какие цветовые лучи будет воспринимать человеческий глаз

Особенности цветового зрения человека

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Характеристики цветового зрения

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Умение различать цвета – особенность человеческого глаза. Зрительный аппарат способен воспринимать различные по длине электромагнитные волны. Главными составляющими цветового спектра являются:

Главных цветов существует только три: красный, зеленый и синий, при их перемешивании получаются различные тона. Цветовое восприятие существует благодаря тому, что в сетчатке присутствуют три значимых рецептора, которые воспринимают основные тона, при этом раздражаются двумя другими, так и происходит перемешивание красок.

Тона разделяются на хроматические и ахроматические.

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Отличительными особенностями первой категории являются:

Вторая группа отличается исключительно яркостью (белый и чёрный).

Цветовое восприятие

Человеческий глаз – сложная и одновременно самая совершенная зрительная система среди всех млекопитающих. Различает более 150 тысяч цветов и оттенков. Восприятие осуществляется посредством фоторецепторов. Фоторецепторы содержат в себе йодопсин, отвечающий за восприимчивость к тонам зрительного аппарата. У человека, обладающего полноценным зрением, в глазном яблоке расположено 6-7 млн колбочек. Если их число меньше или в их составе наблюдаются патологии, то возникают нарушения цветовосприятия.

Доказано, что зрение у женщин и мужчин сильно различается. Женщины различают больше тонов и оттенков, при этом мужской пол лучше распознает передвигающиеся предметы и способны большее время фокусировать взгляд на определенном объекте.

Диагностика нарушений

Расстройства цветовосприятия носят как приобретенный, так и врожденный характер. Врожденные отклонения чаще встречаются у мужчин. У женщин такие отклонения встречаются гораздо реже.

Патологии приобретенного характера наблюдаются при возникновении проблем с:

Человек полноценно, воспринимающий три главных тона, – трихромат. Дихромат различает два из трех тонов, а людей различающих только один цвет называют монохроматами.

Цветоразличительная способность определяется посредством:

Также применяются и другие методы диагностики.

Лечение аномалий цветовосприятия

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Специфических способов лечения врожденных нарушений цветовосприятия в настоящее время не существует. Врачи-офтальмологи проводят коррекцию, подразумевающую использование тонированных фильтров для контактных линз и очков. Такие меры снижают уровень проявления заболевания.

Устранить симптомы приобретенных нарушений цветовосприятия в некоторых случаях возможно только после выявления и устранения основного заболевания, повлекшего за собой осложнения.

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Липома (жировик) – разновидность доброкачественной опухоли, образуемой из жировой ткани. Встречается чаще у женщин, чему у мужчин. Офтальмологическая клиника «Оптик-Центр» проводит удаление липомы в Челябинске. Операция выполняется опытными хирургами с применением современного оборудования. Лечение проводится быстро и без риска для здоровья пациента.

Источник

Как мы различаем цвета

» data-image-caption=»» data-medium-file=»https://unclinic.ru/wp-content/uploads/2019/05/narushenija-cvetooshhushhenija-900×599.jpg» data-large-file=»https://unclinic.ru/wp-content/uploads/2019/05/narushenija-cvetooshhushhenija.jpg» title=»Как мы различаем цвета»>

Алена Герасимова (Dalles) Разработчик сайта, редактор

Что представляют собой цветоощущения, каковы их нарушения? С древних времен волнуют человечество эти вопросы. И хотя до сих пор наука не может дать на них исчерпывающего ответа, многое уже известно.

В последние годы в этой области физиологии и биофизики сделаны принципиально важные открытия.

Как устроен глаз человека: палочки и колбочки

Глаз… Тонкая, почти прозрачная, розовая пленка выстилает дно глазного бокала, его заднюю стенку. Это сетчатка. По совершенству своей клеточной архитектуры она может сравниться только с мозгом. Да, собственно говоря, это и есть кусочек мозга, помещенный в глаз.

Под световым микроскопом тонкая сетчатка выглядит как слоеный пирог. В ее верхнем слое содержатся палочки с колбочками – светочувствительные клетки. Такое название они носят из-за внешнего сходства с палочками и бутылочками.

