какие турбины бывают в авто
Виды турбин. Какие бывают на автомобиле, что выбрать
Долго собирался написать эту статью, все собирался с духом. Народных тюнеров всегда интересует такая информация — как же улучшить свой автомобиль, и в первую очередь как сделать его мощнее? Многие растачивают цилиндры (но как ни крути, сильно расточить не получится, стенки блока тонкие), другие устанавливают турбины или компрессоры это уже более здравая идея — но вот что лучше выбрать? Какой вид турбины установить? И вообще, какие они бывают. На все эти насущные проблемы постараюсь ответить в этой статье, кстати, в конце будет полезное видео, а также голосование, так что читаем, вам понравится …
СОДЕРЖАНИЕ СТАТЬИ
Действительно сейчас существует много вариантов прокачки мощности двигателя, начиная от элементарной прошивки блока ЭБУ, заканчивая установкой «турбо нагнетателя». Многие ошибочно полагают — что турбины все одинаковы и никаких различий в них нет – ну может мощность разная, материалы изготовления ну и все.
А вот нет ребята, видов этих нагнетателей воздуха сейчас существует как минимум три:
1) Механический или так называемый компрессор
2) Турбо нагнетатель, работает от отработанных газов
3) Электрический вариант, самый свежий, но еще не изученный толком. Но как считаю за ним будущее.
Я сейчас не буду лезть в дебри и говорить о так называемых подтипах турбин, их особенно много у второго типа, а именно пройдусь по разным конструкциям. И все в конце постараемся вывести что из них лучше. НУ что же поехали.
Механический вид, или компрессор
Я уже писал про него подробную статью, можете ознакомится здесь. Но тут немного повторюсь, это самая первая разработка, которая появилась в автомобилестроении. Первопроходцами конечно же были инженеры компании «Мерседес», именно на их детище «С 180» впервые поставили компрессор, из-за чего он и стал носить такое обозначение.
Принцип очень прост
К двигателю автомобиля подсоединяют компрессор. Через ременную передачу соединяют вращающийся коленчатый вал и вал этого нагнетателя. После того как двигатель запускается вращение передается и компрессору — он начинает работать. То есть нагнетать в цилиндры воздух. Хочется отметить — что максимальные обороты, с которыми он работает это максимум 18 – 20000 оборотов в минуту.
Плюсы:
— Очень надежная конструкция.
— Ресурс практически не ограничен
— При точной настройке требует минимум ухода.
— Увеличивает мощность примерно на 5 – 10%
— Нет турбоямы
— Можно установить своими руками
— Нет высоких температур при работе.
Однако минусы также имеются:
— Не такой производительный, как собратья, разница может достигать нескольких раз.
— Сейчас применяется редко на конвейерах
Что и говорить, компрессоры уходят в прошлое, конечно сейчас наши народные умельцы еще устанавливают на «ПРИОРАХ» и «КАЛИНАХ» в гаражах, но добиться от него высокой отдачи не получится – большой минус это его обороты, он не может нагнетать в цилиндры достаточно много воздуха – что увеличивает мощность максимум на 10%.
Классический вид турбины, на отработанных газах
Этот вид сейчас применяется очень широко, про нее я также писал – читаем вот этот материал. Что и говорить – это самое производительное устройство. Обороты вала внутри могут достигать 200 000 в минуту, просто представьте, какой поток воздуха она может нагнетать!
Принцип работы прост
От двигателя идут отработанные газы, под давлением, в глушителе. По специальному отводу они попадают на крыльчатку турбины и раскручивают ее, с другой стороны есть еще одна крыльчатка которая сидит на одном валу с первой, она также раскручивается и начинает нагнетать воздух в цилиндры двигателя. Обороты как я уже писал сверху просто поражают.
Однако и тут есть проблемы – из-за того что она работает с высокими температурами, а выхлоп может доходить до 950 градусов Цельсия, ресурс такого агрегата ограничен. Уже через 150 – 200 километров, нужно либо менять, либо ремонтировать – что «вытекает» в очень большую сумму, сейчас, по-моему от 70 000 рублей.
Также подшипники вала смазываются моторным маслом, при больших оборотах оно может проходить в камеры турбины, что влечет за собой расход. Поэтому жор масла для таких турбин это нормальное явление.
Плюсы:
— Самый производительный тип, на данный момент
— Нет соединения с двигателем
— Сейчас самый распространенный тип, запчасти можно найти везде
Минусы:
— Работает с большими температурами
— Требователен к качеству топлива
— Есть такой эффект как турбояма.
— НА старых моделях, нужно остыть после работы, что влечет за собой установку турботаймера
Как видите здесь высокая производительность, но очень много проблем. Которые сейчас решают большие концерны, в первую очередь – немецкие.
Электрический вид турбины
Самая новая разработка и самая перспективная. Именитые производители — такие как Мерседес, БМВ и Фольксваген, заявляют — что уже через несколько лет на их автомобили будет устанавливаться только электротурбины!
В чем же чудо этого варианта? Все просто он объединяет в себе преимущества первого и второго вида. То есть с одной стороны это компрессор, с другой он выдает очень большую производительность, нагнетание воздуха в цилиндры.
Принцип работы
Представьте мощный электродвигатель, который работает с высокими оборотами, ну скажем не менее 200 – 300 000 оборотов в минуту. Это реально поверьте, сейчас существуют типы, которые развивают обороты до 1 000 000 в минуту. Устанавливаем его в турбину, таким образом, он будет просто супер производительным.
Что самое важное он не будет зависеть ни от коленчатого вала, ни от выхлопных газов. А ресурсы электрических двигателей просто огромны! Таким образом, мы убиваем двух зайцев – увеличиваем производительность и ресурс. Но как всегда есть минусы.
Минусы на данный момент это то — что такой электродвигатель требует много электричества, причем настолько, что даже штатный генератор не в состоянии его «прокачать». Поэтому нужно ставить либо дополнительные генераторы, либо ставить менее мощный мотор, но тогда пострадает производительность! В общем, вопрос сейчас пока открыт, но как говорят решение уже почти найдено.
Плюсы:
— Не требует ни привода, ни отработанных газов
— Может расположиться практически в любом месте на двигателе
— Раскручивается сразу, нет турбоямы
— Относительно дешевый в изготовлении
Минусы:
— Требует много энергии
Вот так и получается что будущее именно за электрическими турбинами. ДА хочу сразу предостеречь это не китайские дешевые варианты, которые по сути своей хрень, это совершенно другие разработки.
Сейчас мое познавательное видео (просто о сложном).
Теперь предлагаю проголосовать, как вы считаете — что лучше компрессор или турбина на отработанных газах? Про электрическую турбину я задавать вопрос, пока не буду, все же она пока не идет в серию.
На этом все читайте наш АВТОБЛОГ.
(12 голосов, средний: 4,17 из 5)
Похожие новости
Белый дым из выхлопной трубы, основные причины
Запчасти с разборки
Надежны ли двигатели TSI? Основные проблемы и слабые места
Добавить комментарий Отменить ответ
ТОП статей за месяц
Скоро праздники, а это значит — большая часть нашей страны будет употреблять алкоголь. Легкий: —…
Напряжение аккумулятора транспортного средства, как и его емкость – самые важные показатели этого автомобильного узла,…
Меня часто спрашивают о выхлопе автомобиля. Зачастую новичкам, да и водителем со стажем не нравится,…
ЧТО ТАКОЕ ТУРБИНА И КАК РАБОТАЕТ ТУРБО МОТОР Часть 1.
Основы турбо-наддува. Часть 1.
Основные принципы работы турбо двигателя.
Как известно, мощность двигателя пропорциональна количеству топливо-воздушной смеси попадающей в цилиндры. При прочих равных, двигатель большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощности, чем двигатель меньшего объема. Если нам требуется что бы маленький двигатель выдавал мощности как большой или мы просто хотим что бы большой выдавал еще больше мощности, нашей основной задачей станет поместить больше воздуха в цилиндры этого двигателя. Естественно, мы можем доработать головку блока и установить спортивные распредвалы, уеличив продувку и количество воздуха в цилиндрах на высоких оборотах. Мы даже можем оставить количество воздуха прежним, но поднять степень сжатия нашего мотора и перейти на более высокий октан топлива, тем самым подняв КПД системы. Все эти способы действенны и работают в случае когда требуемое увеличение мощности составляет 10-20%. Но когда нам нужно кардинально изменить мощность мотора — самым эффективным методом будет использование турбокомпрессора.
Каким же образом турбокомпрессор позволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взгянем на приведенную ниже диаграмму:
Рассмотрим основные этапы прохождения воздуха в двигателе с турбокомпрессором:
— воздух проходит через воздушный фильтр (не показан на схеме) и попадает на вход турбокомпрессора (1)
— внутри турбокомпрессора вошедший воздух сжимается и при этом увеличивается количество кислорода в единице объема воздуха. Побочным эффектом любого процесса сжатия воздуха является его нагрев, что несколько снижает его плотность.
— Из турбокомпрессора воздух поступает в интеркулер (3) где охлаждается и в основной мере восстанавливает свою температуру, что кроме увеличения плотности воздуха ведет еще и к меньшей склонности к детонации нашей будущей топливо-воздушной смеси.
— После прохождения интеркулера воздух проходит через дросеель, попадает во впускной коллектор (4) и дальше на такте впуска — в цилиндры нашего двигателя.
Объем цилиндра является фиксированной величиной, обусловленной его диаметром и ходом поршня, но так как теперь он заполняется сжатым турбокомпрессором воздухом, количество кислорода зашедшее в цилиндр становится значительно больше чем в случае с атмосферным мотором. Большее количество кислорода позволяет сжечь большее количество топлива за такт, а сгорание большего количества топлива ведет к увеличению мощности выдаваемой двигателем.
— После того как топливо-воздушная смесь сгорела в цилиндре, она на такте выпуска уходит в выпускной коллекторе (5) где этот поток горячего (500С-1100С) газа попадает в турбину (6)
— Проходя через турбину поток выхлопных газов вращает вал турбины на другой стороне которого находится компрессор и тем самым совершает работу по сжатию очередной порции воздуха. При этом происходит падение давления и температуры выхлопного газа, поскольку часть его энергии ушла на обеспечение работу компрессора через вал турбины.
Ниже приведена схема внутреннего устройства турбокомпрессора:
В зависимоти от конкретного мотора и его компоновки под капотом, турбокомпрессор может иметь дополнительные встроенные элементы, такие как Wastegate и Blow-Off. Рассмотрим их подробнее:
Blow-off
Блоуофф (перепускной клапан) это устройство установленное в воздушной системе между выходом из компрессора и дроссельной заслонкой с целью недопустить выход компрессора на режим surge. В моменты когда дроссель резко закрывается, скорость потока и расход воздуха в системе резко падает, при этом турбина еще некоторое время продолжает вращаться по инерции со скоростью не соответствующей новому упавшему расходу воздуха. Это вызывает циклические скачки давления за компрессором и слышимый характерный звук прорывающегося через компрессор воздуха. Surge со временем приводит к выходу из строя опорных подшипников турбины, в виду значительной наргрузки на них в этих переходных режимах. БлоуОфф использует комбинацию давлений в коллекторе и установленной в нем пружины что бы определить момент закрытия дросселя. В случае резкого закрытия дросселя блоуофф сбрасывает в атмосферу, возникающий в воздушном тракте избыток давления и тем самым спасает турбокомпрессор от повреждения.
Wastegate:
Представляет собой механический клапан устанавленный на турбинной части или на выпускном коллекторе и обеспечивающий контроль за создаваемым турбокомпрессором давлением. Некоторые дизельние моторы используют турбины без вейстгейтов. Тем не менее подавляющее большинство бензиновых моторов обязательно требуют его наличия. Основной задачей вейстгейта является обеспечивать выхлопным газам возможность выхода из системы в обход турбины. Пуская часть газов в обход турбины, мы контролируем количество энергии газов которое уходит через вал на компрессор и тем самым управляем давлением наддува, создаваемое компрессором. Как правило вейстгейт использует давление наддува и давление встроенной пружины что бы контролировать обходной поток выхлопных газов.
Встроенный вейстгейт состоит из заслонки встроенной в турбинный хаузинг (улитку), пневматического актуатора и тяги от актуатора к заслонке.
Внешний гейт представляет собой клапан устанавливаемый на выпускной коллектор до турбины. Преимуществом внешнего гейта является то, что сбрасываемый им обходной поток может быть возвращен в выхлопную систему далеко от выхода из турбины или вообще сброшен в атмосферу на спортивных автомобилях. Все это ведет к улучшению прохождения газов через турбину в виду отсутствия разнонаправленных потоков в компактном объеме турбинного хаузинга.
Водяное и маслянное обеспечение:
Шарикоподшипниковые турбины Garrett требуют значительно меньше масла чем втулочные аналоги. Поэтому установка маслянного рестриктора на входе в турбину крайне рекомендована если давление масла в вашей системе привышает 4 атм. Слив масла должен быть заведен в поддон выше уровня масла. Поскольку слив масла из турбины происходит естественным путем под действием гравитации, крайне важно что бы центральный картридж турбины был ориентирован сливом масла вниз.
Частой причиной выхода из строя турбин является закоксовка маслом в центральном картридже. Быстрая остановка мотора после больших продолжительных нагрузок ведет к теплообмену между турбиной и нагретым выпускным коллектором, что в отсутствии притока свежего масла и поступления холодного воздуха в компрессор ведет к общему перегреву картриджа и закоксовке имеющегося в нем масла.
Для минимизации этого эффекта турбины снабдили водяным охлаждением. Водные шланги обеспечивают эффект сифона снижая температуру в центральном картридже даже после остановки двигателя, когда нет принудительной циркуляции воды. Желательно так же обеспечить минимум неравномерности по вертикали линии подачи воды, а так же несколько развернуть центральный картридж вокруг оси турбины на угол до 25 градусов.
Правильный подбор турбины является ключевым моментом в постройке турбо-мотора и основан на многих вводных данных. Самым основным фактом выбора является требуемая от мотора мощность. Важно также выбирать эту цифру максимально реалистично для вашего мотора. Поскольку мощность мотора зависит от количества топливо-воздушной смеси которая через него проходит за единицу времени, опредлив целевую мощность мы приступим к выбору турбины способной обеспечить необходимый для этой мощности поток воздуха.
Другим крайне важным фактором выбора турбины является скорость ее выхода на наддув и минимальные обороты двигателя на которых это происходит. Меньшая турбина или меньший горячий хаузинг позволяют улучшить эти показатели, но максимальная мощность при этом будет снижена. Тем не менее за счет большего рабочего диапазона работы двигателя и быстрого выход турбины на наддув при открытии дросселя в целом результат может быть значительно лучше, чем при использовании большей турбины с большой пиковой мощностью, но в узком верхнем диапазоне работы мотора.
Втулочные и шарикоподшипниковые турбины.
Втулочные турбины были самыми распространенными в течении долгого времени, тем не менее новые и более эффективные шарикоподшипниковые турбины используются все чаще. Шарикоподшипниковые турбины появились как результат работы Garrett Motorsport во многих гоночных сериях.
Отзывчивость турбины на дроссель очень зависит от конструкции центрального картриджа. Шарикоподшипниковые турбины Garrett обеспечивают на 15% более быстрый выход на наддув относительно их втулочных аналогов, снижая эффект турбо-ямы и приближая ощущение от турбо-мотора к атмосферному большеобъемнику.
Шарикоподшипниковые турбины так же требуют значительно меньшего потока масла через картридж для смазки пошипников. Это снижает вероятность утечек масла через сальники. Так же такие турбины менее требовательны к качеству масла и менее склонны к закоксовке после глушения двигателя.
О видах турбонадува
Всем всего, после опубликования статьи о турбинах, многие интересовались вопросами о разновиднастях надува, и общего описания систем, в целом я решил закрыть этот недостаток статьи и рассказать Вам об основных видах надува и так начнем.
Би-турбо (Bi-turbo) и Твин-турбо (twin-turbo)
Вопреки убеждениям некоторых «экспертов» название системы битурбо или твинтурбо не отображают схему работы турбины – параллельную или последовательную (секвентальную).
Например, у автомобиля Mitsubishi 3000 VR-4 система турбонаддува носит название TwinTurbo. В автомобиле стоит двигатель V6 и у него две турбины, каждая из которых использует энергию выхлопных газов из своих трех цилиндров, но задувают они в один общий впускной коллектор. У, например, немецких автомобилей есть схожие по рабочему принципу системы, но называются они не твинтурбо, а БиТурбо.
На автомобиле Toyota Supra с рядной шестеркой установлены две турбины, система турбонаддува называется TwinTurbo, но работают они в особой последовательности, включаясь и выключаясь с помощью специальных перепускных клапанов.
На автомобиле Subaru B4 тоже стоят две турбины, но работают они последовательно: на низких оборотах дует маленькая турбина, а на высоких, когда та не справляется, подключается вторая турбина большего размера.
Давайте теперь по порядку разберем обе системы би-турбо и твинтурбо.
Би-турбо – система турбонаддува, представляющая собой две последовательно включаемых в работу турбин. В системе би-турбо используют две турбины, одну малого размера, а вторую большего размера. Маленькая турбина раскручивается быстрее, но на высоких оборотах двигателя маленькая турбина не может справиться с компрессией воздуха и созданием нужного давления. Тогда подключается большая турбина, добавляющая мощный заряд сжатого воздуха. Следовательно, минимизируется задержка (или турболаг), образуется ровная разгонная динамика. Системы би-турбо весьма не дешевое удовольствие и обычно устанавливаются на автомобили высокого класса.
Система би-турбо может быть установлена как на двигатель V6, где каждая турбина будет установлена со своей стороны, но с общим впуском. Либо на рядном моторе, где установка турбины осуществляется по цилиндрам (напр, 2 для малой и 2 для больщой турбины), так и секвентально, когда на выпускном коллекторе сначала устанавливается большая трубина, а потом маленькая.
Твин-турбо – данная система отличается от би-турбо тем, что нацелена не на снижения турбо-лага или выравнивание разгонной динамики, а на увеличение производительности. В системах твин-турбо применяются две одинаковые турбины, соответственно производительность такой системы турбонаддува эффективней, чем системы с одной турбиной. К тому же, если применить 2 небольших турбины, схожих по производительности с одной большой, то можно снизить нежелаемый турболаг. Но это не значит, что никто не использует две больших турбины. Например, в серьезном драге могут использоваться две больших турбины для еще большей производительности. Система твин-турбо может работать как на V-образных моторах, так и на рядных. Последовательность включения турбин может варьироваться, как и на битурбо системах.
А вообще для еще большего веселья никто вам не мешает воткнуть сразу 3 турбины или более. Цель преследуется такая же, как и для твин-турбо.
Бывает три вида систем твин турбо и би-турбо а именно:
1) Параллельный тип:
Параллельная система работает одновременно и параллельно друг другу, и включает в себя два одинаковых турбокомпрессора. Параллельная работа происходит из-за ровного деления потока сгоревших газов между турбокомпрессорами. Из каждого компрессора выходит сжатый воздух и поступает в общий впускной коллектор, и потом распределяется по цилиндрам. Параллельный используется, как правило, на дизельных V-образных двигателях. Из-за параллельной схемы турбонаддува эффективность системы основывается на том, что две маленькие турбины имеют меньшую инерционность, чем одна большая турбина. Турбокомпрессоры работают на всех оборотах двигателях обеспечивая быстрое повышение наддува. И каждая турбина установлена на своём выпускном коллекторе.
В системе последовательного Twin Turbo постоянно работает первый турбокомпрессор, а второй начинает работать в определённом порядке работы двигателя (повышенная частота оборотов, нагрузка). Последовательный турбокомпрессор включает два одинаковых по характеристикам турбокомпрессора.
Электронная система управления обеспечивает переход между режимами и регулирует поток сгоревших газов ко второму турбокомпрессору за счёт специального клапана.
Чтобы достичь максимально высокого выхода мощности, система последовательности Twin Turbo минимизирует последствия турбозадержки. Применяются, как на дизельные двигатели, так и на бензиновые. В 2011 году была представлена система с тремя последовательными турбокомпрессорами компанией BMW и называется она Triple Turbo.
Хотелось бы немного рассказать о системе надува bmw triple turbo на дизеле, а именно как работают там турбины:
Одна из малых турбин начинает работать прямо с холостых, устраняя эффект турбоямы, с ростом оборотов до 1500 в минуту в дело включается большой нагнетатель, вместе с которым достигается пиковая тяга в 740 Нм. На 2700 оборотах в минуту подключается третья турбина, чтобы пиковый крутящий момент не упал вплоть до 3000 об/мин.
Помимо последовательного наддува в автомобилях применяются и более сложные схемы с большим количеством нагнетателей. К примеру, в нашумевшем Бугатти Вейрон, для получения мощности в 1001 лошадиную силу на двигателе стоит 4 турбонагнетателя.
В техническом плане система двухступенчатого турбонаддува является самой совершенной.
В системе двухступенчатого турбонаддува используется клапанное регулирование потока сгоревших газов и нагнетаемого воздуха. Эта система состоит из двух турбокомпрессоров разного размера. В последствии установленных в впускном и выпускном трактах.
Перепускной клапан сгоревших газов закрыт при низких оборотах двигателя. Сгоревшие газы через малый турбокомпрессор, имея максимальную отдачу и минимальную инерцию проходят дальше через большой турбокомпрессор. И так как давление отработавших газов не сильное, то следовательно и большая турбина практически не вращается. Перепускной клапан наддува закрыт на впуске и воздух поступает последовательно через большой и малый компрессоры.
Общая работа турбокомпрессоров начинает осуществляться при росте оборотов. И постепенно начинает открываться перепускной клапан сгоревших газов. Большая турбина начинает все больше и интенсивно раскручиваться, так как часть отработавших газов идёт прямо через неё.
Большой турбокомпрессор на впуске с определённым давлением начинает сжимать воздух, но давление не слишком большое и сжатый воздух дальше поступает в малый турбокомпрессор, где продолжает повышается давление. При этом перепускной клапан остаётся закрыт. Перепускной клапан сгоревших газов открывается полностью при полной нагрузки. Останавливается малая турбина, а большая начинает раскручиваться до максимальной частоты, так как через неё практически полностью проходят сгоревшие газы. Давление наддува достигает своего максимального значения на впуске большого компрессора при этом малый компрессор создаёт помеху для воздуха. И в определённый момент перепускной клапан наддува открывается и сжатый воздух непосредственно напрямую поступает к двигателю.
Благодаря системе двухступенчатых турбокомпрессоров мгновенно достигается номинальный крутящий момент и поддерживается в широком диапазоне оборотов двигателя. При этом достигается максимальное увеличение мощности. Таким образом, система поддерживает блестящую работу турбокомпрессоров на всех режимах работы двигателя. Так же система объясняет известное противостояние дизельных двигателей между предельной мощностью на высоких оборотах и высоким крутящим моментом на низких оборотах.
И немного о других видах турбин.
Турбокомпрессоры с изменяемой геометрией VTG (Variable Geometry Turbine)
Первым VNT (Variable Nozzle Turbine) турбокомпрессором с изменяемой геометрией в 1995 году стал турбокомпрессор для Фольксвагена Multivane с 1,9 литровым двигателем TDI. Принцип действия VNT турбокомпрессора заключается в оптимизации потока выхлопных газов, направляемых на крыльчатку турбины. На низких оборотах двигателя и малом количестве выхлопных газов VNT турбокомпрессор направляет весь поток выхлопных газов на колесо турбины, тем самым увеличивая ее мощность и давление наддува (на рисунке слева). При высоких оборотах и высоком уровне газового потока турбокомпрессор VNT располагает подвижные лопатки в открытом положении, увеличивая площадь сечения и отводя часть выхлопных газов от крыльчатки, защищая себя от превышения оборотов и поддерживая давление наддува на необходимом двигателю уровне, исключая перенаддув.
Двигатель с системой VNT, имеет лучший отклик, производит большую мощность и крутящий момент, потребляет меньше топлива и обеспечивает снижение вредных выбросов по сравнению с двигателем, связанным с турбокомпрессором традиционным байпасом. Благодаря короткому времени отклика и плавному ускорению улучшается управляемость машиной и срок ее службы. По сравнению с турбокомпрессором, оборудованным байпасом, турбокомпрессор VNT, более эффективный в более широком диапазоне величин потока, имеет следующие 3 основных преимущества:
1)Более высокая мощность: при определенной скорости двигателя и для заданного давления наддува модели VNT обеспечивают большую разность давлений и снижают температуру газов на выходе из двигателя.
2)Больший крутящий момент: при низких оборотах двигателя модели VNT обеспечивают повышенное давление наддува.
3)Экономия топлива и снижение выброса вредных веществ в атмосферу: контролируемые непосредственно системой управления двигателем, турбокомпрессоры VNT оптимизируют сгорание.
a. корпус турбины
b. крыльчатка для отработанных газов
c. корпус турбокомпрессора
e. ось рычага смещения регулируемого кольца
f. регулируемое кольцо
g. оси направляющих лепестков
h. направляющие лепестки
Основной проблемой VNT турбокомпрессора является недостаточная устойчивость конструкции к высоким температурам. По этой причине основным местом применения технологии VNT стали дизельные двигатели. Первой «ласточкой» в применении турбины с изменяемой геометрией на бензиновых двигателях стала компания Porsche.
Один из вариантов решения проблемы ”турбоямы”- турбина с двумя крыльчатками, называемая Twin-Scroll. Одна из крыльчаток (чуть большего размера) принимает выхлопные газы от одной половины цилиндров двигателя, вторая (чуть меньшего размера) — от второй половины цилиндров. Обе подают газы на одну и ту же турбину, эффективно раскручивая её, как на низких, так и на высоких оборотах.
Есть еще так-же турбо-компрессорные двигатели но о них мы поговорим в другой раз.
Пожалуй на этом Все, как всегда все собрано, допилено, дополнено и частично переведено мной(RastaBeat).
Как всегда оценивать данную статью Вам если она Вам нравится или показалась интересной не поленитесь нажать на кнопочку «мне нравится«, Всем спасибо за внимание, любые вопросы по авто Вы как и прежде можете писать мне в личку стараюсь помогать всем.