какие условия нужны для синтеза соляной кислоты
Какие условия нужны для синтеза соляной кислоты
Хлористоводородная кислота вырабатывается париетальными (обкладочными) клетками желез желудка. Эти клетки характеризуются богатством митохондрий, расположенных вдоль внутриклеточных канальцев. Площадь мембраны канальцев и апикальной поверхности клеток во время стимуляции на высоте секреции резко возрастает за счет встроенных в мембрану тубовезикул (трубочек-пузырьков), что сопровождается значительным увеличением клеточных канальцев, проникающих вплоть до базальной мембраны. Это значительно увеличивает возможности синтеза гландулоцитом соляной кислоты. Вдоль канальцев располагается множество митохондрий, площадь внутренней мембраны которых возрастает в процессе биосинтеза НСl. Соответственно увеличивается площадь контакта канальцев и апикальной мембраны клетки. Таким образом, увеличение секреторной активности париетальных клеток обусловлено увеличением площади секреторной мембраны.
Рис. 11.11. Образование соляной кислоты желудочного сока. Пояснения в тексте. Символ ® означает активность ферментных транспортных систем мембраны кислотопродуцирующих клеток. Стрелками показано направление движения ионов и воды.
Секреция НСl является ярко выраженным цАМФ-зависимым процессом, активация которого протекает на фоне усиления гликогенолитиче-ской и гликолитической активности, что сопровождается продукцией пирувата. Окислительное декарбоксилирование пирувата до ацетил-КоА. С02 осуществляется пируватдегидрогеназным комплексом и сопровождается накоплением в цитоплазме НАД • Н2. Последний используется для генерирования Н+ в процессе секреции НС1. Расщепление триглицеридов в слизистой оболочке желудка под влиянием триглицеридлипазы и последующая утилизация жирных кислот создает в 3—4 раза больший приток восстановительных эквивалентов в митохондриальную цепь переноса электронов. Как аэробный гликолиз, так и окисление жирных кислот запускаются посредством цАМФ-зависимого фосфорилирования соответствующих ферментов, обеспечивающих генерирование ацетил-КоА в цикле Кребса и восстановительных эквивалентов для электронпереносящей цепи митохондрий. Са2+ является необходимым элементом секреторной системы НС1.
Процесс цАМФ-зависимого фосфорилирования обеспечивает активацию желудочной карбоангидразы, которая является регулятором кислотно-основного равновесия в кислотопродуцирующих клетках. Работа этих клеток сопровождается длительной и массовой потерей ионов Н+, что приводит к накоплению в клетке ОН», способных оказать повреждающее действие на клеточные структуры. Нейтрализация гидроксильных ионов и является главной функцией карбоангидразы. Образующиеся бикарбонатные ионы посредством электронейтрального механизма выводятся в кровь, а ионы СГ входят в клетку.
Кислотопродуцирующие клетки на наружных мембранах имеют две мембранные ферментные системы, участвующие в механизмах продукции Н+ и секреции НС1. Ими являются Na+-K+-ATФaзa и Н+-К+-АТФаза. Na+-К+-АТФаза, расположенная в базолатеральных мембранах клеток, переносит К+ из крови в обмен на Na+, а Н+-К+-АТФаза, локализованная в секреторной мембране, транспортирует калий из первичного секрета в обмен на выводимые в желудочный сок ионы Н+. Процесс образования соляной кислоты кислотопродуцирующими клетками схематически представлен на рис. 11.11.
В период секреции митохондрии всей массой охватывают в виде муфты секреторные канальцы, и их мембраны сливаются, образуя митохондриально-секреторный комплекс, где ионы Н+ непосредственно акцептируются Н+-К+-АТФазой секреторной мембраны и транспортируются из клетки.
Таким образом, кислотообразующая функция обкладочных клеток осуществляется благодаря процессу фосфорилирования — дефосфорилирования, наличию митохондриальной окислительной цепи, транспортирующей ионы Н+ из матриксного пространства, а также активности Н+-К+-АТФазы секреторной мембраны, перекачивающей протоны из клетки за счет энергии АТФ.