Строение глаза палочки и колбочки

» data-medium-file=»https://unclinic.ru/wp-content/uploads/2019/05/stroenie-glaza-palochki-i-kolbochki-900×506.jpg» data-large-file=»https://unclinic.ru/wp-content/uploads/2019/05/stroenie-glaza-palochki-i-kolbochki-1024×576.jpg» loading=»lazy» src=»https://unclinic.ru/wp-content/uploads/2019/05/stroenie-glaza-palochki-i-kolbochki-900×506.jpg» alt=»Строение глаза палочки и колбочки» width=»900″ height=»506″ srcset=»https://unclinic.ru/wp-content/uploads/2019/05/stroenie-glaza-palochki-i-kolbochki-900×506.jpg 900w, https://unclinic.ru/wp-content/uploads/2019/05/stroenie-glaza-palochki-i-kolbochki-768×432.jpg 768w, https://unclinic.ru/wp-content/uploads/2019/05/stroenie-glaza-palochki-i-kolbochki-1024×576.jpg 1024w, https://unclinic.ru/wp-content/uploads/2019/05/stroenie-glaza-palochki-i-kolbochki.jpg 1280w» sizes=»(max-width: 900px) 100vw, 900px» title=»Как мы различаем цвета»> Строение глаза палочки и колбочки

Ученые о цветоощущении

С подачи М. В. Ломоносова, еще в 1756 году в труде «Слово о происхождении света, новую теорию о цветах представляющем, июля 1 дня 1756 года говоренном» родилось впервые предположение о так называемой трехкомпонентной природе цветового зрения.

Научная разработка этой гипотезы связана с именами ученых прошлого века — Юнга, Гельмгольца, Максвелла. Существо ее сводится к следующему: нормальное зрение человека обеспечивается одновременной работой трех независимых цветовых приемников, то есть трех видов колбочек, воспринимающих три основных цвета — красный, зеленый и синий.

Нормальное зрение еще называют трихроматическим, трехцветным. Все наши цветовые ощущения происходят при пропорциональном смешивании красного, синего и зеленого цвета, только этих цветовых компонентов.

Существует три внешне схожих вида этих клеток, для распознавания цвета в спектре света и одновременная функциональная активность всех клеток-колбочек обеспечивает нормально восприятие цветовых оттенков.

И все же это было предположение, то есть научная гипотеза и со времени М. В. Ломоносова до нашего времени она и существовала. Чтобы стать теорией, ей не хватало прямых доказательств.

И вот в середине прошлого века, отдельно друг от друга несколькими лабораториями мира были измерены спектры, поглощаемые отдельными клетками-колбочками на сетчатках глаз человека, обезьяны и золотой рыбки. Измерение было осуществлено микроспектрофотометрированием одиночных клеток. Было доказано, что при внешнем сходстве, клетки-колбочки можно разделить на три части — сине-, зелено- и красночувствительные.

Это значит, что в каждой клетке-колбочке имеются свои зрительные пигменты, свои краски — вещества сложной химической природы. Благодаря пигментам, поглощающим преимущественно основные цвета, они и воспринимают их.

А теперь о нарушениях в восприятии цветов

Английский ученый Джон Дальтон был первым, кто подробно описал в научной статье одно из нарушений цветового восприятия, которое имел сам. С тех пор всякую форму нарушения восприятия цветов (цветоощущения) называют дальтонизмом.

В основном более распространена так называемое красно-зеленое расстройство, когда человек неспособен различать красный и зеленый цвет с их оттенками. Но эта группа краснозеленослепых распадается на две: краснослепых (их называют протанопами) и зеленослепых — дейтеранопов. У Дальтона была протанопия: он отождествлял светло-красный цвет с темнозеленым.

Возможна также третья форма цветовой слепоты — тританопия, когда человек не различает цвета сине-фиолетового участка солнечного спектра. Мир красок для него содержит лишь красный и зеленый цвет с оттенками. Известны также промежуточные виды нарушения цветоощущения.

Частичную цветовую слепоту, или дихромазию, когда в сетчатке функционируют два из трех цветовых колбочковых приемников, глазные врачи даже не считают болезнью. Правда, подобный дефект ограничивает возможности человека в выборе профессии (об этом немного ниже).

