какие треугольники разносторонние и равнобедренные
Виды треугольников
Треугольники бывают остроугольными, тупоугольными, прямоугольными, разносторонними, равносторонними, равнобедренными.
Определение 1. Треугольник называется остроугольным, если все ее углы острые, т.е. меньше 90° (Рис.1).
Определение 2. Треугольник называется тупоугольным, если один из его углов тупой, т.е. больше 90° (Рис.2).
Если треугольник тупоугольный, то исходя из того, что сумма всех углов треугольника равна 180°, остальные два угла треугольника будут острыми.
Определение 3. Треугольник называется прямоугольным, если один из его углов прямой, т.е. равен 90° (Рис.3).
Если треугольник прямоугольный, то исходя из того, что сумма всех углов треугольника равна 180°, остальные два угла треугольника будут острыми.
Определение 4. Треугольник называется разносторонним, если длины всех сторон треугольника разные (Рис.4).
Определение 5. Треугольник называется равносторонним или правильным, если длины всех сторон равны (Рис.5).
Определение 6. Треугольник называется равнобедренным, если длины двух сторон равны (Рис.6).
В равнобедренном треугольнике равные стороны называются боковыми сторонами треугольника, а третья сторона называется основанием.
Математика. 3 класс
Конспект урока
Математика, 3 класс. Урок № 61
Виды треугольников (по соотношению сторон). Закрепление
Перечень вопросов, рассматриваемых в теме:
Какие виды треугольников различают по соотношению сторон?
Как определить вид треугольника?
Виды треугольников по сторонам:
Равносторонний треугольник (или правильный треугольник) — это треугольник, у которого все три стороны равны.
Равнобедренный треугольник — это треугольник, у которого две стороны равны.
Разносторонний треугольник — треугольник, все стороны которого имеют разную длину.
Отрезки равной длины на чертеже отмечают равным количеством черточек:
Основная и дополнительная литература по теме урока:
1. Моро М. И. Учебник для 3 класса четырехлетней начальной школы. М. «Просвещение» — 2017. С. 73-80.
2. Волкова С. И. Карточки с математическими заданиями 3 кл. — М.: Просвещение, 2018.
3. Волкова С.И. математика. Тесты. 3 кл. — М.: Просвещение, 2018. С. 54-59.
4. Рудницкая В. Н. Математика. Дидактические материалы.ч.1 3 кл. – М. «Вентана- Граф», 2016, с. 47-53.
Теоретический материал для самостоятельного изучения
В огромном мире Математики есть очень интересная страна с красивым названием Геометрия. Эту страну населяют не числа, а различные линии и фигуры, плоские и объёмные. Сегодня, путешествуя по стране Геометрии, мы посетим город Треугольников.
Конечно, вы уже умеете отличать треугольники от других геометрических фигур. Но у жителей этого города есть, что рассказать о себе. И этих тайн так много, что вы будете их открывать все школьные годы.
Сегодня вы откроете некоторые секреты треугольников и подружитесь с жителями этого города.
Мы посетим город Треугольников.
Что вы уже знаете о жителях этого города?
Их легко отличить от других геометрических фигур по трём сторонам и трём углам.
У вас появились идеи по поводу названий этих треугольников?
Оказывается, по длине сторон все треугольники можно разделить на 3 вида:
те, у которых все стороны разные – разносторонние,
те, у которых имеются две равные стороны – равнобедренные,
а те, у которых все стороны равны – равносторонние.
Для того чтобы безошибочно определить вид треугольника по сторонам необходимо измерить все три стороны.
Теперь легко определить вид треугольника.
У первого треугольника все стороны разные, значит он разносторонний, у второго две стороны одинаковые, значит он равнобедренный, а у третьего все три стороны равны, значит он равносторонний.
Часто вид треугольника можно определить на глаз.
Попробуйте определить виды треугольников без измерений.
По сторонам различают 3 вида треугольников: разносторонние, равнобедренные и равносторонние.
Определить вид треугольника можно тремя способами: с помощью измерений, на глаз и по условным обозначениям.
Отрезки равной длины на чертеже отмечают равным количеством черточек:
Теперь вы можете различать виды треугольников по сторонам. Эти знания необходимы в стране Геометрии.
Задания тренировочного модуля:
1. Выберите правильный ответ
Как называется треугольник, у которого все стороны равны?
a. одинаковосторонний треугольник
б. похожесторонний треугольник
в. равносторонний треугольник
г. равнодлинный треугольник
Правильные варианты ответов:
в. равносторонний треугольник
2. Закончите предложения:
Равносторонний треугольник— это треугольник, у которого ………………………….
Равнобедренный треугольник — это треугольник, у которого ………………………..
Разносторонний треугольник — треугольник, все стороны которого ………………………..
Правильные варианты ответов:
Равносторонний треугольник — это треугольник, у которого все три стороны равны.
Равнобедренный треугольник — это треугольник, у которого две стороны равны.
Разносторонний треугольник — треугольник, все стороны которого имеют разную длину.
3. Определите вид треугольника по сторонам и выпишите номера треугольников по порядку:
Треугольник — определение и основные свойства и виды треугольника
Что такое треугольник знают дети уже в самом младшем возрасте, они умеют находить треугольник среди множества геометрических фигур. Но вот уже в школе по геометрии проходят треугольник и надо не просто узнавать треугольник, но и дать определение этому понятию.
Определение треугольника
Треугольник — это геометрическая фигура, окруженная тремя отрезками прямой (конечные точки каждых двух смежных отрезков соединены или перекрываются), называется треугольником. Точки пересечения отрезков называются вершинами треугольника, а сами отрезки между двумя соседними вершинами треугольника называются сторонами треугольника.
Посмотрите на треугольник на рисунке.
У него три вершины — ,
,
и три стороны
,
и
. У каждого треугольника есть имя — это имя образовано вершинами треугольника. Наш треугольник зовут
([а-бэ-цэ]). А треугольник на вот этом рисунке
будут звать ([эм-эн-ка]).
По правилам математической грамотности треугольник, как и любой другой многоугольник, следует называть, начиная с левого нижнего угла и называя все вершины по часовой стрелке.
В треугольнике можно провести особенные стороны — высоту, медиану и биссектрису. Начнем с высоты треугольника.
Высота треугольника
В каждом треугольнике можно провести три высоты. Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на противолежащую этой вершине сторону.
Например, в треугольнике , высотой будет отрезок
.
А теперь проведем из каждой вершины по высоте — получим три высоты — больше провести высот нельзя.
В этом треугольнике три высоты ,
,
.
Про биссектрисы и медианы поговорим в других статьях. Сейчас же давайте с вами рассмотрим каким бывает треугольник.
Виды треугольника
Виды треугольника могут быть по углам и по сторонам. То есть в первом случае вид треугольника зависит от того, какие в этом треугольнике углы, а во втором случае — какие в этом треугольнике стороны.
Виды треугольников по углам
В зависимости от того, все ли углы в треугольнике острые или есть тупой угол или угол, равный
, треугольник бывает остроугольным, тупоугольным или прямоугольным.
Посмотрите на рисунки — перед вами три основных вида треугольника:
Виды треугольников по сторонам
Если у треугольника все стороны равны, то такой треугольник называют равносторонним или правильным. Если у треугольника равны только две стороны, то такой треугольник называют равнобедренным.
На рисунке показаны равносторонний и равнобедренный треугольники.
Свойства сторон треугольника
Треугольник имеет важные свойства и характеристики.
Устойчивость — это важное свойство треугольника, оно вам еще пригодится в курсе физики. Но вначале мы с ним знакомимся на уроках геометрии.
Треугольник устойчив на любой своей стороне — то есть чтобы вывести его из состояния равновесия надо приложить силу.
Свойства сторон: разница между любыми двумя сторонами треугольника меньше, чем третья сторона, а также любая сторона треугольника меньше, чем сумма двух других сторон. То есть:
Например, пусть наш треугольник имеет длины двух сторон , а
см. В каком диапазоне будет размер третьей стороны треугольника?
Решение: согласно свойству сторон треугольника, получим:
Таким образом, третья сторона треугольника может быть в диапазоне от 4 до 10 см. Или в целых числах ее длина может быть 5, 6, 7, 8 или 9 см.
Правило существования треугольника
Используя свойство сторон треугольника мы можем определить существует ли треугольник с определенными сторонами.
Для проверки сложите длины самых коротких сторон и если сумма их больше длины самой большой стороны, тогда треугольник существует.
Например, существует ли треугольник с длинами сторон 3, 7 и 15 см?
Решение: проверим по свойству сторон треугольника: складываем две самые короткие стороны 3 и 7 см: 3+7=10, а 10 7 — треугольник с такими длинами сторон существует.
Свойство углов в треугольнике
Сумма всех углов в треугольнике равна .
Согласно этому свойству мы всегда можем, зная два угла в треугольнике, найти его третий угол. В прямоугольном треугольнике сумма двух острых углов всегда равна .
Например, пусть известно, что в треугольнике ,
,
, нужно найти
.
Так как сумма углов в треугольнике равна , то находим:
.
Ответ: .
Элементы композиции
Многие школьники спрашивают — а зачем нам знать про треугольник, как это может пригодиться в обычной жизни? Треугольник — простая фигура из которой можно составить более сложные. Это используется во многих сферах жизни, например, вы можете эргономично убирать в своей комнате, или красиво выкладывать бутерброды. Например, из двух равных треугольников можно составить параллелограмм.
А из двух равных прямоугольных треугольником — прямоугольник или квадрат. Два треугольника могут образовать трапецию, так как на рисунке. А вот какую фигурку можно смоделировать для программируемой игры — она вся сделана из треугольников:
Мы, рассмотрели самые важные свойства треугольника, и в дальнейшем изучим еще больше разных интересных свойств, закономерностей. Несмотря на свою простоту, треугольник таит в себе много загадок и открытий.
Геометрия. Урок 3. Треугольники
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Определение треугольника
Треугольник – многоугольник с тремя сторонами и тремя углами.
Виды треугольников
Основные свойства треугольника:
Отрезки в треугольнике
Биссектриса угла – луч, выходящий из вершины угла и делящий его пополам.
Биссектриса треугольника – отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне.
Свойства биссектрис треугольника:
Замечание: биссектриса угла – это луч, а биссектриса треугольника – отрезок.
Медиана треугольника – отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.
Свойства медиан треугольника:
Высота треугольника – это перпендикуляр, проведенный из вершины угла треугольника к прямой, содержащей противолежащую сторону этого треугольника.
Если треугольник остроугольный, то все три высоты будут лежать внутри треугольника. Если треугольник тупоугольный, то высоты, проведенные из вершин острых углов будут лежать вне треугольника, а высота, проведенная из вершины тупого угла будет лежать внутри треугольника.
Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
Свойство средней линии треугольника: средняя линия параллельна одной из его сторон и равна половине этой стороны.
Всего в треугольнике можно провести три средние линии. Три средние линии разбивают исходный треугольник на четыре равных треугольника. Площадь каждого маленького треугольника будет равна четверти площади большого треугольника.
Площадь треугольника
Площадь произвольного треугольника можно найти следующими способами:
Равнобедренный треугольник
Равнобедренным называется треугольник, у которого две стороны равны.
Равнобедренный треугольник может быть остроугольным, прямоугольным и тупоугольным.
Свойства равноберенного треугольника:
Равносторонний треугольник
Равносторонним называется треугольник, у которого все стороны и все углы равны.
Площадь равностороннего треугольника находится по формуле S = a 2 3 4
Высота равностороннего треугольника находится по формуле h = a 3 2
Прямоугольный треугольник
Свойства прямоугольного треугольника:
Теорема Пифагора
Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.
У прямоугольного треугольника катеты перпендикулярны друг другу, следовательно, площадь можно найти по формуле:
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с треугольниками