Вода поступает в канальцы клетки путем осмоса. Конечный секрет, поступающий в канальцы, содержит НСl в концентрации 155 ммоль/л, хлористый калий в концентрации 15 ммоль/л и очень малое количество хлористого натрия.
Соляная кислота и её
Соляная кислота образуется в обкладочных клетках желудочных желез и секретируется в полость желудка, где ее концентрация достигает 0,16 М (около 0,5%). За счет этого желудочный сок имеет низкое значение рН, в пределах 1—2. [50]
Обкладочные клетки продуцируют соляную кислоту одинаковой концентрации (160 ммоль/л), но кислотность выделяющегося сока варьирует за счет изменения числа функционирующих париетальных гландулоцитов и нейтрализации соляной кислоты щелочными компонентами желудочного сока. [51] Чем быстрее секреция соляной кислоты, тем меньше она нейтрализуется и тем выше кислотность желудочного сока. [52]
Синтез соляной кислоты в обкладочных клетках сопряжен с клеточным дыханием и является аэробным процессом; при гипоксии секреция кислоты прекращается. Согласно «карбоангидразной» гипотезе, ионы H + для синтеза соляной кислоты получаются в результате гидратации СО3 и диссоциации образовавшейся при этом Н2СО3. Этот процесс катализируется ферментом карбоангидразой. [53]
«АТФазная» гипотеза утверждает, что для транспорта этих ионов используется энергия АТФ, а Н + могут происходить из различных источников, в том числе поставляться карбоангидразой из фосфатной буферной системы. [55]
Сложные процессы, завершающиеся синтезом и экструзией из обкладочных клеток соляной кислоты, включают в себя три звена: [56]
реакции фосфорилирования — дефосфорилирования;
митохондриальную окислительную цепь, работающую в режиме помпы; т.е. переносящую протоны из матриксного пространства вовне;
Соляная кислота желудочного сока вызывает денатурацию и набухание белков и тем самым способствует их последующему расщеплению пепсинами, активирует пепсиногены, создает кислую среду, необходимую для расщепления пищевых белков пепсинами; участвует в антибактериальном действии желудочного сока и регуляции деятельности пищеварительного тракта (в зависимости от рН его содержимого усиливается или тормозится нервными механизмами и гастроинтестинальными гормонами его деятельность). [57]
В связи с наличием соляной кислоты желудочный сок имеет кислую реакцию (рН при переваривании пищи—1,5—2,5). У здоровых людей для нейтрализации 100 мл желудочного сока требуется 40—60 мл децинормального раствора щелочи. Это количество щелочи, необходимое для нейтрализации желудочного сока, характеризует его кислотность. [58]
Органические компоненты желудочного сока представлены азотсодержащими веществами (200—500 мг/л): мочевиной, мочевой и молочной кислотами, полипептидами. Содержание белка достигает 3 г/л, мукопротеидов — до 0,8 г/л, мукопротеаз — до 7 г/л. Органические вещества желудочного сока являются продуктами секреторной деятельности желудочных желез и обмена веществ в слизистой оболочке желудка, а также транспортируются через нее из крови. [59]
Главные клетки желудочных желез синтезируют несколько пепсиногенов, которые принято делить на две группы. [60]
Пепсиногены первой группы локализуются в фундальной части желудка, второй группы — в антральной части и начале двенадцатиперстной кишки. [61]
В желудочном соке от пепсиногена отщепляется N‑концевая часть молекулы, включающая 42 аминокислотных остатка (18% всего числа аминокислотных остатков молекулы пепсиногена). В результате отщепления части молекулы и конформационных перестроек оставшейся части образуется активный центр — получается фермент пепсин. [62]
При активации пепсиногенов путем отщепления от них полипептида образуется несколько пепсинов. Собственно пепсинами принято называть ферменты класса протеаз. [63]
Часть пепсина (около 1 %) переходит в кровеносное русло, откуда вследствие небольшого размера молекулы фермента проходит через клубочковый фильтр и выделяется с мочой (уропепсин) [64].
Определение содержания уропепсина в моче используется в лабораторной практике для характеристики протеолитической активности желудочного сока [65].
Пепсин гидролизует пептидные связи, удаленные от концов пептидной цепи: такие пептидгидролазы называют эндопептидазами[66].
Наибольшую активность пепсин проявляет (гидролизует белки с максимальной скоростью ) при рН 1,5—2,0. [67]
Протеаза, названная гастриксином, имеет оптимальный для гидролиза белков рН 3,2— 3,5. Соотношение содержания пепсина и гастриксина в желудочном соке человека колеблется от 1:2 до 1:5. Эти ферменты различаются действием на разные виды белков. [68]
Способность пепсинов гидролизовывать белки в широком диапазоне рН имеет большое значение для желудочного протеолиза, который происходит при разном рН в зависимости от объема и кислотности желудочного сока, буферных свойств и количества принятой пищи, диффузии кислого сока в глубь пищевого желудочного содержимого. [69]
В желудочном соке детей грудного возраста имеется фермент реннин, створаживающий молоко. [70]
Гидролиз белков происходит в непосредственной близости от слизистой оболочки. Проходящая перистальтическая волна «снимает» («слизывает») примукозальный слой, продвигает его к антральной части желудка, в результате чего к слизистой оболочке примыкает бывший более глубокий слой пищевого содержимого, на белки которого пепсины действовали при слабокислой реакции. Эти белки подвергаются гидролизу пепсинами в более кислой среде. [71]
Важным компонентом желудочного сока являются мукоиды, продуцируемые мукоцитами поверхностного эпителия, шейки фундальных и пилорических желез (до 15 г/л). К мукоидам относится и гастромукопротеид (внутренний фактор Касла), Слой слизи толщиной 1 —1,5 мм защищает слизистую оболочку желудка и называется слизистым защитным барьером желудка. Слизь — мукоидный секрет — представлена в основном двумя типами веществ — гликопротеинами и протеогликанами. [72]
Сок, выделяемый разными участками слизистой оболочки желудка содержит различное количество пепсиногена и соляной кислоты. Так, железы малой кривизны желудка продуцируют сок с более высокими кислотностью и содержанием пепсина, чем железы большой кривизны желудка. [73]
Железы в пилорической части желудка выделяют небольшое количество сока слабощелочной реакции с большим содержанием слизи. [74]
Увеличение секреции происходит при местном механическом и химическом раздражении пилорической части желудка. [75]
Секрет пилорических желез обладает небольшой протеолитической, липолитической и амилолитической активностью. Существенного значения в желудочном пищеварении ферменты, обусловливающие эту активность, не имеют. Щелочной пилорический секрет частично нейтрализует кислое содержимое желудка, эвакуируемое в двенадцатиперстную кишку. [76]
Показатели желудочной секреции имеют существенные индивидуальные, половые и возрастные различия. При патологии желудочная секреция может повышаться (гиперсекреция)или понижаться (гипосекреция), соответственно может меняться секреция соляной кислоты гипер- и гипоацидность, отсутствие ее в соке — анацидность, ахлоргидрия). Меняется содержание пепсиногенов и соотношение их видов в желудочном соке. [77]
Большое защитное значение имеет слизистый барьер желудка, разрушение которого может быть одной из причин повреждения слизистой оболочки желудка и даже глубже расположенных структур его стенки. Этот барьер повреждается при высокой концентрации в содержимом желудка соляной кислоты, алифатическими кислотами (уксусная, соляная, масляная, пропионовая) даже в небольшой концентрации, детергентами (желчные кислоты, салициловая и сульфосалициловая кислоты в кислой среде желудка), фосфолипазами, алкоголем. Длительный контакт этих веществ (при их относительно высокой концентрации» нарушает слизистый барьер и может привести к повреждению слизистой оболочки желудка. Разрушению слизистого барьера и стимуляции секреции соляной кислоты способствует деятельность микроорганизмов Helicobacter pylori. [78]
В кислой среде и в условиях нарушенного слизистого барьера возможно переваривание элементов слизистой оболочки пепсином (пептический фактор язвообра-зования). Этому способствует также снижение секреции гидрокарбонатов и микроциркуляции крови в слизистой оболочке желудка. [79]
Регуляция желудочной секреции [80]
Вне пищеварения железы желудка выделяют небольшое количество желудочного сока. [81]
Прием пищи резко увеличивает его выделение. Это происходит за счет стимуляции желудочных желез нервными и гуморальными механизмами, составляющими единую систему регуляции. [82]
Стимулирующие и тормозные регуляторные факторы обеспечивают зависимость сокоотделения желудка от вида принимаемой пищи. [83] Эта зависимость была впервые обнаружена в лаборатории И.П.Павлова в опытах на собаках с изолированным павловским желудочком, которым скармливалась различная пища. Объем и характер секреции во времени, кислотность и содержание в соке пепсинов определяются видом принятой пищи (рис. 302181150). [84]
Рис. 302181150. Кривые сокоотделения павловского желудочка на мясо, хлеб и молоко. [85]
Переваривание белков начинается в желудке
Расщепление белков до аминокислот начинается в желудке, продолжается в двенадцатиперстной кишке и заканчивается в тонком кишечнике. В некоторых случаях распад белков и превращения аминокислот могут происходить также в толстом кишечнике под влиянием микрофлоры.
Регуляция желудочного пищеварения
Регуляция осуществляется нервными (условные и безусловные рефлексы) и гуморальными механизмами. К гуморальным регуляторам желудочной секреции относятся гастрин и гистамин.
Гастрин секретируется специфичными G-клетками пилорического отдела:
Далее гастрин через системный кровоток достигает и стимулирует главные, обкладочные и добавочные клетки, что вызывает секрецию желудочного сока, в большей мере соляной кислоты. Также он обеспечивает секрецию гистамина, влияя на ECL-клетки (enterochromaffin-like cells, англ. энтерохромаффиноподобные клетки).
Закисление желудочного содержимого (pH 1,0) по механизму обратной отрицательной связи подавляет активность G-клеток, снижает секрецию гастрина и желудочного сока.
Соляная кислота
При нарушении нормальной секреции HCl возникают гипоацидный или гиперацидный гастрит, отличающиеся друг от друга по клиническим проявлениям, последствиям и требуемой схеме лечения.
Синтез соляной кислоты
Функции соляной кислоты
Изменение кислотности в желудке
Гипоацидное состояние развивается при снижении активности и/или количества обкладочных клеток, синтезирующих HCl. В результате могут развиваться самые разнообразные последствия, прямо или косвенно связанные с невыполнением соляной кислотой ее функций:
Гиперацидное состояние развивается при повышенной активности обкладочных клеток. Может приводить к клиническим проявлениям в виде воспаления стенки желудка, эрозии и язвенной болезни желудка и двенадцатипеперстной кишки.
Пепсин
Оптимум рН для работы пепсина 1,5-2,0.
Превращение пепсиногена в пепсин
Пепсин обладает невысокой специфичностью,
Связи, расщепляемые пепсином
Гастриксин
Гастриксин по своим функциям близок к пепсину, его количество в желудочном соке составляет 20-50% от количества пепсина. Синтезируется главными клетками желудка в виде прогастриксина (профермент) и активируется соляной кислотой. Оптимум рН гастриксина соответствует 3,2-3,5 и значение этот фермент имеет при питании молочно-растительной пищей, слабее стимулирующей выделение соляной кислоты и одновременно нейтрализующей ее в просвете желудка. Гастриксин является эндопептидазой и гидролизует связи, образованные карбоксильными группами дикарбоновых аминокислот.
В течение суток синтезируется около 2 г пепсина. Объем работы пепсина составляет примерно 10% от всех пептидных связей белков, попадающих в желудок.
Наличие в желудке двух протеаз, действующих при различных pH, позволяет организму пепсином переваривать белки мясной пищи, стимулирующей секрецию HCL, а гастриксином – белки растительно-молочной пищи.
Механизм образования соляной кислоты
Кислотность желудочного сока
Кислотность желудочного сока связана с наличием в нем различных неорганических (HCl, кислые фосфаты) и органических (оксо-, окси-, амино-, нуклеиновые, жирные кислоты и т.д.) кислот. В связи с этим выделяют понятие общая кислотность желудочного сока. Основная причина кислотности желудочного сока связана с наличием в нем соляной кислоты. Соляная кислота в желудочном соке находится в свободном и в связанном (с белками и продуктами их переваривания) состоянии.
Согласно карбоангидразной теории, источником Н + для HCl является Н2СО3, которая образуется в обкладочных клетках желудка из СО2 и Н2О под действием карбоангидразы: Н2О + СО2 → Н2СО3
Вода выходит из клеток в просвет желудка по осмотическому градиенту
Функции НС1:
Ферменты желудка
Пепсиноген неактивный фермент, синтезируется в главных клетках, состоит из одной полипептидной цепи с молекулярной массой 40 кД.
В просвете желудка под действием НС1 от N-конца пепсиногена отщепляется пептид в 42 аминокислотных остатка, который содержит почти все положительно заряженные аминокислоты, имеющиеся в пепсиногене. При этом пепсиноген превращается в активный пепсин, он состоит преимущественно из отрицательно заряженных аминокислот, которые участвуют в формировании активного центра. Образовавшиеся под действием НС1 активные молекулы пепсина быстро активируют остальные молекулы пепсиногена аутокатализом.
Гастриксин – эндопептидаза, с оптимумом рН=3,2-3,5. Образуется из пепсиногена, гидролизует внутренние пептидные связи в белке с образованием коротких пептидов.
Пепсин, реннин и гастриксин имеют сходство по первичной структуре, что указывает на их происхождение от общего гена-предшественника.
Фактор Касла – гастромукопротеид, содержит пептид, отщепляющийся оп пепсиногена (секрет главных клеток) и мукоид (секрет добавочных клеток). Фактор Касла связывает «внешний фактор» – витамин В12, предотвращает его разрушение и способствует всасыванию.
Нарушения переваривания белков в желудке
Для диагностики заболеваний желудка определяют кислотность желудочного сока, содержание в нем свободной и связанной HCl, пепсина, фактора Касла и наличие патологических компонентов: молочной кислоты и крови.
Урок №19. Соляная кислота и её соли
Соляная кислота
Физические свойства:
Концентрированная соляная кислота – это бесцветный раствор, сильно дымящий во влажном воздухе, с резким запахом.
Получение соляной кислоты:
Соляная кислота HCl получается при растворении газа хлороводорода воде. Хлороводород можно получить действием концентрированной серной кислоты на поваренную соль.
NaCl + H 2 SO 4 = HCl↑ + NaHSO 4 (хлороводород + гидросульфат натрия)
Химические свойства:
2Al + 6HCl = 2AlCl 3 + 3H 2
3) с оксидами металлов :
MgO + 2HCl = MgCl 2 + H 2 O
4) с основаниями и аммиаком :
HCl + KOH = KCl + H 2 O
3HCl + Al(OH) 3 = AlCl 3 + 3H 2 O
HCl + NH 3 = NH 4 Cl
5) с солями :
CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 ↑
HCl + AgNO 3 = AgCl↓ + HNO 3
2Fe + 3Cl 2 = 2FeCl 3
Mg + 2HCl = MgCl 2 + H 2
CaO + 2HCl = CaCl 2 + H 2 O
Ba(OH) 2 + 2HCl = BaCl 2 + 2H 2 O
Pb(NO 3 ) 2 + 2HCl = PbCl 2 ↓ + 2HNO 3
Большинство хлоридов растворимы в воде (за исключением хлоридов серебра, свинца и одновалентной ртути).
Применение соляной кислоты и ее солей:
1. Соляная кислота входит в состав желудочного сока и способствует перевариванию белковой пищи у человека и животных.
2. Хлороводород и соляная кислота используются для производства лекарств, красителей, растворителей, пластмасс.
3. Применение основных солей соляной кислоты:
Задания для повторения и закрепления
№1. Осуществите превращения по схеме:
HCl → Cl 2 → AlCl 3 → Al(OH) 3 → Al 2 O 3 → AlCl 3 → Cl 2
№2. Расставьте коэффициенты методом электронного баланса в следующей реакции:
HCl + KClO 3 → KCl + H 2 O + Cl 2
Укажите окислитель и восстановитель; процессы окисления и восстановления.
Какое количество алюминия прореагирует с избытком соляной кислоты для получения 5,6 л водорода (н.у.)?