, данный препарат не оказывает вяжущего действия на слизистую оболочку желудка и ротовой полости. Только после попадания в кишечник он поддается процессу расщепления, выделяя при этом свободный танин. Применяется в медицине и ветеринарии как вяжущее лекарственное средство при хронических и острых болезнях кишечника, в частности у детей.

В практике фармацевтики использование процессов денатурации белка дает возможность контролировать качество протеиновых препаратов, например, в ампулах.

Последствия

После денатурации происходит переход нативной компактной структуры в рыхлую развернутую форму, упрощается проникновение к пептидным связям ферментов, необходимых для разрушения.

Конформация белковых молекул определяется возникновением достаточного количества связей между разными участками определенной полипептидной цепочки.

Белки, состоящие из достаточного количества атомов, которые находятся в непрерывном хаотичном движении, способствует определенным перемещениям частей полипептидной цепи, что вызывает нарушение общей структуры белков, снижение его физиологических функций.

Белки имеют конформационную лабильность, то есть предрасположенность к незначительным изменениям конформации, происходящим в результате обрыва одних и образования других связей.

Денатурация белка приводит к изменениям его химических свойств, способности вступать во взаимодействие с другими веществами. Наблюдается изменение пространственной структуры и участка, непосредственно контактирующего с иной молекулой, и всей конформацией в целом. Наблюдаемые конформационные изменения имеют значение для функционирования белков в живой клетке.

Механизмы денатурации

Практически любое заметное изменение внешних условий, например, нагревание или обработка белка щелочью приводит к последовательному нарушению четвертичной, третичной и вторичной структур белка. Обычно денатурация вызывается повышением температуры, действием сильных кислот и щелочей, солей тяжелых металлов, некоторых растворителей (спирт), радиации и др.

Денатурация часто приводит к тому, что в коллоидном растворе белковых молекул происходит процесс агрегации частиц белка в более крупные. Визуально это выглядит, например, как образование «белка» при жарке яиц.

Источник

Строение и функции белков. Денатурация белка

какие связи не нарушаются при денатурации белка. Смотреть фото какие связи не нарушаются при денатурации белка. Смотреть картинку какие связи не нарушаются при денатурации белка. Картинка про какие связи не нарушаются при денатурации белка. Фото какие связи не нарушаются при денатурации белка

Перед тем, как начать разбираться со строением белка и его функциями нужно кое-что прояснить. А что вообще такое белок? Как организм создает такое многообразие белков, если имеет ограниченный запас аминокислот?

Белок — это полимерная молекула, которая состоит из молекул поменьше — мономеров. Мономеры для белка — аминокислоты, которые соединяются между собой пептидными связями. Но здесь появляется вопрос, а сколько аминокислот нужно соединить между собой для того, чтобы получить белок? Больше 50. Если их будет меньше, то такая молекула называется пептид.

Все аминокислоты соединяются друг с другом в определенной последовательности, которая уникальна для каждого белка. Кто это контролирует? ДНК — ведь она и кодирует все эти аминокислоты. Ну а теперь можем начинать разбираться со структурой.

Первичная структура белка

Представляем себе огромную цепь, которая состоит из кучи звеньев. Такой же вид у первичной структуры белка — это просто полипептидная цепь, которая включает в себя аминокислоты. Их всего 20 штук. Но представьте себе сколько комбинаций можно сделать с этими 20 аминокислотами, соединяя их в разных последовательностях? Правильно, бесконечное множество.

Теперь посмотрим на молекулу поближе. Можно увидеть, что у этой большой молекулы есть свободная аминогруппа — N-конец, и свободная карбоксильная группа — C-конец. Молекулу всегда рисуют с N-конца и заканчивают C-концом.

Все остальные аминокислоты связаны друг с другом пептидной связью. Сумма всех пептидных связей — это пептидный остов. В него не входят радикалы, N-концы и C-концы. Будет понятнее, если я нарисую всё в одну линию.

В первичной структуре есть только пептидные связи

Важный момент! Первичная структура определяет какими будет вторичная, третичная и четвертичная (если такая есть) структуры. Это как мини-ДНК для белковой молекулы. Но я об этом еще напомню, даже несколько раз, вот такая я зануда.

Вторичная структура белка

Ну что, а теперь давайте усложнять все! Что можно сделать с цепью, которую мы рассмотрели до этого? Может закрутим цепь вокруг чего-то? Или просто растянем ее вдаль? Можно даже растянуть цепь и повернуть ее обратно, чтобы начало и конец были в одном месте. Что вам больше нравится?

Какой бы вариант не выбрали — он верный, но все зависит от того, какой тип вторичной структуры будет у белка. Напоминаю, что это определяется первичной :]

1. Альфа-спираль

Это для ребят, которые выбрали закрутить цепь вокруг чего-то. Правда закручивается она вокруг самой себя. В этой цепи происходит образование водородной связи между кислородом (карбоксильного атома углерода) и водородом (связан с азотом).

Далековато как-то. Как так выходит? Все из-за того, что происходит закручивание пептидного остова. Сделаем такую же картинку как сверху, но в виде атомов. Не забудем крутануть её немного…

какие связи не нарушаются при денатурации белка. Смотреть фото какие связи не нарушаются при денатурации белка. Смотреть картинку какие связи не нарушаются при денатурации белка. Картинка про какие связи не нарушаются при денатурации белка. Фото какие связи не нарушаются при денатурации белка Водородные связи в альфа-спирали

Каждый цвет — это остаток аминокислоты, только азоты и кислороды я оставил одного цвета, а то запутаемся ещё. Ещё альфа-углерод тут трех валентный и все атомы отмечать не стал, а то слишком громоздко получается. Думаю, что смысл понятен.

Какой сделаем вывод? Альфа-спираль похожа на корсет. Правда вместо него — водородные связи, которые стягивают её. Если присмотреться к радикалам, то они выглядывают как иголки из ёлки в разные стороны. Вот рисунок попроще.

Ой, а вы, наверное, ждали какой то супер крутой рисунок? А я тут такое подсунул, ладно держите вот немного получше. Правда он без радикалов и водородных связей. Но здесь лучше видно, что на один виток спирали приходится 3,6 аминокислотных остатка.

Альфа-спираль, конечно, очень красивый вариант, но он не всегда образуется. Есть аминокислоты, которые могут помешать этому:

Пролин. В его молекуле находится жесткое кольцо, которое всегда вызывает поворот. Такая уж у него структура. Если вставить его в альфа спираль, то произойдет поворот на 180 градусов. Ещё у пролина нет свободного водорода у азота. Получается, что он не может образовывать водородную связь, которая так важна для альфа-спирали.

Глицин. Если пролин слишком жесткий, то глицин, наоборот, очень гибкий. У него ведь нет радикала, поэтому если вставить слишком много глицинов, то прощай альфа-спираль. Иногда из-за него тоже происходит поворот молекулы на 180 градусов — прямо как на картинке выше.

Аминокислоты с большими радикалами. Большие радикалы круто, но если они будут расположены рядом, то это может помешать формированию альфа-спирали. Они просто мешают друг другу.

И последнее, одинаково заряженные аминокислоты. При одинаковом заряде они отталкиваются допустим: рядом расположены лизин и аргинин, или аспартат и глутамат. Ну и другие комбинации.

Если в полипептидной цепи много включений с такими радикалами, то чаще всего образуется…

2. Бета-складчатый слой

Здесь молекула будет похожа на лист, который состоит из нескольких тяжей. А они похожи на горки из игры Gravity defied. Хотя кому я это говорю….

Ладно, давайте просто посмотрим на рисунок, а лучше на два — один сбоку, а другой сверху. Что видим? Один тяж с горками, которые идут то вверх, то вниз. Радикалы аминокислот расположены над или под плоскостью листа.

Теперь можно составить из тяжей бета-складчатый слой. Здесь, как всегда, несколько вариантов. Первый вариант — параллельный лист, тогда направление тяжей одинаковое. Если оно разное, то он антипараллельный. Стабилизируется этот лист тоже с помощью водородных связей, прямо как альфа-спираль. Только вот есть один нюанс. Если в альфа-спирали есть четкая зависимость образования связей — через 4 аминокислотных остатка, то здесь такого нет. Например, водородными связями могут соединяться 5 остаток и 22.

Когда мы разбирали альфа-спираль, то сказали что пролин и иногда глицин вызывают поворот на 180 градусов. У этого есть свое название: бета-поворот.

3. Беспорядочный клубок

Это последний вариант. Здесь нет никаких спиралей или бета-складчатости, просто получается вот такая белиберда.

Что общего у всех вторичных структур? В их образовании участвует только пептидный остов. Радикалы пока что отдыхают. Ну и второе:

Водородные связи стабилизируют вторичную структуру

Ой, а от чего зависит какую вторичную структуру примет молекула?

А действительно, почему какая-то молекула принимает форму альфа-спирали, а другая бета-складчатости? Хороший вопрос, и у меня есть ответ на него: от торсионных углов. Я разбирал это в прошлой статье — кликай сюда, а потом возвращайся. Так, мы говорили о том, что углы бывают разными, но для каждой вторичной структуры характерны строго определенные углы. Есть специальные карты Рамачандрана, на которых указаны эти углы — все данные получены экспериментально.

Здесь можно посмотреть как будут выглядеть молекулы аминокислот с такими углами. Но вот вам фоточка, если лень.

какие связи не нарушаются при денатурации белка. Смотреть фото какие связи не нарушаются при денатурации белка. Смотреть картинку какие связи не нарушаются при денатурации белка. Картинка про какие связи не нарушаются при денатурации белка. Фото какие связи не нарушаются при денатурации белка

Надеюсь, что теперь понятно почему и как формируется вторичная структура. Ах да, конечно же, все эти углы определяются первичной структурой!

Супервторичная

структура белка

До этого мы разбирали вторичные структуры изолированно, но представьте себе очень длинную полипептидную цепь. Не может же она вся закручиваться в альфа-спираль или становиться бета-складчатой. Хотя иногда и может, но об этом позднее. Чаще всего белок — это комбинация из альфа-спиралей, бета-тяжей и беспорядочных клубков. То есть может это выглядеть примерно вот-так.

Поймите, что супервторичная структура белка не стоит выше, чем вторичная. Это просто название, которое неправильно отражает суть, поэтому оно мне не нравится. На западе используют другое название — структурные мотивы, оно намного лучше. Вот в чем его суть: хоть у нас огромное количество самых разных белков, но в них есть определенные повторяющиеся паттерны — это и есть мотивы. Наиболее частые из них: бета-тяж + альфа-спираль + бета-тяж (бета-альфа-бета петля); альфа-спираль + бета-поворот + альфа-спираль; бета-бочонок.

Мотивов очень много, но думаю смысл понятен. Простые мотивы могут объединяться и образовывать мотивы посложнее.

Я использовал в иллюстрациях прошлые картинки, но помните, что эти альфа-спирали и бета-тяжи отличаются друг от друга аминокислотными остатками — они очень разные! Просто перерисовывать все это не хочется.

Третичная структура белка

Вот этот уровень уже повыше, на нем белок начинает выполнять свою функцию — впахивать, как проклятый. Но сначала нужно остановиться ненадолго и поговорить. Спокойно, я же сказал — ненадолго.

Согласитесь, что у белков очень много функций. Какой-то переносит кислород, а другой входит в состав кости и обеспечивает ее прочность. Белки мышечной ткани вообще обеспечивают движение. Давайте попробуем выделить две глобальные, но не совсем верные, функции: структурная и связывания. Одни белки входят в структуру мышц, костей, волос и так далее. А другие что-то связывают: ферменты связываются с субстратом, а гемоглобин с кислородом. А где-то бравое антитело падает на амбразуру для того, чтобы не пропустить бактерию в организм. Это конечно все очень грубо, но пусть будет так.

И все это я к чему. Существует два больших класса белков: фибриллярные — коллаген, эластин, кератин. Эти ребята занимаются поддержкой, такие вот суппорты. Фибрилла — это нить. Так что они очень длинные, а когда огромное количество нитей связывается в одну, то они становятся очень прочными. Фибриллярные белки — это атланты, которые держат наш организм на своих плечах. А мы не особо благодарные ребята, потому что забьем на них. Но только в этой статье.

В основном биохимия занимается другим классом — глобулярными белками. Эти ребята не только связывают — у них огромное количество функций. С этими функциями и пытается разобраться биохимия. Глобула — шар. Вроде это все, теперь можем приступать.

На прошлом этапе мы собрали разные вторичные структуры в мотивы, ну а дальше то что? Теперь нам нужно скрутить все это в компактный шарик — глобулу. Здесь, наконец-то, пригодятся наши лентяи — радикалы. Вспоминаем, что радикалы бывают полярные и неполярные. Когда глобула скручивается, то она прячет гидрофобные остатки аминокислот внутрь этого шарика, а гидрофильные выставляет наружу. Оно и понятно, все-таки глобулы находятся в организме, а у нас почти везде вода.

Скручивание — удивительный процесс. Здесь начинают взаимодействовать очень (очень-очень!) отдаленные аминокислотные остатки. Представьте, что тридцатый остаток взаимодействует с триста семидесятым. При этом все настолько предопределено первичной структурой, что радикалы взаимодействуют максимально точно. А взаимодействий ведь не мало!

Кстати о них, какими они бывают:

Про все эти связи у меня есть статейка ;] Ещё раз сказу, что здесь взаимодействуют только радикалы.

Когда глобула сложилась в пространстве, то всю эту сложную структуру называют конформацией (получается, что конформация — это положение атомов друг относительно друга в пространстве). Есть еще кое-что интересное: посмотрите на связи, которые образуют эту структуру. Большая часть из них — это силы слабого взаимодействия между молекулами. Это значит, что они очень легко рвутся, даже простого повышения температуры на несколько градусов хватит для того, чтобы эти связи разорвались. Как выйти из такого положения такой большой молекуле? Дело в том, что таких связей настолько много, что существует конформационная лабильность. По сути это означает, что некоторые связи могут рваться, а другие тут же образовываться.

Какой можно сделать вывод из всего этого? Не стоит думать о третичной структуре белка, как о чем-то статичном. Представьте ее как дом, который меняет свой цвет при повышении или понижении температуры, еще он может менять свой размер в зависимости от того идет дождь или нет. Какой странный дом…. В таком долго не проживешь.

Некоторые участки глобулы такие чсвшники, что собираются отдельно от всей остальной молекулы. Эти части называются доменами. Домен собирается в мини-третичную структуру самостоятельно, их даже может быть несколько. Чаще всего они имеют какую-то важную задачу, например, входят в состав активного центра.

Строение активного центра

Стоп-стоп-стоп. Это тиво еще такое? Ты про это ничего не говорил. Точно, помните мы сказали, что с этого уровня белок начинает пахать? А задача глобулы — это связать что-то, опять же грубо. Так вот, как она все это делает? Да-да, через активный центр, такие вы умные конечно… В чем прикол активного центра? Он должен соответствовать молекуле, с которой будет взаимодействовать. Это называется комплементарностью. Не путать с комплиментами.

Активный центр — это замок, а другая молекула — ключ, которые должны подходить друг другу. Такие вот соулмейты. Хотя к некоторым активным центрам могут подходить много ключиков. Связи, которые образуются в активном центре — слабые: чаще всего ионные, водородные и Ван-дер-Вальсовы. Но иногда могут быть и ковалентными, но не будем забегать вперёд — об этом мы поговорим, когда будем разбирать ферменты.

Ну а теперь, как все это работает. В активном центре располагается уникальная последовательность аминокислот, допустим там будет две положительнозаряженных и две отрицательнозаряженных аминокислоты. А у молекулы, с которой происходит взаимодействие, будет: две отрицательных группы и две положительных. Форма молекулы совпадает с формой активного центра. Кстати, у молекулы, которая взаимодействует с активным центром тоже есть свое название — лиганд. Надоели уже эти названия? Мне тоже…

Ах, да — вся третичная структура определяется первичной…. Я знаю, что вы запомнили, но хочу немного понадоедать.

5 типов связей стабилизируют третичную структуру: водородные, гидрофобные, Ван-дер-Вальсовы, ионные и дисульфидные. Эти связи образуются между радикалами.

Четвертичная структура белка

Последняя, но самая большая! Не пугайтесь, только по размеру. Она есть не у всех белков, некоторые прекрасно работают в виде третичной структуры и не парятся. Но представьте, что мы возьмем несколько третичных структур и как соединим их вместе. Пусть их будет 4 штуки, берем 4 шарика и соединяем их. Получаем четвертичную, но не из-за того, что мы взяли 4 шарика….

Эти шарики комплементарны друг другу в участках связывания — не активный центр, но чем-то похоже. Таких участков связывания много, поэтому ошибиться и не узнать своего товарища очень трудно.

Каждая глобула, которую мы взяли — это отдельная полипептидная цепь. Прочитай это еще раз. До этого все касалось только одной полипептидной цепи, а теперь их несколько. Такая цепь называется мономером (или субъединицей), а при соединении мономеров образуется олигомер. Так что вся большая молекула — это олигомер.

Какие связи все это стабилизируют? Чаще всего это водородные, ионные и Ван-дер-Вальсовы, так как каждый мономер прячет свои гидрофобные остатки вглубь молекулы, то они образуются редко. Получается, что четвертичную структуру стабилизируют силы слабого взаимодействия, ковалентных связей здесь почти никогда не бывает — очень редко могут быть дисульфидные. Поэтому можем спокойно забить на них.

В чем отличие четвертичной структуры от третичной? Ну кроме того, что тут объединено несколько полипептидных цепей. А вот какое — у олигомерных белков есть не только активный центр, но и другой — аллостерический центр. К этому замку не подойдут лиганды от активного центра, у него есть свои собственные ключики. Это очень важно, нужно запомнить! Господи, я превращаюсь в препода….

Проведем аналогию с нашим домиком, только теперь их будет несколько. У каждого будет по главному и черному входу! Главный вход — активный центр, а черный ход — это аллостерический центр.

Аллострические центры дают кое-что важное — регуляцию. Маленькая молекула, которая соединится с аллостерическим центром может остановить работу целого огромного белка. Круто? Получается, что размер не важен — не удержался.

Но каким образом одна молекула останавливает работу целого белка? Очень просто — хотел бы я так сказать. Присоединение молекулы к мономеру изменяет его конформацию. А это ведет к тому, что мономер изменяет конформацию других мономеров — происходят конформационные изменения всей структуры белка. В результате этих изменений закрывается активный центр — лиганд не может к нему подойти. У всех этих изменений есть, как и всегда, свое название — кооперативный эффект.

И опять я про дом, если открыть черный ход, то нельзя открыть главный вход, ну и наоборот. Не всегда регуляция работает в таком ключе: черный ход может, наоборот, открывать парадную дверь. Но сейчас это не суть, главное понять смысол. Кстати, на самом деле чаще одна субъединица несет на себе аллостерический центр, а другая активный. Я решил запихнуть все в одну — думаю, что так будет нагляднее.

Кроме этого, присоединение к активному центру также изменяет конформацию остальных мономеров, что приводит к облегченному присоединению лигандов. Хоть на картинке этого и не видно, но поверьте на слово!

В четвертичной структуре взаимодействуют несколько полипептидных цепей!

Стабилизируется молекула силами слабого взаимодействия.

Давайте заканчивать уже со строением.

Простые и сложные белки

До этого мы говорили, что белок — это полипептидная цепь, которая что-то там делает. Иногда даже несколько цепей соединяются и образуют олигомер. Но мы кое-что упускали все это время. Ведь не все белки состоят только из полипептидных цепей. У гемоглобина есть гем, а это не белковая часть, ого! Белки, которые располагаются на поверхности мембран соединяются с углеводами, которые спасают их от разрушения.

Получается, что у некоторых белков есть дополнительные компоненты. Есть простые белки — они состоят только из аминокислотных остатков, а есть белки сложные. Они включают в себя белковую часть (апопротеин), и небелковую (простетическая группа). Простетические группа связана с белком с помощью ковалентных связей — просто так её не оторвёшь. Она очень важна, потому что белки без неё уже не могут работать. Простетических групп очень много — это могут быть металлы, углеводы, гем, липиды и еще куча всего. Но это так, для общего развития.

У нас осталось последнее.

Денатурация белка

Так долго мы добирались до четвертичной структуры, но теперь время все УНИЧТОЖИТЬ. Денатурация — это потеря функции белка, через разрушение его четвертичной, третичной и вторичной структуры. Но не первичной! Процесс может остановиться и раньше, не дойдя до первичной. Но самое важное — белок перестает работать. Это значит вот что: если у белка есть только третичная структура, то её потеря приведёт к потере функций. Тоже самое касается белков с четвертичной структурой.

Денатурирующие факторы делятся на физические и химические.

Физические факторы

У всех этих факторов общий механизм действия. Они вносят в систему дополнительное количество энергии. Это вызывает увеличение амплитуды колебательных движений фрагментов полипептидной цепи. Из-за этого рвутся слабые связи, стабилизирующие белковую молекулу — водородные, гидрофобные и Ван-дер-Вальсовы. Вот некоторые из этих факторов:

Химические факторы

Химические денатурирующие факторы различаются по механизму действия. Так что разбираемся с каждым отдельно. Представим, что мы рвём каждую связь:

1) Добавим кислоту или щелочь в раствор, где находится белок — произойдет изменение заряда некоторых аминокислот. Раз изменился заряд, то происходит разрушение водородных и ионных связей.

2) Детергенты — это вещества, у которых есть гидрофобные и гидрофильные участки. Если засунуть их внутрь молекулы, то гидрофобное взаимодействие нарушится. Примеры детергентов — фенолы, додецилсульфат.

3) С помощью тяжелых металлов мы порвем дисульфидные мостики в третичной структуре. Такими тяжелыми металлами будут: свинец, медь и ртуть.

4) Восстанавливающие агенты — восстанавливают дисульфидные связи. Смысл такой же, как и с тяжелыми металлами: разрушение дисульфидных мостиков. Пример — меркаптоэтанол.

5) Вещества, образующие водородные связи — мочевина. Это ужасная воровка, она перетягивает водородные связи с белка на себя.

Но, мы сказали, что это разрушает вторичную, третичную и четвертичную структуры, но не первичную. Она остается целой. А так как она отвечает за формирование всех остальных, то при удалении денатурирующего фактора белок может снова стать работоспособным, восстановив свою структуру. Это процесс называется ренативация белка. Для этого нужны определённые условия, но они не всегда достижимы в клетке. Поэтому для большинства белков денатурация — это необратимый процесс.

Хочешь задать вопрос, похвалить или наговорить гадостей? Тогда залетай в телегу. Там ты сможешь предложить новый формат или разбор темы. А если серьёзно, то эти статьи пишутся для вас, поэтому мне важна обратная связь.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *