какие усилия возникают в балочных конструкциях
Определение внутренних усилий в балках
Внутренними усилиями в каком-нибудь сечении тела или конструкции (балки, арки и др.) называют силы, с которыми части тела, разделенные этим сечением, действуют друг на друга. Метод определения внутренних усилий, аналогичен методу, применяемому при изучении равновесия систем тел. Сначала рассматривают равновесие всего тела (конструкции) в целом и определяют реакции внешних связей. Затем сечением, в котором требуется найти внутренние усилия, разделяют тело на две части и рассматривают равновесие одной из них. При этом, если система действующих на тело внешних сил плоская, то действие отброшенной части заменяется в общем случае плоской системой распределенных по сечению сил; эти силы представляют одной приложенной в центре силой с двумя наперед неизвестными составляющими N (продольная вдоль стержня сжимающая (со знаком+) или растягивающая (со знаком-) и Q (поперечная сила, стремящаяся сдвинуть примыкающую к сечению часть балки) и парой сил с наперед неизвестным моментом М, называемым изгибающим моментом, который растягивает или сжимает соответствующие крайние волокна балки.
Графическое изображение действующих в теле внутренних усилий называется эпюрой.
Правило построения эпюр внутренних усилий:
— эпюра моментов строится со стороны растянутых волокон;
-эпюра поперечных сил стоится согласно ординат сил.
Пример 1.5.1: Определить опорные реакции и внутренние усилия в балке на рисунке 1.5.1. и построить эпюры внутренних усилий возникающих в балке.
1.Определяем какие опорные реакции возникают при заданном креплении балки. Так как опоры шарнирные, то реакции опор следующие:
— на опоре А – вертикальная реакция RA и горизонтальная реакция НА;
— на опоре В – вертикальная реакция RВ.
2. Определяем опорные реакции используя третью форму условий равновесия. Для этого составляем следующие формулы:
-Определяем сумму действующих моментов относительно точки В, используя правило, что если вращение по часовой стрелке то знак (+), если против часовой стрелки то знак (-):
-Определяем сумму действующих моментов относительно точки А:
-Определяем суммы проекций на две координатные оси:
Проверка показала, что опорные реакции определены правильно.
3.Строим эпюру моментов:
— моменты на опорах отсутствуют, так как опоры шарнирные;
— момент внутренних усилий в точке приложения силы Р (мысленно разрезаем балку в точке приложения силы Р, отбрасываем правую часть и определяем сумму действующих моментов от внешних сил, но так как тело находится в равновесии, то момент внутренних сил равен моменту внешних сил) :
Откладываем от оси балки со стороны растянутых волокон ординату действующего момента и соединяем ее с ординатами моментов на опорах.
4.Строим эпюру поперечных сил:
— на левой опоре откладываем ординату равную опорной реакции RA=3кН
— мысленно разрезаем балку слева в непосредственной близости от точки проложения внешней силы Р и определяем сумму внешних и внутренних сил:
Аналогично определяем внутреннюю силу в непосредственной близости от точки проложения внешней силы Р :
— на правой опоре откладываем ординату равную опорной реакции RВ=3кН.
Пример 1.5.2: Определить опорные реакции и внутренние усилия в балке на рисунке 1.5.2. и построить эпюры внутренних усилий возникающих в балке.
1.Определяем какие опорные реакции возникают при заданном креплении балки. Так как опоры шарнирные, то реакции опор следующие:
— на опоре А – вертикальная реакция RA и горизонтальная реакция НА;
— на опоре В – вертикальная реакция RВ.
2. Определяем опорные реакции используя третью форму условий равновесия. Для этого составляем следующие формулы:
-Определяем сумму действующих моментов относительно точки В, используя правило, что если вращение по часовой стрелке то знак (+), если против часовой стрелки то знак (-):
-Определяем сумму действующих моментов относительно точки А:
-Определяем суммы проекций на две координатные оси:
Проверка показала, что опорные реакции определены правильно.
3.Строим эпюру моментов:
— моменты на опорах отсутствуют, так как опоры шарнирные;
— момент внутренних усилий в точке приложения силы Р (мысленно разрезаем балку в точке приложения силы Р, отбрасываем правую часть и определяем сумму действующих моментов от внешних сил, но так как тело находится в равновесии, то момент внутренних сил равен моменту внешних сил) :
Откладываем от оси балки со стороны растянутых волокон ординату действующего момента и соединяем ее плавно с ординатами моментов на опорах.
4.Строим эпюру поперечных сил:
— на левой опоре откладываем ординату равную опорной реакции RA=18кН
— мысленно разрезаем балку по середине и определяем сумму внешних и внутренних сил:
— на правой опоре откладываем ординату равную опорной реакции RВ=3кН.
Аналогичным образом строятся эпюры моментов и поперечных сил балок представленных на рисунках 1.5.3 и 1.5.4.
Рисунок 1.5.3 Рисунок 1.5.4.
1.5.2 Трехшарнирная арка со сплошной стенкой.
Для расчета трехшарнирной арки применим следующий метод.
Исключим средний шарнир арки, заменив его жесткой связью между половинами арки, и удалим одну горизонтальную опору. Полученная новая система представляет собой статически определимую однопролетную балку с криволинейной осью (рис. 1.5.5, а). Отброшенную горизонтальную опору заменяем усилием Н — неизвестным пока распором арки.
От действия внешней нагрузки строим вдоль горизонтальной проекции арки эпюру моментов, как в обычной балке (рис. 1.5.6, б). От действия единичного усилия Н= 1 также строим эпюру моментов, ординаты которой будут совпадать с ординатами оси арки (рис. 1.5.6, в). Окончательную эпюру моментов в арке можно вычислить по формуле
В точке С расположения среднего шарнира момент в арке должен быть равен нулю: ,
отсюда получаем: (1.5.2)
подставляя в формулу (1.5.1) значение распора получаем:
(1.5.3)
В описанном методе использован принцип основной системы, которая получается из заданной путем введения и отбрасывания некоторых связей. Этот принцип широко применяется в классических методах расчета статически неопределимых систем, а иногда и для расчета статически определимых систем, как в данном случае.
Другой способ определения распора и усилий в трехшарнирных арках заключается в расчете каждой половины арки на действующую на нее нагрузку как балки, шарнирно опертой одним концом и опирающейся другим концом на подвижную опору, которой здесь служит другая половина арки. Реакция этой подвижной опоры направлена через концевые шарниры второй половины арки. Реакция другой опоры будет направлена в точку пересечения реакции первой опоры с равнодействующей внешних сил, действующих на половину арки. поскольку иначе не будет равновесия этой поло вины. Определение этих реакций и изгибающих моментов в половине арки производится по простым законам статики. Таким же образом производится расчет и второй половины арки.
Продольные и поперечные силы в любом сечении арки определятся из условия равновесия части арки, расположенной по одну сторону от рассматриваемого сечения. Предварительно заметим, что сумма вертикальных сил, приложенных слева от заданного сечения, равна балочной поперечной силе в спрямленной балке, свободно лежащей на крайних опорах арки и нагруженной заданной вертикальной нагрузкой.
Рисунок 1.5.7 Рисунок 1.5.8
Проектируя все силы, действующие слева от сечения х =а, на направление касательной к оси арки в точке А (рис. 1.5.7), получим продольную силу:
(1.5.4)
где — угол наклона касательной к оси арки в точке А.
Проектируя те же силы на направление нормали к оси арки, получим поперечную силу:
(1.5.5)
Если на арку действует не только вертикальная, но и горизонтальная нагрузка р, то вместо распора Н в формулах (2.1.4) и (2.1.5) следует взять сумму всех горизонтальных сил, действующих на арку слева от точки А.
Разделив момент МА на продольную силу NA получим эксцентриситет ее действия в сечении арки, который определит точку пересечения равнодействующей внутренних сил в сечении арки с плоскостью этого сечения (рис. 1.5.8). Геометрическое место таких точек, построенных для всех сечений арки, называется кривой давления арки (рис. 1.5.9).
Эта кривая представляет собой линию действия внутренней силы, передающейся вдоль арки. Она равна тангенсу угла между касательными к кривой давления распора к оси арки в том же сечении.
В особых случаях кривая давления может совпадать с осью арки. При этом изгибающие моменты по всей арке будут равны нулю. Такой случай будет, например, при нагрузке круговой арки равномерной радиальной нагрузкой (рис. 1.5.10) или при нагружении параболической арки равномерной Вертикальной нагрузкой (рис. 1.5.11).
Рисунок 1.5.10 Рисунок 1.5.11
Очертание оси арки, совпадающее с кривой давления, является оптимальным, т. е. наиболее выгодным при данной нагрузке.
Как определить реакции в опорах?
Автор: Константин Вавилов · Опубликовано 03.02.2016 · Обновлено 15.05.2018
Привет! В этой статье, предлагаю поговорить о реакциях опор, еще известных как опорные реакции. Для успешного освоения курса – «сопротивление материалов», каждый студент должен уметь определять реакции в опорах, и этому уделяют особое внимание на термехе. А курс термеха, по традиции, читают до сопромата. Для тех, кто проспал механику на первом курсе, я подготовил данную статью, чтобы каждый желающий мог приобрести навыки по расчету опорных реакций.
Что такое реакция опоры?
Реакция опоры – это та сила, которая возникает в опоре от действия внешней нагрузки. В зависимости от конструкции опоры и ее назначения, в ней может появляться разное количество реакций, это может быть как сила, так и момент.
В начале этой статьи, расскажу о том, что должен уже уметь читатель, для успешного освоения данного урока. Если у Вас есть проблемы по поднятым вопросам на старте статьи, переходите по ссылкам на другие материалы на нашем сайте, после чего возвращайтесь к нам на чай реакции. Во второй части статьи, посмотрим, как вычисляются реакции на простейшем примере – балки, загруженной по центру сосредоточенной силой. Тут я покажу, как пользоваться уравнениями равновесия статики, как их правильно составлять. Дальше по плану, научу учитывать распределенную нагрузку, на примере той же балки. И завершать данный урок, будет пример определения реакций для плоской рамы, загруженной всевозможными типами нагрузок. Где применим уже все фишки, о которых я буду рассказывать по ходу урока. Что же, давайте начнем разбираться с реакциями!
Что вы должны уже уметь?
В этом блоке статье, я расскажу, как и обещал, что Вы должны УЖЕ уметь, чтобы понять то, что я буду докладывать дальше, про реакции опор.
Должны уметь находить сумму проекций сил
Да, это то, что Вам когда-то рассказывали на термехе, как собственно, и опорные реакции. Если Вы шарите немного в этих проекциях, то можете смело переходить к следующему пункту. Если же нет, то специально на этот случай, у меня есть другая статья, про проекции сил. Переходите, просвещайтесь, после чего, обязательно, возвращайтесь сюда!
Должны уметь составлять сумму моментов относительно точки
Немного теории! Познакомимся для начала с самим понятием момент силы. Момент силы — это произведение силы на плечо. Где плечо — это кратчайшее расстояние от точки до силы, то есть перпендикуляр. Проиллюстрирую написанное:
На изображении показано, как определить момент силы F, относительно точки O.
Так же, для моментов, нужно задаться каким-то правилом знаков. Сила относительно точки может поворачивать как по часовой стрелке, так и против нее. Я в своих уроках буду придерживаться такого правила:
Причем, это правило условно! Какое правило Вы будете использовать совсем не важно, результат получите тот же самый. В теоретической механике, к примеру, делают также как я рассказываю.
Должны разбираться в основных видах опор
Теперь поговорим о самих опорах. В этой статье, будем работать с двумя типами опор: шарнирно-подвижной и шарнирно-неподвижной.
Шарнирно-подвижная опора препятствует вертикальному перемещению элементу конструкции, в связи с чем, в ней, под действием внешней нагрузки возникает вертикальная реакция. Обозначают ее обычно как Ri, где i — точка крепления опоры.
Шарнирно-неподвижная опора имеет две реакции: вертикальную и горизонтальную. Так как препятствует перемещению в этих двух направлениях.
Вообще-то способов закрепления элементов конструкций и их условных обозначений достаточно много, но в рамках этой статьи их рассматривать не будем.
Примеры определения сил реакций опор
Вроде, всю подготовительную информацию дал, теперь будем рассматривать конкретные примеры. И начнем с простейшей расчетной схемы балки.
Определение реакций опор для балки
Возьмем балку на двух опорах, длиной 2 метра. Загрузим ее, посередине пролета, сосредоточенной силой:
Для этой расчетной схемы, выгодно записать такое условие равновесия: То есть, будем составлять две суммы моментов относительно опорных точек, из которых можно сразу выразить реакции в опорах. В шарнирно-неподвижной опоре горизонтальная реакция будет равна нулю, ввиду того, что горизонтальные силы отсутствуют. Последним уравнением, взяв сумму проекций на вертикальную ось, сможем проверить правильность нахождения опорных реакций, это сумма должна быть равна нулю.
Введем систему координат, пустим ось х вдоль балки, а ось y вертикально. Обозначим реакции в опорах как RA и RB:
Запишем уравнение моментов, относительно точки А. Сила F поворачивает ПО часовой стрелки, записываем ее со знаком МИНУС и умножаем на плечо. Сила RB поворачивает ПРОТИВ часовой стрелки, пишем ее со знаком ПЛЮС и умножаем на плечо. Все это приравниваем к нулю:
Из полученного уравнения выражаем реакцию RB.
Первая реакция найдена! Вторая реакция находится аналогично, только теперь уравнение моментов записываем относительно другой точки:
После нахождения реакций, делаем проверку:
Определение реакций опор для балки с распределенной нагрузкой
Теперь рассмотрим балку, загруженную распределенной нагрузкой:
Перед тем как посчитать реакции опор, распределенную нагрузку нужно свернуть до сосредоточенной силы. Если умножить интенсивность q на длину участка, на которой действует нагрузка, получим силу Q. Сила Q будет находиться ровно посередине балки, как и сила F в нашем первом примере:
Подробно комментировать нахождение реакций в опорах здесь, не буду. Просто приведу решение:
Определение опорных реакций для плоской рамы
Теперь, после освоения азов по расчету реакций, предлагаю выполнить расчет плоской рамы. Для примера, возьмем раму, загруженную всевозможными видами нагрузок:
Проводим ряд действий с расчетной схемой рамы:
Для такой расчетной схемы, лучше использовать следующую форму условий равновесия:
Составив первое уравнение, относительно точки A, сразу найдем реакцию в опоре B:
Записав второе уравнение, сумму проекций на ось х, найдем горизонтальную реакцию HA:
И, наконец, третье уравнение, позволит найти реакцию RA:
Не пугайтесь отрицательного значения реакции! Это значит, что при отбрасывании опоры, мы не угадали с направлением этой силы.
Расчет же показал, что RA, направленна в другую сторону:
В итоге, получили следующие реакции в опорах рамы:
Осталось проверить наши расчеты! Для этого предлагаю записать уравнение моментов, относительно точки B. И если, эта сумму будет равна нулю, то расчет выполнен верно:
Как видим, расчет реакций выполнен правильно!
На этом заканчиваю данный урок. Если у Вас остались какие-то вопросы по нахождению опорных реакций, смело задавайте их в комментариях к этой статье. Обязательно на все отвечу!
Спасибо за внимание! Если понравилась данная статья, расскажите о ней своим одногруппникам, не жадничайте 🙂
Также рекомендую подписаться на наши соц. сети, чтобы быть в курсе обновлений материалов проекта.
Определение внутренних усилий в балках
при плоском поперечном изгибе (задачи № 12–15)
Александров А. В., Потапов В. Д., Державин Б. П. Сопротивление материалов. М.: Высш. шк., 1995. Гл. 2 (§ 2.5).
Гастев В. А. Краткий курс сопротивления материалов. М.: Физматгиз, 1977. Гл. 5 (§ 22).
Дарков А. В., Шпиро Г. С. Сопротивление материалов. М.: Высш. шк., 1989. Гл. 7 (§ 7.1–7.5).
Как было сказано выше, при плоском поперечном изгибе в балке возникают два внутренних усилия: поперечная сила Q и изгибающий момент M. В соответствии с методом сечений из уравнений отсеченной части балки следует, что поперечную силуможно найти как сумму проекций всех внешних сил, взятых с одной стороны от сечения, на ось, перпендикулярную оси стержня (ось z). Изгибающий момент численно равен сумме моментов всех внешних сил, взятых с одной стороны от сечения, относительно оси, проходящей через центр тяжести рассматриваемого сечения (оси y).
|
Введем правила знаков для поперечной силы и изгибающего момента. Поперечная сила считается положительной, если она обходит сечение по часовой стрелке (т. е. сила, находящаяся слева от сечения и направленная вверх, или сила, находящаяся справа от сечения и направленная вниз, – положительны) (рис. 4.5, а).Изгибающий момент положителен, если он изгибает балку выпуклостью вниз. Обращаем внимание на то, что знак внутреннего усилия – изгибающего момента – зависит от того, с какой стороны от сечения находится момент[3]. Как видно из рис. 4.5, б момент, находящийся слева от сечения, действует по часовой стрелке, а момент, расположенный справа от сечения, – против часовой стрелки. И оба они положительны.
При построении эпюр Q и М договоримся на эпюре Q положительные значения откладывать сверху нулевой линии. На эпюре М у строителей принято откладывать положительные ординаты снизу. Такое правило построения эпюры М называется построением эпюры со стороны растянутых волокон, т. е. положительные значения М откладываются в сторону выпуклости изогнутой балки.
Известно [2], что изгибающий момент М, поперечная сила и интенсивность распределенной нагрузки q связаны между собой такими дифференциальными зависимостями:
, (4.11)
(4.12)
и, как следствие (4.11) и (4.12),
. (4.13)
При выводе формул (4.11)–(4.13) нагрузка считалась положительной, если она направлена вниз.
Из определений для поперечной силы и изгибающего момента, а также из дифференциальных зависимостей (4.11)–(4.13) вытекают следующие правила проверки правильности построения эпюр Q и М:
На эпюре Q под сосредоточенной силой имеет место скачок на величину этой силы. На эпюре М в этом сечении должен быть перелом, т. е. резкое изменение угла наклона прямой (или касательной к кривой).
На эпюре М скачок имеет место под сосредоточенной парой на величину этой пары.
Из зависимостей (4.11), (4.12) можно определить вид функций Q и М:
· если на участке отсутствует распределенная нагрузка (q = 0), то , а М – линейная функция x;
· если на участке действует равномерно распределенная нагрузка (q = const), то Q – линейная функция, а М – квадратная парабола;
· если на участке действует линейно распределенная нагрузка, то соответственно Q является квадратной параболой, а М – кубической.
3. Характер поведения функции на участке (то есть ее возрастание или убывание) зависит, как известно, от знака первой производной функции. И из дифференциальных зависимостей (4.11), (4.12) следует:
· если на участке распределенная нагрузка q > 0 (действует вниз), то поперечная сила Q на этом участке является убывающей функцией;
· если на участке поперечная сила положительна, то функция М(x) возрастает;
· если на участке в каком-то сечении функция
, то на эпюре М в этом сечении имеет место экстремум.
4. По знаку второй производной функции определяется выпуклость функции. Из зависимости (4.13) вытекает, что эпюра М всегда имеет выпуклость в сторону действия распределенной нагрузки (q – вниз, выпуклость – вниз и наоборот). По знаку второй производной от Q можно определить выпуклость эпюры Q. Из (4.11)
и, если q(x) – возрастающая функция, то и эпюра Q имеет выпуклость вверх.
6. Из (4.11) следует, что
.
Это означает, что приращение изгибающего момента DМ на участке между сечениями х1 и х2 равно площади эпюры Q на указанном участке.
.
То есть приращение поперечной силы на участке между сечениями х1 и х2 равно площади графика
на этом участке. Например, если нагрузка q является равномерно распределенной, то площадь графика q равна
, где l – длина участка, на котором действует q.
Примечание. Зависимости (4.11) и (4.12) и перечисленные правила справедливы, если начало отсчета x вести слева направо и эпюру М строить со стороны растянутых волокон.
Рекомендуем после построения эпюр обязательно проанализировать результаты, проверив выполняются ли все перечисленные правила в решенной Вами задаче.
Пример 1
Условие задачи
|
Дана балка с действующими на нее нагрузками (рис. 4.6, а). Требуется определить внутренние усилия – поперечную силу Q и изгибающий момент М в балке, построить графики их изменения вдоль оси стержня (эпюры Q и М).
Решение
Прежде всего, найдем опорные реакции. Балка имеет жесткое защемление на правом конце[4] и в этом закреплении при заданной вертикальной нагрузке возникают две опорные реакции: вертикальная реакция RA и реактивный момент MA. Горизонтальная реакция при действии вертикальной нагрузки равна нулю. Это следует из уравнения равновесия «сумма проекций всех сил на горизонтальную ось равна нулю». Определим RA и MA, используя два других уравнения статики. Желательно составлять такие уравнения, в каждое из которых входит только одна неизвестная. В данном случае такими уравнениями являются «сумма проекций всех сил на вертикальную ось (ось z) равна нулю» и «сумма моментов всех сил относительно точки А равна нулю»:
;
;
;
Из первого уравнения найдем RA = 30 кН, из второго – МА =5 кН×м. Полученные положительные знаки опорных реакций подтверждают выбранные нами направления опорных реакций: RA – вверх, а МА – против часовой стрелки. Для проверки рекомендуем использовать любое другое уравнение равновесия, например
:
– 30×2 – 15×2×1 – 60 + 10×1×2,5 + 30×4+5 = – 150 + 150 = 0.
Теперь определяем внутренние усилия: поперечную силу Q и изгибающий момент М. В соответствии с методом сечений рассекаем балку на каждом участке (в данной задаче их три) произвольным сечением и рассматриваем все силы, расположенные с одной стороны от сечения: слева или справа. Удобно рассматривать все силы с той стороны от сечения, где сил меньше. Начало отсчета координаты x на каждом участке можно выбирать произвольным образом. Например, на рис. 4.6, а начало отсчета x на каждом участке – свое и находится в начале участка. Запишем выражения для Q и М на каждом участке.
Участок 1: .
Рассмотрим силы, расположенные слева от сечения. По определению поперечной силы и с учетом правила знаков для Q (см. рис. 4.5, а):
.
Здесь – равнодействующая равномерно распределенной нагрузки, действующей слева от сечения.
По определению изгибающего момента и с учетом правила знаков для М (см. рис. 4.5, б):
,
где во втором слагаемом – плечо равнодействующей равномерно распределенной нагрузки (
), взятой слева от сечения (равнодействующая приложена по середине длины отсеченной части балки x1).
Для построения эпюр найдем значения Q и М на границах участка:
в начале участка (х1 = 0) , а
;
в конце участка ( )
;
.
Участок 2: .
Снова рассмотрим все силы, расположенные слева от сечения.
;
.
Граничные значения Q и М:
в начале участка ( )
;
,
в конце участка ( )
;
.
Участок 3: .
Теперь рациональнее рассмотреть все силы справа от сечения. Тогда
;
.
Из этих выражений следует, что поперечная сила на третьем участке – постоянная величина, а изгибающий момент меняется по линейному закону и на границах участка имеет следующие значения:
в начале участка ( )
,
в конце участка ( )
.
Запишем результаты определения внутренних усилий в таблицу, сосчитав численные значения Q и М на границах участков (табл. 1).
|
Из таблицы видно, что поперечная сила на первом участке меняет свой знак, т. е. график Q пересекает нулевую линию. Это значит, что изгибающий момент на этом участке имеет экстремум. Найдем максимальное значение М на этом участке. Сначала определим то значение координаты х1, при котором поперечная сила равна нулю. Обозначим это значение координаты х0 (см. рис. 4.6).
х0 = 1,33 м.
Чтобы найти максимальное значение изгибающего момента, подставим х0 в выражение для М на первом участке:
кН×м.
По результатам вычислений в таблице строим эпюры Q и М на каждом участке (см. рис. 4.6, б). Не забываем после построения эпюр проанализировать результаты по тем правилам проверки правильности построения эпюр, которые перечислены ранее.
Пример 2
Условие задачи
На балку кроме равномерно распределенной нагрузки действует линейно распределенная (треугольная) нагрузка (рис. 4.7, а). Построим эпюры распределения поперечной силы и изгибающего момента, обращая внимание на определение Q и М на участке с треугольной нагрузкой.
Решение
Найдем опорные реакции. Балка имеет шарнирное опирание и для определения двух не равных нулю опорных реакций RA и RB (горизонтальная реакция HA = 0) составим два независимых уравнения статики. Рациональными уравнениями, в каждое из которых входит одна неизвестная реакция, в данном случае являются:
;
,
;
.
Напомним как определяется момент от треугольной нагрузки. Равнодействующая от треугольной нагрузки равна площади треугольника и приложена в центре тяжести треугольника, поэтому плечо этой равнодействующей относительно точки А равно
, а относительно точки В –
. Из этих уравнений найдем RA = – 31,9 кН, RB = – 18,1 кН. Отрицательные знаки показывают, что обе реакции направлены не вверх, как показано на рис. 4.7, а, а в противоположную сторону. Для проверки опорных реакций составим уравнение равновесия «сумма проекций сил на вертикальную ось z равна нулю»:
;
.
Определение внутренних усилий производим, записывая выражения для Q и М в таблицу (табл. 2).
Поясним выражения для Q и М на втором участке, а именно третьи слагаемые в этих выражениях, учитывающие треугольную нагрузку. Чтобы найти равнодействующую от треугольной нагрузки, расположенной слева от рассматриваемого сечения на участке длиной х2, определим интенсивность распределенной нагрузки в сечении х2, которая на рис. 4.7, а обозначена . Для этого составим пропорцию:
, откуда
. Тогда равнодействующая этой распределенной нагрузки на участке длиной х2
. Она приложена в центре тяжести треугольника, и изгибающий момент, создаваемый этой нагрузкой, равен
, где
– плечо равнодействующей.
|
Поскольку поперечная сила на втором участке меняет знак, найдем экстремальное значение изгибающего момента в сечении х0на этом участке (рис. 4.7, б). Определим величину х0, приравняв выражение для поперечной силы на втором участке нулю:
, откуда х0 = 2,89 м. Тогда
|
По полученным в таблице выражениям строим эпюры внутренних усилий. Напомним, что выпуклость эпюры М направлена в сторону распределенной нагрузки. Выпуклость эпюры Q на втором участке можно определить по знаку второй производной . В данном случае функция
является убывающей, следовательно
, а
. Это означает, что эпюра Q имеет выпуклость вниз. Можно определить выпуклость эпюры поперечной силы и по-другому. В сечении, где интенсивность распределенной нагрузки равна нулю (начало второго участка в данной задаче), угол наклона касательной к кривой Q(x) должен равняться нулю, так как в этом сечении
. Это возможно тогда, когда функция Q(x) имеет выпуклость вниз.
После того, как Вы нарисовали эпюры, рекомендуем обязательно проанализировать их по правилам проверки правильности построения эпюр.
4.1.2. Проверка прочности балок при плоском поперечном изгибе (задачи № 16–19)
Александров А. В., Потапов В. Д., Державин Б. П. Сопротивление материалов. М.: Высш. шк., 1995. Гл. 6 (§ 6.1–6.3), гл. 7 (§ 7.1, 7.2), гл. 4 (§ 4.1, 4.2).
Гастев В. А. Краткий курс сопротивления материалов. М.: Физматгиз, 1977. Гл. 5 (§ 23–24), гл. 15.
Дарков А. В., Шпиро Г. С. Сопротивление материалов. М.: Высш. шк., 1989. Гл. 7 (§ 7.6–7.8, 7.10), гл. 5 (§ 5.1–5.5).
Если Вы научились строить эпюры Q и М, то можете приступать к проверке прочности балок. Задача о проверке прочности балки чаще всего сводится к решению двух вопросов:
* подбору сечения балки, т. е. определению таких минимальных размеров поперечного сечения, которые удовлетворяют условиям прочности в опасных точках;
* определению грузоподъемности балки, т. е. нахождению такой максимальной нагрузки (допускаемой нагрузки) на балку, при которой удовлетворяются условия прочности во всех опасных точках.
Рассмотрим примеры проверки прочности балок круглого или прямоугольного сечений, двутавровых балок и балок произвольного моносимметричного сечения.
Пример 1
Условие задачи
На балку круглого поперечного сечения действует нагрузка, показанная на рис. 4.8, а. Требуется подобрать размеры поперечного сечения (или определить грузоподъемность балки) так, чтобы выполнялись условия прочности во всех опасных точках.
Решение
Строим эпюры Q и М (рис. 4.8, б). Эпюры Q и М нужны для того, чтобы найти положение опасных сечений и опасных точек в балке. Найдем положение опасных сечений для этой балки. Опасными сечениями в балках круглого и прямоугольного сечений являются:
* сечение, где действует максимальный по модулю изгибающий момент (сечение а–а на рис. 4.8, в);
* сечение, где действует наибольшая по абсолютной величине поперечная сила (сечение b–b на рис. 4.8, в).
В опасных сечениях находятся опасные точки –точки, в которых действуют либо максимальные нормальные, либо максимальные касательные напряжения. Чтобы найти положение опасных точек, посмотрим на эпюры распределения нормальных s и касательных t напряжений по высоте балки, которые построены на рис. 4.8, в. Из эпюры s видно, что наибольшие нормальные напряжения действуют в точках, наиболее удаленных от нейтральной оси y. Таким образом, опасными точками с максимальными нормальными напряжениями являются точки 1, 1¢, расположенные в сечении а–а (рис. 4.8, в). В одной точке действуют максимальные растягивающие напряжения, в другой – максимальные сжимающие. В данной задаче в сечении а–а максимальный момент положителен, т. е. он изгибает балку выпуклостью вниз, поэтому в точке 1 действуют растягивающие, а в точке 1¢ – сжимающие напряжения. Если допускаемые напряжения при растяжении и сжатии материала балки одинаковы (дерево или пластичный материал), то обе точки являются равноопасными. Опасная точка с максимальными касательными напряжениями, как видно из эпюры t, расположена на оси балки в сечении b–b, где действует наибольшая поперечная сила (точка 2 на рис. 4.8, в).
|
Запишем условия прочности в опасных точках. Начнем с рассмотрения опасных точек 1, 1¢, так как именно эти точки чаще всего бывают наиболее опасными. Эти точки находятся в линейном напряженном состоянии (рис. 4.9, а) и условие прочности в этих точках записывается так же, как при растяжении-сжатии:
,
|
где максимальные напряжения определяем по формуле (4.3). Тогда условие прочности в точках 1, 1¢ будет иметь вид
.
Если стоит задача подбора сечения, то из этого условия находим требуемый момент сопротивления балки:
,
Если требуется определить грузоподъемность балки, то из условия прочности в точках 1, 1¢ находим максимальное значение изгибающего момента:
,
которое зависит от нагрузки. Зная эту зависимость из эпюры М, найдем значение допускаемой нагрузки.
Решение задачи будет закончено только тогда, когда мы убедимся, что полученный размер поперечного сечения балки (или найденная допускаемая нагрузка) удовлетворяют условию прочности во второй опасной точке. Поскольку в точке 2 действуют только касательные напряжения (нормальные напряжения в точках, лежащих на оси балки, равны нулю – это видно из эпюры s на рис 4.8, в), то напряженное состояние этой точки – чистый сдвиг (рис. 4.9, б). Если неизвестно опытное значение допускаемого касательного напряжения, то условие прочности при чистом сдвиге записывается по соответствующей материалу балки теории прочности. Например, для пластичного материала из формул (4.9), (4.10) для чистого сдвига можно записать такие условия прочности для точки 2:
– по третьей теории и
– по четвертой теории прочности.
Для деревянной балки, а дерево – анизотропный материал, теории прочности, полученные для изотропных материалов, не справедливы. В этом случае для проверки прочности необходимо знать допускаемое значение касательного напряжения [t], полученное на основании опытных данных. Тогда для деревянной балки условие прочности в точке 2 записывается так:
.
Здесь максимальное касательное напряжение определяем в зависимости от формы поперечного сечения по формулам (4.6). Например, для рассматриваемой балки с подобранным сечением из трех бревен радиусом 12 см
Если условие прочности в точке 2 выполняться не будет, то необходимо подобрать сечение или найти грузоподъемность балки из условия прочности в этой точке.
Пример 2
Условие задачи
Стальная прокатная двутавровая балка загружена нагрузками, показанными на рис. 4.10, а. Подберем номер двутавра так, чтобы выполнялись условия прочности во всех опасных точках.
Решение
Строим эпюры Q и М. По построенным эпюрам Q и М (рис. 4.10, б) найдем положение опасных точек в двутавровой балке. Сначала покажем на фасаде балки опасные сечения. Кроме опасных сечений, где действуют максимальный изгибающий момент (сечение а–а на рис. 4.10, в) и наибольшая поперечная сила (сечение b–b на рис. 4.10, в), в двутавровой балке существует еще одно опасное сечение – это сечение, где Q и М одновременно имеют большие значения. В рассматриваемом примере это сечение с–с на рис. 4.10, в. В опасных сечениях находятся опасные точки. В сечении а–а – точки 1, 1¢ с максимальными нормальными напряжениями, в сечении b–b – точка 2, в которой действует наибольшее касательное напряжение. Особенностью проверки прочности двутавровой балки является появление новых по сравнению с балками круглого и прямоугольного сечений опасных точек. Это связано с особенностью эпюры распределения касательных напряжений по высоте двутавра. Точки 3, 3¢, находящиеся в сечении с–с и расположенные в крайних точках стенки на сопряжении с полкой (рис. 4.10, в), опасны, так как в них одновременно действуют большие нормальные и большие касательные напряжения.
Подберем размер двутавра (номер двутавра) из условия прочности в точках 1, 1¢ – именно эти точки являются, как правило, наиболее опасными, а затем проверим прочность в остальных опасных точках. Точки 1, 1¢ находятся в линейном напряженном состоянии (рис. 4.9, а) и условие прочности в этих точках имеет вид
.
|
Отсюда определяем необходимый момент сопротивления . По таблице сортамента прокатной стали (например, в [1]) подбираем номер двутавра, у которого момент сопротивления
имеет близкое к
значение. (Обратите внимание, что в таблице сортамента – другое обозначение осей и принятому нами обозначению
там соответствует
). Для балки, изображенной на рис. 4.10, выполненной из стали с допускаемым напряжением 160 МПа,
|
После того, как найден номер двутавра, необходимо убедиться, что выполняются условия прочности в остальных опасных точках. Точка 2, в которой нормальные напряжения равны нулю, а касательные – максимальны, находится в напряженном состоянии «чистый сдвиг» и условие прочности в ней записывается по теории прочности, справедливой для пластичных материалов (4.9) или (4.10). Максимальные касательные напряжения находим по формуле Журавского (4.2). Рассмотрим подробно как находить статический момент отсеченной части , входящий в формулу Журавского. Статический момент отсеченной части зависит от того, где находится точка, в которой определяется касательное напряжение. Чтобы найти отсеченную часть, надо мысленно разрезать поперечное сечение через точку, в которой ищем t, перпендикулярно направлению касательного напряжения. Любая из «отрезанных» частей может считаться отсеченной. Для точки 2 отсеченная часть сечения показана на рис. 4.11, а (заштрихованная часть) – это половина сечения. Для простых фигур (прямоугольник, круг), положение центра тяжести которых известно, статический момент находится по формуле
,
.
Проверим прочность в точках 3, 3¢, которые находятся в «балочном» напряженном состоянии (см. рис. 4.4). Найдем напряжения, действующие в точке 3. Нормальное напряжение ищем по формуле (4.1). Координата точки 3 и
Положительный знак полученного напряжения показывает, что в точке 3, расположенной выше нейтральной оси, действует растягивающее напряжение. Для определения касательного напряжения по формуле Журавского получим сначала статический момент отсеченной части. Отсеченной частью сечения для точки 3 будет полка (см. рис. 4.11, б) и
Так как точка 3 находится в стенке двутавра, то 0,7 см. Тогда касательное напряжение в точке 3
Подставляя найденные значения s и t в условие прочности по третьей теории (4.9), убеждаемся в том, что оно удовлетворяется:
На этом процесс подбора двутавра заканчивается.
Примечание. В условии задачи № 17 есть пункты 7 и 8 [4].в которых требуется исследовать напряженное состояние произвольной точки двутавра. (Выполнение этой части задачи необязательны для студентов заочной формы обучения, студенты дневной и вечерней форм обучения могут выполнять эти пункты по требованию преподавателя) Эта часть задачи не имеет отношения к проверке прочности двутавра, носит академический характер и необходима для лучшего освоения теории изгиба. После того, как Вы выбрали произвольную точку, расположенную в сечении, где и Q, и М не равны нулю, найдите нормальное и касательное напряжения в этой точке по формулам (4.1), (4.2), используя те навыки, которые Вы приобрели при определении напряжений в опасных точках. Выделите вокруг исследуемой точки элементарный параллелепипед (элемент) и покажите на рисунке действующие на гранях элемента напряжения с учетом их знаков. Дальше определите главные напряжения и положение главных площадок, применяя знания, полученные при изучении разд. 2 «Исследование плоского напряженного состояния» в [5]. Поверните на рисунке элемент по главным направлениям и покажите на его гранях главные напряжения.
Пример 3
Условие задачи
|
На балку моносимметричного сечения, выполненную из чугуна, действует нагрузка, показанная на рис. 4.12, а. Поперечное сечение балки изображает рис. 4.13. Надо найти грузоподъемность балки, т. е. значение допускаемой нагрузки, при которой обеспечена прочность балки.
Решение
Найдем геометрические характеристики заданного поперечного сечения: осевые моменты инерции относительно главных центральных осей. Сечение имеет только одну ось симметрии, эта ось является одной из главных осей инерции. Обозначим ее z. Вторая главная ось y проходит через центр тяжести сечения. Определим положение центра тяжести сечения по формуле
.
|
Статический момент определяем относительно произвольной оси а–а, перпендикулярной оси z (оси симметрии), как сумму статических моментов фигур, составляющих заданное поперечное сечение. В данном случае сечение разбиваем на три прямоугольника и площадь сечения состоит из площадей трех фигур: двух стенок Ас и полки Ап:
. Ось а–а рационально расположить так, чтобы статический момент одной из фигур равнялся нулю. Это произойдет, если ось а–а провести через центр тяжести какой-то фигуры, например, через центр тяжести полки (см. рис. 4.13). Тогда статический момент полки равен нулю и полный статический момент Sa равен удвоенному статическому моменту стенки:
.
Здесь первый множитель – удвоенная площадь стенки, второй – координата центра тяжести стенки[5].
Найдя положение центра тяжести сечения, проведем через него вторую главную ось y (см. рис. 4.13). Рекомендуем рисовать сечение в масштабе, тогда по масштабу можно проконтролировать правильность определения центра тяжести сечения. В данном случае очевидно, что центр тяжести должен быть смещен к полке.
Теперь определим осевой момент инерции относительно оси y. Находим его как сумму моментов инерции трех фигур: двух стенок ( ) и полки (
). Для определения момента инерции каждой фигуры используем формулу
.
Здесь – момент инерции фигуры относительно оси y0, проходящей через центр тяжести фигуры и параллельной оси y, а – расстояние между осями y и y0. Таким образом,
.
Расстояния h1 и h2 показаны на рис. 4.13. Моменты инерции полки и стенки относительно собственных осей y0 находим по формуле, справедливой для прямоугольника (4.4),
,
где b – ширина прямоугольника (параллельна оси y0); h – его высота. Например, для полки
.
Примечание. Рекомендуем для тренировки аналогично найти момент инерции поперечного сечения относительно оси z, несмотря на то, что в проверке прочности этой балки он не участвует.
Строим эпюры поперечной силы и изгибающего момента, выражая ординаты через неизвестный параметр нагрузки (в данной задаче через q – см. рис. 4.12, б).
Прежде чем находить положение опасных сечений и опасных точек по эпюрам Q и М, выясним как рационально расположить поперечное сечение балки: полкой вверх или полкой вниз. Поскольку чугун – хрупкий материал и прочность при растяжении у него меньше прочности при сжатии, оптимальным положением сечения является такое положение, при котором максимальные растягивающие напряжения будут меньше максимальных по модулю сжимающих напряжений. В рассматриваемом примере максимальный изгибающий момент отрицателен, то есть балка в сечении, где действует , изгибается выпуклостью вверх и растягивающие напряжения будут в верхних волокнах. Поэтому располагаем поперечное сечение так, чтобы центр тяжести сечения был ближе к верхним волокнам, т. е. полкой вверх.
Найдем положение опасных сечений и опасных точек так же, как в двутавровой балке (см. рис. 4.12, в). Поскольку максимальная поперечная сила и наибольший изгибающий момент действуют в данном примере в одном сечении, то опасные точки 1, 1¢, 2 и 3 расположены в одном сечении а–а. Особенностью расчета балок из хрупкого материала является то обстоятельство, что точки 1 и 1¢ не являются равноопасными. Так как хрупкий материал имеет разную прочность при растяжении и сжатии, то проверять прочность надо как в точке 1, в которой действуют максимальные растягивающие напряжения, так и в точке 1¢ с наибольшими сжимающими напряжениями. Если эпюра изгибающих моментов меняет свой знак, как в рассматриваемом примере, то появляется еще одна опасная точка – точка 4 (см. рис. 4.12, в). В этой точке действуют растягивающие напряжения, и поскольку она расположена дальше от нейтральной оси, чем точка 1, величина растягивающего напряжения в точке 4 может оказаться больше, чем в точке 1 несмотря на то, что изгибающий момент в сечении b–b меньше, чем в сечении а–а.
Определим допускаемую нагрузку из условия прочности в точке 1, где действуют максимальные растягивающие напряжения:
,
.
Здесь – момент сопротивления растяжению;
– расстояние до наиболее растянутого волокна показано на рис. 4.13. Для рассматриваемого примера
и
.
Проверим прочность в остальных опасных точках, используя найденное значение допускаемой нагрузки. В точке 1¢ с наибольшими сжимающими напряжениями
,
где – момент сопротивления сжатию. (Расстояние
показано на рис. 4.13.)
Для рассматриваемого примера опасной является и точка 4. Условие прочности в этой точке:
.
Чтобы проверить прочность в точке 2 с максимальными касательными напряжениями, находящейся в напряженном состоянии «чистый сдвиг», необходимо применить теорию прочности, справедливую для хрупкого материала. Например, из теории Мора (4.8) для чистого сдвига получим следующее условие прочности:
,
где максимальное касательное напряжение определяем по формуле Журавского (4.2), в которой статический момент
находим для отсеченной части, расположенной по одну (любую) сторону от нейтральной оси.
Наконец, условие прочности в точке 3, где действуют и нормальные (растягивающие), и касательные напряжения, записываем по теории прочности для «балочного» напряженного состояния, справедливой для хрупкого материала, например по теории Мора (4.8). Нормальные и касательные напряжения в этой точке определяем по формулам (4.1) и (4.2).
Если в какой-то точке условие прочности не будет выполняться, необходимо найти новое значение допускаемой нагрузки из условия прочности в этой точке.
Примечание; В рассматриваемой задаче, кроме условия прочности, должно выполняться и условие жесткости, т. е. максимальный прогиб не должен превосходить значения допускаемого прогиба. Эта часть задачи является необязательной. Вопрос о нахождении прогибов решается в следующем разделе «Определение перемещений и проверка жесткости балок».
4.1.3. Определение перемещений и проверка жесткости балок (задачи № 19, 20)
Александров А. В., Потапов В. Д., Державин Б. П. Сопротивление материалов. М.: Высш. шк., 1995. Гл. 8 (§ 8.1–8.5, 8.9).
Гастев В. А. Краткий курс сопротивления материалов. М.: Физматгиз, 1977. Гл. 5 (§ 25), гл. 8.
Дарков А. В., Шпиро Г. С. Сопротивление материалов. М.: Высш. шк., 1989. Гл. 7 (§ 7.13–7.14), гл. 11 (§ 11.4, 11.5).