Другое дело — монохромазия — полная потеря цветового восприятия. Это тяжелый дефект, который, к счастью, очень редок. Мир видится таким больным как одноцветная серая фотография.

Таблица нарушений цветовосприятия

» data-medium-file=»https://unclinic.ru/wp-content/uploads/2019/05/percezione_del_colore_in_soggetti_daltonici.svg_-900×473.png» data-large-file=»https://unclinic.ru/wp-content/uploads/2019/05/percezione_del_colore_in_soggetti_daltonici.svg_-1024×538.png» loading=»lazy» src=»https://unclinic.ru/wp-content/uploads/2019/05/percezione_del_colore_in_soggetti_daltonici.svg_-900×473.png» alt=»Таблица нарушений цветовосприятия» width=»900″ height=»473″ srcset=»https://unclinic.ru/wp-content/uploads/2019/05/percezione_del_colore_in_soggetti_daltonici.svg_-900×473.png 900w, https://unclinic.ru/wp-content/uploads/2019/05/percezione_del_colore_in_soggetti_daltonici.svg_-768×404.png 768w, https://unclinic.ru/wp-content/uploads/2019/05/percezione_del_colore_in_soggetti_daltonici.svg_-1024×538.png 1024w, https://unclinic.ru/wp-content/uploads/2019/05/percezione_del_colore_in_soggetti_daltonici.svg_.png 1600w» sizes=»(max-width: 900px) 100vw, 900px» title=»Как мы различаем цвета»> Таблица нарушений цветовосприятия

Чем же обусловлены различные нарушения цветоощущения?

Дихромазия — красно-зеленая слепота — объясняется специалистами слипанием, совпадением двух цветоощущающих колбочковых аппаратов. При этом красночувствительные колбочки функционируют как зеленочувствительные. У людей, у которых, полная цветовая слепота, в сетчатках работают только палочки, колбочки отсутствуют от рождения или повреждены.

Известны еще так называемые цветоаномалии. Эти расстройства зрения заключаются в следующем: изменяется чувствительность какого-либо одного или нескольких типов колбочек. В сетчатке содержатся все три колбочковых цветоприемника, но цвета внешнего мира они смешивают неправильно.

Расстройства цветоощущения, увы, довольно часты, особенно среди мужчин. По последним сведениям, около одного процента всех мужчин — краснослепые, около двух процентов — зеленослепые. Основные виды нарушения цветоощущения — протанопия и дейтеранопия — передаются по наследству, так как обусловлены генетическими нарушениями.

Вспомним, кстати, что родной брат Дальтона также страдал протанопией. Неспособность воспринимать синий цвет (тританопия) встречается крайне редко, поражая лишь 1 из 20000 человек, причем мужчин не намного чаще, чем женщин.

Врожденную цветовую слепоту долгое время можно и не обнаружить. Дальтон, к примеру, до 26 лет ничего не знал о своем дефекте. Чем это можно объяснить?

Цветослепые замещают в себе неспособность воспринимать цвет способностью хорошего различия цветов по их яркости и насыщенности и к тому же с детства привыкают называть цвета окружающих предметов общепринятыми названиями.

Однако в наш век не знать о цветовой слепоте шофера или машиниста, летчика или моряка слишком опасно. Ведь если, допустим, красный сигнал светофора будет равной яркости с зеленью листвы, то водитель с дефектом зрения не заметит предупреждающего сигнала. В результате на автомагистрали с интенсивным движением транспорта неизбежна аварийная ситуация.

Именно поэтому, прежде чем сдавать экзамены на получение водительских прав, необходимо получить справку от врача о том, что у будущего шофера цветовое зрение в полном порядке.

На современном этапе развития науки появилась возможность объяснить природу нарушения цветовосприятия на клеточном, субклеточном и даже молекулярном уровнях.

Безусловно, результаты исследований дают ключ не только к расшифровке интимных механизмов удивительного явления природы — цветового зрения, но и, быть может, помогут вернуть цветослепым людям все многообразие красок мира.

Источник

Лекция 2. Как мы видим и воспринимаем цвет

Лучи света, проходя через зрачок в радужной оболочке и расположенный за ним хрусталик, попадают на сетчатку. Она состоит из двух слоев: наружного, или пигментного, и внутреннего, или нервного, представляет собой разрастание зрительного нерва, связывающего глаз с мозгом. Именно там и возникают зрительные, в том числе цветовые, ощущения.

Наш глаз воспринимает какой-либо цвет как белый, когда все цвета спектра полностью отражаются от освещенной поверхности. Тело или пространство воспринимается черным при отсутствии света. Частичное отражение тех или иных цветовых монохроматических потоков (при поглощении остальных цветов спектра) определяет для нашего зрения цвет отражающей поверхности.

Так, отражение красных лучей создает впечатление красного цвета отражающей поверхности. При этом зеленые, голубые, синие, фиолетовые цвета спектра поглощаются. Глаз человека устроен так, что он прекрасно адаптируется к темноте и свету, к различению предметов на расстоянии, как близком, так и далеком. Хрусталик глаза работает как система автофокусировки фотоаппарата.

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Глаз настолько чувствителен к свету, что при абсолютно прозрачной атмосфере мог бы различать огонек свечи на расстоянии 200 км. Глаз здорового человека с развитым цветотоновым зрением способен различать в окружающем мире (при достаточно ярком освещении объектов) около 30 000 оттенков цветов. Многие цветовые атласы содержат в три раза меньшее количество оттенков цветов (даже с учетом того, что в них приводятся образцы одного и того же оттенка цвета — матовые, полуматовые и глянцевые).

Важной особенностью цветового зрения является то, что, определив и запомнив цвет какого-либо объекта, человек, независимо от условий освещения, воспринимает (а точнее, представляет благодаря зрительной цветовой памяти) этот цвет как постоянный, присущий данному объекту. Например, красный цвет, который при слабом освещении объективно видится как темно-красный, серо-красный, коричневато-красный, остается для объекта восприятия все равно красным.

Это помогает человеку запоминать объекты по их цвету и ориентироваться среди них в быту. Но художник, занимаясь живописью, безусловно, отражает в своем произведении (пейзаже, натюрморте, портрете, жанровой картине) реальные изменения цвета изображаемых объектов в зависимости от характера и интенсивности их освещения. Архитекторы, художники декоративно-прикладного искусства, дизайнеры также учитывают в своем творчестве изменения цвета (цветов) создаваемых по их проектам объектов при их реальном восприятии людьми, созерцающими эти объекты в разных условиях освещения.

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Трехкомпонентная теория цветового зрения Г. Гельмгольца базируется на идее ученого Томаса Юнга о трех родах нервных волокон, воспринимающих три основные цвета: красный, зеленый и синий (точнее — сине-фиолетовый). Простой желтый значительно возбуждает зрительные волокна, ощущающие красный и зеленый цвета, но слабо — фиолетовые. Простой зеленый сильно возбуждает зеленоощущающие волокна и слабо — остальные два типа и т. д. Тот или иной сложный оттенок цвета зависит, по-видимому, от разной степени возбуждения этих трех типов волокон. А равномерное возбуждение всех типов дает ощущение белого цвета. Цветовая система смешения цветов из трех основных цветовых тонов геометрически изображается в виде равностороннего треугольника, в углах которого обозначены три первичных цвета: красный, зеленый, синий (сине-фиолетовый).

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Основоположник научного цветоведения И. Ньютон первым предложил реально существующий линейный спектр цветов. Цветовой круг Ньютона включал семь последовательно расположенных и радиально ориентированных секторов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового цветов. При добавлении неспектрального цвета — пурпурного — получалась 8-секторная двухмерная цветовая модель хроматических цветов.

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Позднее другими специалистами в области цветоведения на основе цветового круга И. Ньютона (с включением пурпурного цвета) предлагались 12-секторные, 24-секторные и 48-секторные цветовые круги. В качестве стандартного цветового круга принят 24-секторный круг хроматических тонов, образованный путем членения на три каждого из семи основных спектральных цветов и пурпурного цвета.

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Известна, помимо двенадцатиричных, также оригинальная десятичная цветовая система — 100-секторный цветовой круг Манселла. В этом круге 10 областей (интервалов). Интервал одного цветового тона включает 11 радиусов цветового тона (от 0 до 10), последний 10-й совпадает с начальным 0-м следующего интервала. По радиусу 5-го цветового тона расположен основной тон каждого интервала, по 10-м радиусам — крайние границы цвета каждого интервала. Шкала насыщенности располагается вдоль радиуса цветового тона. Она имеет определенное число уровней — от наиболее насыщенного цвета на краю круга до наименее насыщенного — к центру круга. Таким образом, цветовой круг (цветовая система) Манселла демонстрирует в широком диапазоне цветность 100 оттенков цветовых тонов: сочетание цветового тона и насыщенности. На основе этой цветовой системы разработаны и выпущены цветовые атласы.

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Как и в других стандартизированных системах (содержащих сотни образцов цвета), цвета обозначаются числом, или кодом. В международной практике принят метод определения цвета, разработанный Международной комиссией по освещению (МКО) — Commission International de l’Eclairage. Он основан на том факте, что относительные количества трех стандартных первичных цветов (по Г. Гельмгольцу) — красного, синего и зеленого. График МКО также позволяет осуществлять отбор дополнительных друг к другу цветов и может показать пределы высшей чистоты цветов нефлуоресцирующих пигментов и красителей для сравнения с чистотой (насыщенностью) реально доступных красок.

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Позже были разработаны пространственные цветовые модели (трехмерные). Самой первой трехмерной моделью был цветовой шар Отто Рунге. Помимо этой пространственной модели предлагались разными специалистами в области цветоведения и другие модели: цветовой куб Хикетье, многогранник Кюпперса, цветовой цилиндр Манселла, двойной конус Оствальда и т. д.

Источник

Как мы воспринимаем цвет. Занимательные факты. Просто об очень сложном

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Фото сетчатки в разрезе с электронного микроскопа.

Дорогие читатели, в этой статье о цвете я не буду приводить аналогии с цифровым фотоаппаратом и фотошопом для «лучшего» понимания физиологии зрения, как не делал этого и в прошлой статье «О разрешении нашего зрения». Такой приём, при кажущемся удобстве, только усложнит картину мира и запутает вас. Буду вести рассказ последовательно и в меру сложно.

Предисловие: краткая теория цвета и света

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз
Видимый диапазон.

Свет — это электромагнитные (ЭМ) волны. Из всего разнообразия ЭМ излучения, как видно на картинке выше, наши глаза регистрируют только очень маленькую часть спектра.

Цвет характеризуется тремя величинами:

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз
Спектр солнечного света.

Свет от солнца мы видим почти белым с лёгким смещением в жёлтый. Для удобства солнечный свет будем принимать за эталон. На графике выше видно, что атмосфера хорошо поглощает и рассеивает фиолетовую и синюю части спектра (теперь вы знаете, почему небо синее. Для лучшего понимания этого можно почитать про «Рэлеевское рассеяние»).

Почему мы видим зелёные растения зелёными? Потому что они поглощают весь видимый свет, кроме зелёной части, которая отражается и попадает на сетчатку.

Цветовая адаптация или почему цвет на фотографии часто не совпадает с тем, что мы видели своими глазами?
В ходе эволюции наша зрительная система приобрела такое свойство как корректировка ощущения цвета знакомых объектов. В фототехнике эта функция называется баланс белого (ББ). Такая автокоррекция цвета в зрительной системе потребовалась нам по многим причинам — одна из них, чтобы мы могли адекватно различать цвет плодов на деревьях в разных условиях освещения… Иначе ели бы их только днём или утром, потому что видите ли, у них цвет не такой и померли бы с голоду)
Когда мы смотрим, например, на белую машину при утреннем освещении, дневном и на закате, то выглядит она так же ± белой, с поправкой на лёгкие оттенки. Но когда эту же сцену снимаем на камеру, то с утра машина — серо-синяя, днём — белая, а на закате — оранжевая!
Так где же истина?
Предположим, у нас есть фотоаппарат, который откалиброван только на белый свет, допустим 5500К. В этом случае он будет показывать цвет объектов таким, каков он есть в реальности, т.е. белая машина будет «краситься» в зависимости от окружающего освещения. Вопрос в том, насколько комфортно нам рассматривать такое фото и какую пользу мы можем получить от «искажённых» цветов. Наши глаза всё равно будут делать поправку на баланс белого при реальном просмотре сцены, так уж мы устроены.
Поэтому самая современная фото-видеотехника умеет настраивать ББ очень близко к тому, как он работает в наших глазах. С каждым годом алгоритмы ББ улучшаются, и чем дороже камера, тем ближе к нашему восприятию она выдаст картинку.

И последний факт перед погружением в физиологию: быстрее всего наша зрительная система реагирует на длину волны света 555 нм — это зелёный цвет с примесью жёлтого. Почему так сложилось? Это вопрос к эволюционной биологии — значит, нашим предкам в какой-то долгий период развития было необходимо хорошо различать этот цвет.

На графике ниже можно увидеть максимум чувствительности для дневного света и для сумерек:

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Начнём с общей структуры сетчатки.

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

И ещё одна схема для закрепления знаний — всё то же самое, но вдруг кому-то так удобнее:

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Обратите внимание на красные стрелочки внизу картинки — они указывают путь света сквозь структуры сетчатки. В верхней части схемы показаны рецепторы — палочки и колбочки.
Кого-то из вас может смутить то, что свет попадает сначала на нейроны в сетчатке, а потом на сами рецепторы.

«Как же так? Должно быть наоборот!» — скажете вы. Увы, так «распорядилась» эволюция.

По одной из гипотез, фотороцепторы располагаются ближе к находящемуся сзади пигментному слою, в котором находятся ферменты, участвующие в регенерации фотопигментов.
По другой — нашими очень далёкими предками были ланцетники, чьи глаза находились как бы внутри черепа и улавливали свет сквозь прозрачный скелет, соответственно фоторецепторы были направлены в сторону падающего света. В итоге по ходу всех шагов эволюции сетчатка «не захотела» разворачиваться).

Но не стоит переживать — если вы читаете этот текст и различаете цвета, значит у эволюции всё же получилось) Все слои нейронов сетчатки довольно прозрачны для видимого спектра — этого достаточно, чтобы свет попал на колбочки и палочки с минимальными искажениями.

Итак, сетчатка состоит из трёх типов рецепторов:

Палочки содержат пигмент родопсин. Его наибольшая чувствительность находится в области около 510 нм — бирюзовый цвет.

Немного о видах сигнала

Ниже показана фотография отдельного фоторецептора, помещённого в сверхтонкую пипетку.
На рецептор направлена полоска монохроматического света. Этот метод позволил измерить мембранный ток фоторецептора.

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Процесс поглощения фотона и образования сигнала на выходе фоторецептора — фототрансдукция.

Если на ганглиозную клетку поставить электрод и подключить его к аудио-системе, то при активации этой клетки можно услышать такой сигнал:

Пики поглощения колбочек:

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Колбочки имеют широкие зоны чувствительности со значительным перекрыванием. Например, свет с длиной волны 650 нм (красный) вызовет наибольшую реакцию у длинноволновых колбочек и совсем слабый ответ у средневолновых. Т.е. по аналогии — «зелёные» колбочки реагируют не только на зелёный, но и немного на соседние цвета.

Интересный факт, над которым учёные бились почти два столетия — почему при смешении синей и жёлтой красок получается зелёный цвет? Но если взять два источника света, перед одним поставить синее стекло, а перед другим — жёлтое, то в результате смешения получится белый! Этот вопрос удалось решить Герману Гельмгольцу.

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Как читать график выше (смешение пигментов)? Очень важно понимать, что жёлтый в данном случае — это не чистый жёлтый с узким спектром в 580 нм, а широкополосный, т.е. это смесь жёлтого с зелёными и красными волнами.

Синий тоже не чистый спектр в 480 нм, а смесь синего с фиолетовым и зелёным.
В результате две смешанные краски или два стекла синего и жёлтого цветов, стоящие друг за другом, поглощают из белого цвета все длины волн, кроме средних — зелёных.

Если же взять монохроматические фильтры на 480 нм и 580 нм и поставить их друг за другом, то сквозь них не пройдёт ничего — не будет перекрытия спектра!

Если осветить белую стену жёлтым и синим фонарями, в результате получится белый цвет. Так происходит по причине «широкополосной» активации колбочек, т.е. всего двумя цветами стимулируются все три типа колбочек и в итоге мы ощущаем белый цвет. По этому принципу работают белые светодиоды — сам излучатель даёт синий цвет, его накрывают жёлтым люминофором — получаем белый свет.

Интересная заметка в книге «Глаз, мозг, зрение» Дэвида Хьюбела на 179 стр.:
«В одной книге, посвященной ткацкому делу, в главе, излагающей теорию цвета, я нашел утверждение, что если вы смешаете в ткани желтые и синие нити, то получите зеленый цвет. На самом же деле получится серый цвет — по биологическим причинам.»

UPD: вопрос про особенности восприятия фиолетового цвета, заданный в комментариях под этой публикацией, был изучен. Ответ ниже.
Почему при попадании на сетчатку фиолетового цвета мы ощущаем его как синий с примесью красного?
Нужно внести маленькое уточнение в терминологию:
— фиолетовый — это спектральный цвет, т.е. цвет, который можно описать одним значением длины волны;
— пурпурный — смешанный или неспектральный цвет, т.е. его можно получить, смешав красный и синий цвета.
На графике спектральной чувствительности фоторецепторов видно, что длинноволновые колбочки имеют небольшой пик в области 400 нм — они активируются, когда мы смотрим на что-то пурпурное (или фиолетовое, кому так больше подходит).
какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Маленькая загадка (ответ в спойлере ниже).
Вы видели в некоторых фильмах сцены, когда спецназ летит в вертолёте на задание, предположительно в тёмный лес или в тёмное время суток, а в салоне всё освещено красным светом. Чтобы освежить память, можно пересмотреть такой эпизод в начале фильма «Хищник».
Вопрос: зачем и почему именно красный?
Подсказка: вернитесь немного назад и внимательно проанализируйте спектры поглощения рецепторов.

Ещё немного физиологии

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Слои нейронов сетчатки (по направлению прохождения сигнала):

Биполярные клетки — одна из функций этих нейронов — передача сигнала от фоторецепторов к ганглиозным нейронам. Ближе к центру сетчатки один фоторецептор даёт сигнал на один биполяр, дальше от центра происходит конвергенция сигнала, т.е. один биполяр собирает сигнал от множества палочек. Как пример, на периферии зрительного поля на одну такую клетку могут поступать сигналы от 1500 палочек, что позволяет получить хорошую чувствительность зрения при слабом освещении.

Амакриновые клетки — так как на сегодня обнаружено более 33 подтипов данных нейронов, не вижу возможности описать их функции в нескольких абзацах. (Если у кого-то из читателей этой статьи будет свежая информация, то я с удовольствием её добавлю)

Ганглиозные клетки — основная функция — сбор сигнала от предыдущих слоёв нейронов и конвергенция в зрительный нерв. Суммарное количество фоторецепторов сетчатки 100-120 млн — будет превращено в 0,7-1,5 млн нервных волокон в зрительном нерве.
Ещё одна важная функция подтипа ганглиозных клеток ipRGC — регулирование циркадных ритмов в зависимости от яркости освещения и контроль светового рефлекса зрачка.

Теории цветового зрения

Описание теорий сделаю максимально кратким, потому что подробное изложение потянет на отдельную статью. Кому будут нужны подробности — список литературы в конце.

Первую теорию цветового зрения на рубеже 18-19 веков предложили, независимо друг от друга, Джордж Пальмер и Томас Юнг. Она получила название Трихроматическая теория.

Эта теория предполагала наличие трёх типов рецепторов в сетчатке, которые порождают физиологическое ощущение красного, зелёного и синего. Промежуточные оттенки соответственно были истолкованы комбинацией базовых цветов (кардиналов).

Трихроматическая теория очень хорошо объясняет виды цветовой слепоты.

Чтобы понимать механизмы дальтонизма можно прибегнуть к такому эксперименту — предположим, у нас есть пациент страдающий монохромазией (все колбочки в его сетчатке имеют только один пигмент, не важно какой). На сетчатку данного человека посылается поток из 100 фотонов с длиной волны 520 нм (зелёный), а после — 100 фотонов 650 нм (красный). Наш монохромат не получит само ощущение цвета, но сможет отличить эти цвета по их яркости, так как короткие волны обладают большей энергией и их воздействие на фоторецепторы сильнее.

Если же количество длинноволновых фотонов увеличить, чтобы в итоге они вызывали такое же яркостное ощущение как и коротковолновые, то наш больной уже не сможет увидеть различия в источниках света.

Так происходит потому, что фоторецепторы на выходе из сетчатки выдают аналоговый импульсный сигнал — он не способен кодировать информацию о цвете.

Для минимального различия цветовых стимулов в сетчатке должны быть минимум два вида колбочковых пигментов. В этом случае сигнал разных уровней, идущий по разным нервным волокнам, будет в дальнейшем интерпретирован в цвет в зрительной коре.

Так и работают тесты для дальтоников — паттерны изображены разными цветами одинаковой яркости.

Ещё раз про вид сигнала — это аналоговые импульсы, не двоичный код. Сигнал несёт импульсы одинаковой амплитуды, но при этом может изменятся сама частота импульсации — 30 импульсов в секунду или 100.

Трихроматическая теория при всём своём успехе имела ряд недостатков — например, она не могла описать, почему при цветовой слепоте цвета никогда не пропадают единично (только красный или только синий) — хотя по логике самой теории должно быть именно так. А получается попарное выпадение цветов — зелёный вместе с жёлтым или красный и синий.

Примерно в 1870 году на сцену выходит Геринг со своей Опонентной теорией.

Кратко — суть теории в том, что она предлагает четыре базовых цвета, а не три. Эти цвета противоположны (оппонентны) друг другу:

Сегодня для описания принята Теория двухэтапного цветового зрения или Теория двойной обработки. Её основоположником был Адольф фон Криз. Но свой финальный вид она обрела в 1957 г. благодаря физиологам Лео Гурвичу и Доротее Джеймсон.

Эта теория объединяет две предыдущих — показывая, что они не противоречат, а дополняют друг друга.

Благодаря развитию методов исследования в физиологии сейчас мы знаем, что первый этап обработки описывается трихроматической теорией, а второй — оппонентной.

С развитием молекулярной генетики были установлены пики поглощения для трихроматов:

Да, само ощущение цвета у всех нас немного отличается только по этой причине, но это вариант нормы.

Есть ещё и аномальные трихроматы, у которых имеются все необходимые пигменты, но они синтезируются в сетчатке в совершенно других пропорциях — из-за этого тот цвет, который вы ощущаете как синий, аномальный трихромат может ощущать как красный и есть большая вероятность, что и назовёт он его синим, так как в итоге он имеет все три вида пигментов, позволяющих ему просто различать цвета. Таких аномальных трихроматов можно выявить всё тем же трихроматическим уравниванием.

Подведём итог по теории двухэтапного цветового зрения. Все этапы обработки происходят на уровне сетчатки, прошу не путать с возникновением самого ощущения цвета в отделах зрительной коры.

какие цветовые лучи будет воспринимать человеческий глаз. Смотреть фото какие цветовые лучи будет воспринимать человеческий глаз. Смотреть картинку какие цветовые лучи будет воспринимать человеческий глаз. Картинка про какие цветовые лучи будет воспринимать человеческий глаз. Фото какие цветовые лучи будет воспринимать человеческий глаз

Каков дальнейший путь сигналов из сетчатки после ЛКТ?

До недавнего времени областью зрительной коры, ответственной за распознавание цвета, считалась зона V4.

В 2018 году были проведены исследования по обновлению картирования мозга. Для этого использовались методы объединения данных фМРТ с ретинотопными данными. В результате оказалось, что в коре нет единственного центра, отвечающего за обработку цвета, этим занимаются минимум 6 зон, среди них зона, чувствительная к движению:

Понимаю, что изложение вышло слегка сумбурным, потому что пришлось изучить сотни страниц учебников и исследований. Надеюсь, вам было понятно и интересно 🙂

Дэвид Хьюбел — «Глаз, мозг, зрение»
Стивен Палмер — «От фотонов к феноменологии»
Баарс Б., Гейдж Н. — «Мозг, познание, разум»
Джон Николлс, А. Мартин, Б. Валлас, П. Фукс — «От нейрона к мозгу»
Маргарет Ливингстон — «Искусство и восприятие. Биология зрения»

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *