какие технические средства относятся к средствам измерения

Средство измерений

Средство измерений — техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени. Законом РФ «Об обеспечении единства измерений» средство измерений определено как техническое средство, предназначенное для измерений. Формальное решение об отнесении технического средства к средствам измерений принимает Федеральное агентство по техническому регулированию и метрологии.

Содержание

Классификация средств измерений

По техническому назначению:

По стандартизации средств измерений:

По значимости измеряемой физической величины:

По измерительным физико- химическим параметрам:

Метрологические характеристики средств измерений

Согласно ГОСТ 8.009-84, метрологическими характеристиками называются технические характеристики, описывающие эти свойства и оказывающие влияние на результаты и на погрешности измерений, предназначенные для оценки технического уровня и качества средства измерений, для определения результатов измерений и расчетной оценки характеристик инструментальной составляющей погрешности измерений.

Характеристики, устанавливаемые нормативно-техническими документами, называются нормируемыми, а определяемые экспериментально — действительными. Ниже приведена номенклатура метрологических характеристик:

Поверка и сертификация средств измерений

В Российской Федерации средства измерений используются для определения величин, единицы которых допущены в установленном порядке к применению в Российской Федерации и должны соответствовать условиям эксплуатации и установленным требованиям.

Решения об отнесении технического устройства к средствам измерений, внесении его в государственный реестр средств измерений, допущенных к использованию в Российской Федерации и об установлении интервалов между поверками принимает Федеральное агентство по техническому регулированию и метрологии.

Поверке подлежат только средства измерений, внесенные в государственный реестр средств измерений, допущенных к использованию в Российской Федерации. После процедуры поверки оформляется свидетельство о поверке. Остальные технические устройства подлежат калибровке. После процедуры калибровки оформляется сертификат калибровки.

Источник

Какие технические средства относятся к средствам измерения

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственная система обеспечения единства измерений

ОБЩИЕ ТРЕБОВАНИЯ К СРЕДСТВАМ ИЗМЕРЕНИЙ И ТЕХНИЧЕСКИМ СИСТЕМАМ И УСТРОЙСТВАМ С ИЗМЕРИТЕЛЬНЫМИ ФУНКЦИЯМИ

State system for ensuring the uniformity of measurements. General requirements for measuring instruments and systems and devices with measuring functions

Дата введения 2011-03-01

Предисловие

1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

2 ВНЕСЕН Управлением метрологии Федерального агентства по техническому регулированию и метрологии

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 15 декабря 2009 г. N 1105-ст

4 В настоящем стандарте учтены основные положения Директивы 2004/22/ЕС* Европейского парламента и Совета от 31 марта 2004 г. на средства измерений и документа Международной организации по законодательной метрологии МОЗМ ДЗ «Соответствие средств измерений законодательным требованиям»

6 ПЕРЕИЗДАНИЕ. Март 2019 г.

Введение

Настоящий стандарт разработан с целью представить методические указания к формированию общих требований к средствам измерений и техническим системам и устройствам с измерительными функциями, согласованные с Директивой 2004/22/ЕС Европейского парламента и Совета на средства измерений и учитывающие основные рекомендации международного документа МОЗМ ДЗ «Соответствие средств измерений законодательным требованиям».

Разработка стандарта вызвана необходимостью унификации нормирования технических и метрологических требований к средствам измерений и техническим системам и устройствам с измерительными функциями.

1 Область применения

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 8.009 Государственная система обеспечения единства измерений. Нормируемые метрологические характеристики средств измерений

ГОСТ 8.401 Государственная система обеспечения единства измерений. Классы точности средств измерений. Общие требования

ГОСТ 8.417 Государственная система обеспечения единства измерений. Единицы величин

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

вид средства измерений: Совокупность средств измерений, предназначенных для измерений данной физической величины.

[РМГ 29-99 [1], статья 6.58]

влияющая величина: Величина, которая не является измеряемой, но оказывает влияние на результат измерения.

единство измерений: Состояние измерений, при котором их результаты выражены в допущенных к применению в Российской Федерации единицах величин, а показатели точности измерений не выходят за установленные границы.

измеряемая величина: Конкретная величина, являющаяся объектом измерения.

мера физической величины: Средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью.

[РМГ 29-99 [1], статья 6.10]

метрологически значимое программное обеспечение: Программы и программные модули, выполняющие функции сбора, передачи, обработки, хранения и представления измерительной информации, а также параметры, характеризующие тип средства измерений и внесенные в программное обеспечение.

метрологические требования: Требования к влияющим на результат и показатели точности измерений характеристикам (параметрам) измерений, эталонов единиц величин, стандартных образцов, средств измерений, а также к условиям, при которых эти характеристики (параметры) должны быть обеспечены.

3.8 помеха: Влияющая величина, имеющая значение в пределах, установленных соответствующими требованиями, но вне установленных рабочих условий измерений.

предел допускаемой погрешности средства измерений: Наибольшее значение погрешности средств измерений, устанавливаемое нормативным документом для данного типа средств измерений, при котором оно еще признается годным к применению.

[РМГ 29-99 [1], статья 10.16]

программное обеспечение средств измерений: Программы (совокупность программ), предназначенные для использования в средствах измерений и реализующие в том числе сбор, передачу, обработку, хранение и представление измерительной информации, а также программные модули и компоненты, необходимые для функционирования этих программ.

рабочие условия измерений: Условия измерений, при которых значения влияющих величин находятся в пределах рабочих областей.

[РМГ 29-99 [1], статья 11.5]

средство измерений: Техническое средство, предназначенное для измерений.

технические системы и устройства с измерительными функциями: Технические системы и устройства, которые наряду с их основными функциями выполняют измерительные функции.

технические требования к средствам измерений: Требования, которые определяют особенности конструкции средств измерений (без ограничения их технического совершенствования) в целях сохранения их метрологических характеристик в процессе эксплуатации средств измерений, достижения достоверности результата измерений, предотвращения несанкционированных настройки и вмешательства, а также требования, обеспечивающие безопасность и электромагнитную совместимость средств измерений.

тип средства измерений: Совокупность средств измерений одного и того же назначения, основанных на одном и том же принципе действия, имеющих одинаковую конструкцию и изготовленных по одной и той же технической документации.

[РМГ 29-99 [1], статья 6.57]

4 Общие положения

4.1 Общие требования к СИ и ТСУИФ, устанавливаемые настоящим стандартом, сформулированы исходя из того, что СИ и ТСУИФ должны обеспечивать высокий уровень достоверности результатов измерений, в чем должна быть убеждена любая сторона, проводящая их. СИ и ТСУИФ должны быть сконструированы и изготовлены с высоким уровнем качества в части выполнения измерительных функций и защищенности данных измерений.

4.2 Для подтверждения соответствия СИ и ТСУИФ, применяемых при выполнении измерений, не отнесенных к сфере государственного регулирования в области обеспечения единства измерений, обязательным требованиям достаточно использовать требования двух типов: метрологические и технические. В сфере государственного регулирования в области обеспечения единства измерений к ним должны быть добавлены требования правового характера [4], как установлено действующим законодательством Российской Федерации об обеспечении единства измерений и о техническом регулировании.

4.3 Метрологические требования определяют метрологические характеристики СИ и ТСУИФ (в частности, пределы допускаемых погрешностей или неопределенности), а также условия, при которых эти характеристики должны быть обеспечены.

4.4 Технические требования определяют существенные общие особенности конструкции СИ и ТСУИФ, но при этом не ограничивают возможности их технического усовершенствования в целях:

— сохранения метрологических характеристик в процессе эксплуатации СИ и ТСУИФ;

— достижения достоверности, простоты и недвусмысленности результатов измерений;

— исключения, насколько это возможно, риска фальсификации результатов измерений путем предотвращения несанкционированных настройки и вмешательства;

— обеспечения безопасности и электромагнитной совместимости СИ и ТСУИФ.

4.5 Требования правового характера предусматривают:

Источник

Мокров Ю. Метрология, стандартизация, сертификация

ОГЛАВЛЕНИЕ

Глава 3. Cредства измерений и их свойства

Измерения выполняются с помощью технических средств, которые называются средствами измерений (СИ). Разработка СИ является задачей приборостроения. В метрологии СИ рассмат-риваются с точки зрения их единой классификации и выявления параметров, которые обеспечивают получение результата измерений с заданной точностью. Здесь же рассматриваются методы и средства передачи размеров единиц от эталонов к рабочим средствам измерений.

Оценка пригодности средств измерений для решения тех или иных измерительных задач проводится путем рассмотрения их метрологических характеристик.
Метрологическая характеристика (МХ) – характеристика одного из свойств средства измерений, влияющая на результат измерений и его погрешность. Метрологические характеристики позволяют судить об их пригодности для измерений в известном диапазоне с известной точностью. Метрологические характеристики, устанавливаемые нормативными документами на средства измерений, называют нормируемыми метрологическими характеристиками, а определяемые экспериментально – действи-тельными.
Для каждого типа СИ устанавливаются свои метрологические характеристики. Ниже рассматриваются наиболее распространенные на практике метрологические характеристики.
Диапазон измерений СИ – область значений величины, в пределах которой нормированы его допускаемые пределы погрешности. Для мер это их номинальное значение, для преобразователей — диапазон преобразования. Различают нижний и верхний пределы измерений, которые выражаются значениями величины, ограничивающими диапазон измерений снизу и сверху.
Погрешность СИ — разность между показанием средства измерений – Хп и истинным (действительным) значением измеряемой величины – Х д.
Существует распространенная классификация погрешностей средств измерений. Ниже приводятся примеры их наиболее часто используемых видов.
Абсолютная погрешность СИ – погрешность средства измерений, выраженная в единицах измеряемой величины: DХ = Хп – Хд. Абсолютная погрешность удобна для практического применения, т.к. дает значение погрешности в единицах измеряемой величины. Но при ее использовании трудно сравнивать по точности приборы с разными диапазонами измерений. Эта проблема снимается при использовании относительных погрешностей.
Если абсолютная погрешность не изменяется во всем диапазоне измерения, то она называется аддитивной, если она изменяется пропорционально измеряемой величине (увеличивается с ее увеличением), то она называется мультипликативной
Относительная погрешность СИ – погрешность средства измерений, выраженная отношением абсолютной погрешности СИ к результату измерений или к действительному значению измеренной величины: d = DХ / Хд. Относительная погрешность дает наилучшее из всех видов погрешностей представление об уровне точности измерений, который может быть достигнут при использовании данного средства измерений. Однако она обычно существенно изменяется вдоль шкалы прибора, например, увеличивается с уменьшением значения измеряемой величины. В связи с этим часто используют приведенную погрешность.
Приведенная погрешность СИ – относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины ХN, которое называют нормирующим: g = DХ / ХN..
Относительные и приведенные погрешности обычно выражают либо в процентах, либо в относительных единицах (долях единицы).
Для показывающих приборов нормирующее значение устанавливается в зависимости от особенностей и характера шкалы. Приведенные погрешности позволяют сравнивать по точности средства измерений, имеющие разные пределы измерений, если абсолютные погрешности каждого из них не зависят от значения измеряемой величины.
По условиям проведения измерений погрешности средств измерений подразделяются на основные и дополнительные.
Основная погрешность СИ – погрешность средства измерений, применяемого в нормальных условиях, т.е. в условиях, которые определены в НТД не него как нормальные. Нормальные значения влияющих величин указываются в стандартах или технических условиях на средства измерений данного вида в форме номиналов с нормированными отклонениями. Наиболее типичными нормальными условиями являются:

— относительная влажность (65±15) %;

Иногда вместо номинальных значений влияющих величин указывается нормальная область их значений. Например, влажность (30 – 80) %.
Дополнительная погрешность СИ – составляющая погрешности СИ, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального ее значения. Деление погрешностей на основные и дополнительные обусловлено тем, что свойства средств измерений зависят от внешних условий.
Погрешности по своему происхождению разделяются на систематические и случайные.
Систематическая погрешность СИ – составляющая погрешности средства измерений, принимаемая за постоянную или закономерно изменяющуюся. Систематические погрешности являются в общем случае функциями измеряемой величины и влияющих величин (температуры, влажности, давления, напряжения питания и т.п.).
Случайная погрешность СИ – составляющая погрешности средства измерений, изменяющаяся случайным образом. Случайные погрешности средств измерений обусловлены случайными изменениями параметров составляющих эти СИ элементов и случайными погрешностями отсчета показаний приборов.
При конструировании прибора его случайную погрешность стараются сделать незначительной в сравнении с другими погрешностями. У хорошо сконструированного и выполненного прибора случайная погрешность незначительна. Однако при увеличении чувствительности средств измерений обычно наблюдается увеличение случайной погрешности. Тогда при повторных измерениях одной и той же величины в одних и тех же условиях результаты будут различными. В таком случае приходится прибегать многократным измерениям и к статистической обработке получаемых результатов. Как правило, случайную погрешность приборов снижается до такого уровня, что проводить многократные измерений нет необходимости.
Стабильность СИ — качественная характеристика средства измерений, отражающая неизменность во времени его метрологических характеристик.
Градуировочная характеристика СИ – зависимость между значениями величин на входе и выходе средства измерений, полученная экспериментально. Может быть выражена в виде формулы, графика или таблицы.

3.3 Использование СИ

Средства измерений можно использовать только тогда, когда известны их метрологические характеристики. Обычно указываются номинальные значения параметров средств измерений и допускаемые отклонения от них. Сведения о метрологических характеристиках приводятся в технической документации на средства измерений или указываются на них самих. Как правило, реальные метрологические характеристики имеют отклонения от их номинальных значений. Поэтому устанавливают границы для отклонений реальных метрологических характеристик от номинальных значений – нормируют их. Нормирование метрологических характеристик средств измерений позволяет избежать произвольного установления их характеристик разработчиками.
C помощью нормируемых метрологических характеристик решаются следующие основные задачи:

Нормирование характеристик СИ проводится в соответствии с положениями стандартов. Например, ГОСТ 8.009-84 «ГСИ. Нормируемые метрологические характеристики средств измерений». Соответствие средств измерений установленным для них нормам делает эти средства взаимозаменяемыми.
Одной из важнейших метрологических характеристик СИ является их погрешность, знание которой необходимо для оценивания погрешности измерения.
Необходимо отметить, что погрешность СИ является только одной из составляющих погрешности результата измерений, получаемого с использованием данного СИ. Другими составляющими являются погрешность метода измерений и погрешность оператора, проводящего измерения.
Погрешности средств измерений могут быть обусловлены различными причинами:

3.5 Класс точности СИ и его обозначение

Установление рядов пределов допускаемых погрешностей позволяет упорядочить требования к средствам измерений по точности. Это упорядочивание осуществляется путем установления классов точности СИ.
Класс точности СИ – обобщенная характеристика данного типа СИ, отражающая уровень их точности, выражаемая пределами допускаемой основной, а в некоторых случаях и дополнительных погрешностей (они рассмотрены выше), а также другими характеристиками, влияющими на точность. Класс точности применяется для средств измерений, используемых в технических измерениях, когда нет необходимости или возможности выделить отдельно систематические и случайные погрешности, оценить вклад влияющих величин с помощью дополнительных погрешностей. Класс точности позволяет судить о том, в каких пределах находится погрешность средств измерений одного типа, но не является непосредственным показателем точности измерений, выполняемых с помощью каждого из этих средств. Класс точности СИ конкретного типа устанавливают в стандартах технических требований или других нормативных документах.
При выражении предела допускаемой основной погрешности в форме абсолютной погрешности класс точности в документации и на средствах измерения обозначается прописными буквами латинского алфавита или римскими цифрами. Чем дальше буква от начала алфавита, тем больше погрешность. Расшифровка соответ-ствия букв значению абсолютной погрешности осуществляется в технической документации на средство измерения.
Выражение класса точности через относительные и приведенную погрешности рассмотрено в предыдущем разделе
В настоящее время по отношению к современным средствам измерений понятие класс точности применяется довольно редко. В основном он чаще всего используется для описания характеристик электроизмерительных приборов, аналоговых стрелочных приборов всех типов, некоторых мер длины, весов, гирь общего назначения, манометров.
Примеры обозначение классов точности для различных форм выражения погрешности приведены в таблице.

Обозначение классов точности

___________________________________________________________
Пределы допускаемой Обозначения Форма выраже-
какие технические средства относятся к средствам измерения. Смотреть фото какие технические средства относятся к средствам измерения. Смотреть картинку какие технические средства относятся к средствам измерения. Картинка про какие технические средства относятся к средствам измерения. Фото какие технические средства относятся к средствам измеренияосновной погрешности ния погрешности
в документации на приборе
какие технические средства относятся к средствам измерения. Смотреть фото какие технические средства относятся к средствам измерения. Смотреть картинку какие технические средства относятся к средствам измерения. Картинка про какие технические средства относятся к средствам измерения. Фото какие технические средства относятся к средствам измеренияg = ± 1,5 Класс точности 1,5 1,5 Приведенная
погрешность

d = ± 0,5 Класс точности 0,5 0,5 Относительная
погрешность,
постоянная

d = ± [ 0,02 + 0,01( xk/x –1)] Класс точности 0,02/0,01 Относительная
0,02/0,01 погрешность,
возрастает с
уменьшением х
какие технические средства относятся к средствам измерения. Смотреть фото какие технические средства относятся к средствам измерения. Смотреть картинку какие технические средства относятся к средствам измерения. Картинка про какие технические средства относятся к средствам измерения. Фото какие технические средства относятся к средствам измерения

Результаты калибровки удостоверяются калибровочным знаком, наносимым на СИ, или сертификатом о калибровке. Калибровке присущ ряд особенностей по сравнению с поверкой. Это добровольная процедура и она может выполняться любой метрологической службой. При этом аккредитация на право калибровки также является добровольной (не обязательной) процедурой.
Отмеченные особенности калибровки являются следствием разгосударствления процессов контроля за метрологической исправностью средств измерений – отказом от их всеобщей обязательности поверки.
Хотя калибровка может проводиться любой метрологической службой и является добровольной процедурой, для ее проведения необходимы определенные условия. Основное из них – прослеживание измерений, т.е. обязательная передача размера единицы от эталона к калибруемому рабочему средству измерений.
Для организации работ по калибровке в РФ создана Российская система калибровки (РСК), в которую входят государственные научные метрологические центры, органы ГМС, метрологические службы юридических лиц, объединенные целью ОЕИ в сферах, не подлежащих государственному метрологическому контролю и надзору.
Российская система калибровки базируется на следующих принципах:

Источник

Средства измерений

Средствами измерений называют применяемые при измерениях технические средства, имеющие нормированные метрологические свойства. В этом определении основную смысловую нагрузку, вскрывающую метрологическую суть средств измерений (СИ), несут слова «нормированные метрологические свойства». Наличие нормированных метрологических свойств означает, вопервых, что средство измерений способно хранить или воспроизводить единицу (или шкалу) измеряемой величины, и, во-вторых, размер этой единицы остается неизменным в течение определенного времени.

Если бы размер единицы был нестабильным, нельзя было бы гарантировать требуемую точность результата измерений.

Отсюда следуют три вывода:

• измерять можно лишь тогда, когда техническое средство, предназначенное для этой цели, способно хранить единицу, достаточно стабильную (неизменную во времени) по размеру;

• техническое средство непосредственно после изготовления еще не является средством измерения; оно становится таковым только после передачи ему единицы от другого, более точного средства измерений (эта операция называется калибровкой);

• необходимо периодически контролировать размер единицы, хранимый средством измерения, и при необходимости восстанавливать его прежнее значение путем проведения новой калибровки.

По назначению различают рабочие средства измерений, применяемые для проведения технических измерений, и метрологические, предназначенные для проведения метрологических измерений.

Метрологические средства измерений называются эталонами.

Так как измеряются свойства, общие в качественном отношении многим объектам или явлениям, то эти свойства в чем-то должны проявляться, как-то должны обнаруживаться. Технические устройства, предназначенные для обнаружения (индикации) физических свойств, называются индикаторами. Стрелка магнитного компаса, например, — индикатор напряженности магнитного поля; осветительная электрическая лампочка — индикатор электрического напряжения в сети; лакмусовая бумага — индикатор активности ионов водорода в растворах.

С помощью индикаторов устанавливается наличие измеряемой физической величины и может регистрироваться изменение ее размера. В этом отношении индикаторы играют ту же роль, что и органы чувств человека, но значительно расширяют их возможности. Человек, например, слышит в диапазоне частот от 16 Гц до 20 кГц, в то время как техническими средствами обнаруживаются звуковые колебания в диапазоне от инфранизких (доли герца) до ультравысоких (десятки и сотни килогерц) частот. Видят люди в узком оптическом диапазоне электромапштных волн, а инструментально регистрируются электромагнитные колебания от сверхнизкочастотных радиоволн с частотой, составляющей доли герца, до жесткого гамма-излучения с частотой порядка 1022 Гц. В то же время не создано еще технических устройств, которые могли бы соперничать с обонянием человека или животных.

Так как индикаторы должны обнаруживать проявление свойств окружающего мира, важнейшей их технической характеристикой является порог обнаружения (иногда его называют порогом чувствительности). Чем меньше порог обнаружения, тем более слабое проявление свойства регистрируется индикатором. Современные индикаторы обладают очень низкими порогами обнаружения, лежащими на уровне фоновых помех и собственных шумов аппаратуры. Последние имеют тепловую природу, поэтому для их снижения чувствительные элементы и электронные узлы особо чувствительных индикаторов охлаждают до температуры, близкой к абсолютному нулю. Селекцию (выделение) сигналов на фоне помех осуществляют с помощью специальных фильтров и накопителей. За счет этих и некоторых других мер порог чувствительности радиотелескопов, например, в сантиметровом диапазоне радиоволн доведен до 10-18 Вт.

Индикаторы являются средствами измерений по шкале порядка. Для измерения по шкале отношений необходимо сравнить неизвестный размер с известным и выразить первый через второй в кратном или дольном отношении. Если физическая величина известного размера есть в наличии, то она непосредственно используется для сравнения. Так, длину измеряют линейкой, плоский угол — транспортиром, массу с помощью гирь и весов, электрическое сопротивление — с помощью магазина сопротивлений. Если же физической величины известного размера в наличии нет, то сравнивается реакция (отклик) прибора на воздействие измеряемой величины с проявившейся ранее реакцией на воздействие той же величины, но известного размера. Так измеряют: силу электрического тока — амперметром, электрическое напряжение — вольтметром, скорость — спидометром, давление — манометром, термодинамическую температуру — термометром и т. д. При этом предполагается, что соотношение между откликами такое же, как и между сравниваемыми размерами. Для облегчения сравнения отклик на известное воздействие еще на стадии изготовления прибора фиксируют на шкале отсчетного устройства в выбранных единицах измерений, после чего разбивают шкалу на деления в кратном и дольном отношении. Эта процедура называется градуировкой. При измерениях она позволяет по положению указателя получать результат сравнения непосредственно на шкале отношений.

Все технические средства, предназначенные для измерений, называются средствами измерений.

Кроме индикаторов к ним относятся вещественные меры, измерительные преобразователи, измерительные приборы, измерительные установки, измерительные системы, технические системы и устройства с измерительными функциями, стандартные образцы.

Вещественные меры предназначены для воспроизведения физической величины заданного размера, который характеризуется так называемым номинальным значением. При условии что указывается точность, с которой воспроизводится номинальное значение физической величины, гиря является мерой массы, конденсатор — мерой емкости, кварцевый генератор — мерой частоты электрических колебаний и т. д. Различают однозначные и многозначные меры, а также наборы мер. Например, гиря и измерительный конденсатор постоянной емкости — это однозначные меры, измерительная линейка и конденсатор переменной емкости — многозначные меры, а набор гирь и набор измерительных конденсаторов являются наборами мер. Измерения методом сравнения с мерой выполняют с помощью специальных технических устройств — компараторов. Компараторами служат равноплечие весы, измерительный мост и т. д. Иногда в качестве компаратора выступает человек.

Измерительные преобразователи — это средства измерений, перерабатывающие измерительную информацию в форму, удобную для дальнейшего преобразования, передачи, хранения, обработки, но, как правило, недоступную для непосредственного восприятия наблюдателем. Измерительные преобразователи получили очень широкое распространение. К ним относятся термопары, измерительные усилители, преобразователи давления и многие другие виды измерительных устройств. По месту, занимаемому в измерительной цепи, они делятся на первичные и промежуточные.

Конструктивно преобразователи являются либо отдельными блоками, либо составными частями средств измерений. Если преобразователи не входят в измерительную цепь, то они не относятся к измерительным. Таковы, например, операционный усилитель, делитель напряжения в цепи электропитания, силовой трансформатор и т. п.

Измерительный прибор представляет собой совокупность измерительных преобразователей, образующих измерительную цепь, и отсчетного устройства. В отличие от вещественной меры, прибор не воспроизводит известное значение физической величины. Измеряемая величина должна подводиться к нему и воздействовать на его первичный измерительный преобразователь.

Измерительные установки состоят из функционально объединенных средств измерений и вспомогательных устройств, собранных в одном месте. В измерительных системах эти средства и устройства территориально разобщены и соединены каналами связи. Область науки и техники, включающая вопросы получения измерительной информации и передачи ее по каналам связи, называется телеметрией. И в установках, и в системах измерительная информация может быть представлена в форме, удобной как для непосредственного восприятия, так и для автоматической обработки, передачи и использования в автоматизированных системах управления. Технические системы и устройства с измерительными функциями наряду с их основными функциями, не имеющими отношения к измерениям, выполняют еще и измерительные функции.

Стандартные образцы — образцы веществ (материалов) с установленными по результатам испытаний значениями одной и более величин, характеризующих состав или свойство этого вещества (материала).

Человек не является техническим средством, но его тоже можно отнести к средствам измерений. Первичными измерительными преобразователями у него служат органы чувств зрения, слуха, обоняния, осязания и вкуса. Измерения, выполняемые с помощью органов чувств человека, называются органолептическими измерениями. Они относятся к обширному классу экспертных измерений, или измерений экспертными методами.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *