Растениеводство как научная дисциплина

ВОПРОС. Растениеводство как научная дисциплина

Растениеводство как научная дисциплина. Смотреть фото Растениеводство как научная дисциплина. Смотреть картинку Растениеводство как научная дисциплина. Картинка про Растениеводство как научная дисциплина. Фото Растениеводство как научная дисциплина Растениеводство как научная дисциплина. Смотреть фото Растениеводство как научная дисциплина. Смотреть картинку Растениеводство как научная дисциплина. Картинка про Растениеводство как научная дисциплина. Фото Растениеводство как научная дисциплина Растениеводство как научная дисциплина. Смотреть фото Растениеводство как научная дисциплина. Смотреть картинку Растениеводство как научная дисциплина. Картинка про Растениеводство как научная дисциплина. Фото Растениеводство как научная дисциплина Растениеводство как научная дисциплина. Смотреть фото Растениеводство как научная дисциплина. Смотреть картинку Растениеводство как научная дисциплина. Картинка про Растениеводство как научная дисциплина. Фото Растениеводство как научная дисциплина

Растениеводство как научная дисциплина. Смотреть фото Растениеводство как научная дисциплина. Смотреть картинку Растениеводство как научная дисциплина. Картинка про Растениеводство как научная дисциплина. Фото Растениеводство как научная дисциплина

Растениеводство как научная дисциплина. Смотреть фото Растениеводство как научная дисциплина. Смотреть картинку Растениеводство как научная дисциплина. Картинка про Растениеводство как научная дисциплина. Фото Растениеводство как научная дисциплина

В центре внимания растениеводства как науки находится растение и требования его биологии.

Растениеводство как наука рассматривает аспекты жизнедеятельности растения и формирования урожая:

— РОСТ РАСТЕНИЙ – увеличение размеров и массы растений;

— РАЗВИТИЕ РАСТЕНИЙ – качественные изменения структуры и функций отдельных органов растений.

При этом рассматривают такие понятия, как:

— ОНТОГЕНЕЗ – развитие от семени до семени;

— ВЕГЕТАЦИОННЫЙ ПЕРИОД у однолетних культур – период от посева до созревания, у многолетних – от начала весеннего пробуждения почек до осеннего прекращения роста вегетативных органов и перехода в состояние покоя;

— ФАЗЫ РОСТА И РАЗВИТИЯ – периоды онтогенеза, в которые происходят наиболее важные физиологические и морфологические изменения в растении;

— УРОЖАЙ – продукция, полученная в результате выращивания сельскохозяйственных культур;

— УРОЖАЙНОСТЬ – урожай с единицы площади посева, способность культуры, сорта давать урожай.

Объектами растениеводства как науки и отрасли являются растения, предъявляемые им требования к основным факторам среды, а также методы, приёмы удовлетворения этих требований для получения высокого урожая хорошего качества.

Цель возделывания – урожай и его качество. Условия выращивания растений регулируют с помощью технологических приёмов. Растениеводство как научная дисциплина исторически сложилась и развивалась на основе фундаментальных и прикладных наук: физики, химии, почвоведения, ботаники, физиологии, биологии, агрометеорологии, экологии, селекции и семеноводства растений, энтомологии и фитопатологии, сельскохозяйственных машин и орудий. Как наука она интегрирует в себе знания этих дисциплин.

Растениеводство является также фундаментом для других агрономических дисциплин и специальных отраслей экономических наук, особенно для землеустроительного проектирования и землеустройства, землепользования и планировки населённых пунктов.

При исследованиях в растениеводстве применяют главным образом полевой метод, который позволяет изучать растение в зависимости от тех или иных приёмов, изменения внешних условий, а также для подбора лучших сортов сельскохозяйственных культур. В зависимости от количества изучаемых факторов полевые опыты подразделяются на однофакторные и многофакторные. Схемы многофакторных опытов могут содержать различные сочетания факторов.

Разновидностями полевого опыта являются лабораторно-полевой, который применяется для предварительного изучения вопроса на небольших делянках и малой повторности, а также производственный опыт, проводимый в производственных условиях для практической оценки рассматриваемой проблемы. Это завершающий этап исследований.

Вегетационный опыт в растениеводстве применяют для изучения биологических, физиологических, агрохимических и др. вопросов. Он даёт возможность проследить действие отдельных факторов. При этом растения выращиваются в специальных помещениях (теплицах, вегетационных домиках), сосудах, наполненных почвой, песком или раствором солей.

Наряду с экспериментальными способами в растениеводстве широко используют сравнительно-описательный метод, систематизацию, анализ и обобщение опытных данных, передового опыта.

Агрономическая наука возникла давно. Вначале она занималась описанием природных явлений и отдельных приёмов, используемых в земледелии. Потом сведения стали систематизировать, проводить анализ наблюдаемых явлений.

Источник

Растениеводство как научная дисциплина

Глава 1. ВВЕДЕНИЕ В РАСТЕНИЕВОДСТВО

§1. Растениеводство как наука, объект изучения, связь с другими науками

Растениеводство – отрасль сельского хозяйства, занимающаяся возделыванием сельскохозяйственных культур для получения продукции, удовлетворяющей потребности человека в пище, кормах для животных, сырье для перерабатывающей промышленности. Растениеводство включает полеводство, овощеводство, садоводство, виноградарство, производство кормов, лесоводство. Как научная и учебная дисциплина растениеводство изучает только группу культур, входящую в подотрасль полеводство: зерновые семейства Мятликовые, бобовые, клубнеплоды, кормовые корнеплоды, прядильные, масличные, эфирномасличные, многолетние и однолетние травы и некоторые другие культуры, выращиваемые на пашне.

Число возделываемых на Земном шаре видов растений превышает 20 тыс. Наибольшее значение имеют 640 видов, из которых около 90 относится к полевой культуре. Они и входят в сферу изучения растениеводства как науки.

Объектами растениеводства как науки и сельскохозяйственной отрасли являются растения и предъявляемые ими требования к основным факторам среды, а также методы, приемы удовлетворения этих требований для получения высокого урожая хорошего качества. Цель возделывания – получение качественного урожая.

На рост и развитие растений в той или иной степени влияют практически все экологические факторы – физический и химический состав почвы, ее влагообеспеченность и аэрация, скорость ветра, динамика температурного режима и инсоляции, влажность воздуха и др. Поэтому для оптимизации условий выращивания конкретной культуры и сорта в конкретных экологических условиях растениевод должен учитывать состояние всех этих факторов. Влияние факторов внешней среды на уровень и качество урожая проявляется в основном через почву и технологию возделывания.

Для достижения качественного урожая растениеводство интегрирует знания фундаментальных и прикладных наук. Для того чтобы знать биологию растения, необходимо изучить систематику, экологию, физиологию, биохимию и генетику растений, селекцию и семеноводство. Для удовлетворения требований биоэкологии культуры, оптимизации условий ее выращивания необходимо иметь полные сведения о почве, изучить геологию, минералогию, почвоведение, микробиологию, агрохимию, гидрологию, мелиорацию. Кроме того, необходимо владеть знаниями по метеорологии, геодезии, землеустройству, земледелию. Для защиты культурных растений от вредных организмов необходимо знать энтомологию, фитопатологию, химические методы защиты от сорняков, вредителей и болезней. Условия выращивания растений регулируют с помощью технологических приемов. При этом необходимо учитывать экономические стороны производства продукции растениеводства – экономику, организацию, управление. Наконец, урожай должен быть переработан и доведен до потребителя. Все эти науки трудно освоить без знания математики, физики, неорганической, органической, аналитической, физической и коллоидной химии.

Следовательно, чтобы владеть наукой управления ростом и развитием растений, величиной и качеством урожая, необходимо интегрировать знания многих фундаментальных и прикладных наук.

§2. Классификация и происхождение культурных растений

В эволюции растений решающее влияние на формирование генотипа оказывают экологические условия района их происхождения. Все культурные растения по типу фотопериодизма разделяют на две группы: культуры короткодневного фотопериодизма, которые сформировались как виды в тропическом и субтропическом поясе, где летом продолжительность дня близка к продолжительности ночи (короткий день), и культуры длиннодневного фотопериодизма, сформировавшиеся в зоне средних широт (умеренного пояса), зоне длинного летнего дня.

В тропической и субтропической зонах напряженность инсоляции и температурного режима выше, чем в северных широтах, температура здесь никогда не лимитирует рост и развитие растений. При высокой напряженности температуры верхний слой почвы быстро пересыхает, но растения адаптировались к этому: в первый период вегетации они большую часть ассимилянтов направляют в корневую систему, чтобы корни могли достичь влажного слоя почвы. Это имеет важное агротехническое значение. Длиннодневные сорняки, интенсивно растущие с первых фаз развития, заглушают короткодневные культуры, и получить хороший урожай без прополки и гербицидов невозможно.

В северных широтах, где сформировались виды длиннодневного фотопериодизма, напряженность температурного режима ниже, продолжительность вегетации нередко ограничивается продолжительностью безморозного периода. Этот же фактор лимитирует сумму активных температур, и тем больше, чем выше северная параллель. Вегетационный период короткодневных культур здесь также ограничивается последним сроком возврата весенних холодов и сроком наступления осенних заморозков. В северных широтах в связи с меньшей напряженностью температурного режима верхний горизонт почвы медленнее пересыхает, и длиннодневные виды, в том числе и сорняки, с первых фаз развития быстро наращивают надземную вегетативную массу. Длинно-дневные культуры оказываются по отношению к сорнякам более конкурентоспособными, чем короткодневные.

Почвы зоны формирования короткодневных культур, как правило, средние и тяжелые по гранулометрическому составу, имеют нейтральную или щелочную реакцию среды, богаты одновалентными и двухвалентными катионами, поэтому культуры короткого дня требуют нейтральныхили слабокислых почв с высокой емкостью почвенного поглощающего комплекса (ППК). В северных широтах почвы чаще легкого гранулометрического состава, слабокислые и кислые, с низким содержанием основных элементов минерального питания. Поэтому культуры длинного дня лучше выдерживают кислые почвы, небогатые питательными веществами (хотя потенциальную продуктивность они реализуют на слабокислых и нейтральных, богатых элементами питания почвах). Установлено, что с продвижением короткодневных культур на север увеличиваются продолжительность их вегетационного периода и накопление вегетативной массы, а с продвижением на север длиннодневных культур, наоборот, сокращается период вегетации и снижается фитомасса.

Для прохождения каждого межфазного периода онтогенеза растению необходима определенная сумма активных температур. Активной температурой принято считать нижний порог температуры, при которой все физиологические процессы в растении проходят нормально. Условно за такой порог принята температура +10 °С. Для прохождения онтогенеза каждому виду и сорту требуется своя сумма активных температур, обусловленная генотипом. Зная сумму активных температур сорта, можно безошибочно определить ареал устойчивого вызревания его семян, зная сумму температур за каждый межфазный период, можно с большой степенью надежности прогнозировать наступление каждой фазы развития. Например, для сои южных сортов от всходов до бутонизации необходима сумма активных температур 1500 °С. Пока растения не наберут эту сумму температур, они не перейдут в генеративный период, и продукты фотосинтеза будут направляться на рост вегетативной массы. С фазы бутонизации до образования плодов (бобов) необходима сумма активных температур еще 400 °С, а всего для прохождения онтогенеза этим сортам требуется 3500 °С. Там, где сумма активных температур меньше этого значения, соя будет формировать вегетативную массу.

Для длиннодневных культур имеет значение не только сумма активных температур, но и продолжительность светового дня. С увеличением длины дня сокращаются межфазные периоды, следовательно, и время на накопление массы вегетативных органов; сокращается период вегетации, но при этом снижается масса растений.

Таким образом, вид растения, его генотип являются отражением экологических условий зоны его формирования. Чем в более экстремальных условиях сформировался вид, тем меньшие требования он предъявляет к условиям выращивания. Чем дальше возделывают вид от ареала его происхождения, тем большее число основных факторов среды приходится человеку корректировать агротехническими приемами, тем больше затрачивать средств на единицу продукции этого вида. Альтернативой этому положению может быть создание сорта, биология которого изменена по сравнению с исходной формой и соответствует параметрам основных факторов среды зоны, для которой создан сорт.

Следовательно, для того чтобы узнать, какие требования культуры к условиям выращивания, необходимо знать экологические условия зоны формирования вида.

Н.И.Вавилов в 1935 г. определил восемь основных центров происхождения и введения в культуру видов: 1 – Китайский (Восточноазиатский); 2 – Индийский (Юго-Западноазиатский), в том числе Индо-Малайский; 3 – Среднеазиатский; 4 – Переднеазиатский; 5 – Средиземноморский; 6 – Абиссинский (Эфиопский); 7 –Центральноамериканский; 8 – Южноамериканский, включающий Чилианский и Бразильско-Парагвайский. По мере накопления фактического материала о культивируемых растениях и их предках границы центров уточнялись. Н.И.Вавилов счел более правильным называть их очагами происхождения культурных растений, выделяя при этом центры генетического разнообразия и центры формообразования. П.М.Жуковский приводит следующую классификацию центров генетического разнообразия культурных растений:

1. Китайско-Японский (Восточноазиатский, по Н.И.Вавилову), включающий умеренные и субтропические районы Китая, Кореи, Японии, – родина сои, пшеницы мягкой, проса, чумизы, пайзы, гречихи и др.

2. Индонезийско-Южнокитайский (Южноазиатский тропический, по Н.И.Вавилову) – родина овса, овсюга, сахарного тростника и многих тропических плодовых и овощных культур.

3. Австралийский – родина диких видов риса, австралийских видов хлопчатника, клевера подземного, табака, эвкалипта, многих древесных тропических растений.

4. Индостанский (Н.И.Вавилов включил его в Южноазиатский тропический) – родина риса, пшеницы круглозернянки, сахарного тростника, азиатских видов хлопчатника, овощных и плодовых растений.

5. Среднеазиатский (по Н.И.Вавилову, Юго-Западноазиатский), куда входят территории Таджикистана и Узбекистана, а также Западного Тянь-Шаня и Афганистана. Он тесно связан с Переднеазиатским очагом. Здесь возникли культуры гороха, кормовых бобов, чечевицы, нута, маша, конопли, ржи афганской, сафлора, дыни, некоторых видов хлопчатника, других многолетних растений.

6. Переднеазиатский (Горная Туркмения, Иран, Закавказье, Малая Азия и государства Аравийского полуострова) – родина ряда видов пшеницы, ячменя, ржи, овса, гороха, люцерны, стелющегося льна и многих овощных и плодовых культур.

7. Средиземноморский (по Н.И.Вавилову) включает Египет, Сирию, Палестину, Грецию, Италию и другие страны, прилежащие к Средиземноморью – родина овса, некоторых видов пшеницы, ячменя, большинства видов бобовых растений, клевера ползучего, клевера лугового, льна, капусты, свеклы, моркови, брюквы, редьки, лука, чеснока, мака, белой горчицы и др.

8. Африканский (вместе с Абиссинским, по Н.И.Вавилову) – родина сорго, проса африканского, клещевины, африканского риса, ряда видов пшеницы, некоторых видов бобовых, масличной пальмы, кунжута, кофе, ореха кола, некоторых видов хлопчатника и др.

9. Европейско-Сибирский – родина льна-долгунца, клевера гибридного и ползучего, люцерны изменчивой и посевной, хмеля, дикой конопли, кендыря, других плодовых и овощных растений.

10. Среднеамериканский, куда входят Мексика, Гватемала, Гондурас и Пана-

ма, – первичный очаг культуры кукурузы, длинноволокнистого хлопчатника, фасоли, тыквы, кабачков, батата, некоторых видов картофеля, махорки, перца и др.

11. Южноамериканский (по Н.И.Вавилову, Андийский) – родина культурного картофеля, томата, табака, многолетних видов ячменя, лопающейся кукурузы и др.

12. Североамериканский – родина некоторых видов ячменя, люпинов, травянистых многолетних видов подсолнечника, многих овощных и плодовых растений.

В мировом земледелии господствующее положение занимают полевые культуры, в группу которых входит около 90 видов растений. Каждый из видов различается морфологическими, ботаническими, хозяйственными признаками. Для удобства изучения полевые культуры принято делить на группы с учетом наиболее характерных признаков (искусственные системы классификаций): по особенностям возделывания (И.А.Стебут), по использованию (Д.Н.Прянишников), характеру использования главного продукта (В.Н.Степанов, П.П.Вавилов), ботаническим и биологическим особенностям вида (табл. 14).

Производственная и ботанико-биологическая группировка

Источник

Растениеводство как наука

Министерство сельского хозяйства Российской Федерации

Департамент кадровой политики и образования

Волгоградская государственная сельскохозяйственная академия

Кафедра «Растениеводство и кормопроизводство»

Контрольная работа по дисциплине:

«Основы производства, переработки и хранения продукции растениеводства»

Исполнитель: студентка 5 курса 2 группы экономического факультета Специальность: Бухгалтерский учет, анализ и аудит.

Мищенко Евгений Владимирович

1. Развитие наук по семеноведению, достижения, задачи……………….. 3

2. Растениеводство как наука………………………..………………..…… 5

3. Интенсивная технология выращивания сои. Достижения

4. Влияние приемов агротехники на посевные и урожайные

Список использованной литературы……………………………………19

1. Развитие наук по семеноведению, достижения, задачи.

Борьба за качество семян, основанная на их научном анализе, началась со времени организации контрольно-семенных станций. Первая в мире контрольно-семенная станция появилась в 1869 году в Германии. В России первые станции по контролю за качеством семян были созданы в Петербурге в 1877 году и в Москве в 1881 году. Всего в дореволюционной России было около 50 контрольно-семенных учреждений.

Семеноведение – наука о семенах, изучающая жизнь семян с момента оплодотворения яйцеклетки на материнском растении до образования из них нового самостоятельного растения, т.е. до перехода молодого растения от гетеротрофного питания к автотрофному. Семеноведение занимается изучением экологии, т.е. условий, в которых формируются семена (их влияние на качество семян), морфологии (строение и формообразование), биологии (процесс образования семян), физиологии и биохимии (химический состав и процессы, идущие в семенах), а также осуществляет контроль за посевными качествами семян. Эту широкую программу изучения семян выполняют более 300 научно- исследовательских институтов, опытных станций и высших учебных заведений. Для производственных целей посевные качества ежегодно контролируют около 3,5 тыс. районных и областных государственных и семенных инспекций.

Изучение курса растениеводства начинается с раздела семеноведения и семенного контроля, т.е. с изучения семян сельскохозяйственных растений, так как они являются исходным материалом для возделывания и получения урожая сельскохозяйственных культур.

Семена, подготовленные к посеву, должны обладать соответствующими сортовыми и посевными качествами, а так же высокими урожайными свойствами. По сортовым качествам семена должны отвечать требованиям сортовой чистоты, типичности и репродукции, а также не превышать имеющихся норм по степени засоренности и зараженности болезнями. Посевные качества – совокупность свойств семян, характеризующих степень их пригодности для посева (чистота, энергия прорастания и всхожесть, сила роста и жизнеспособность, отсутствие болезней и вредителей). Под урожайными свойствами семян подразумевается их способность давать урожай, величина которого определяется наследственностью, модификационной изменчивостью, возникающей под влиянием условий выращивания. Различные семена одного генотипа (сорта) при одинаковых агротехнических условиях возделывания могут давать разный урожай. Урожайные свойства семян проявляются через выросшие из них растения, которые формируют тот или иной урожай. Семена, обладающие высокими сортовыми и посевными качествами, при хорошей агротехнике обеспечивают получение высокого и высококачественного урожая.

2. Растениеводство как наука

Растениеводство — наука о культурных растениях и их возделывании. Если рассматривать растениеводство с производственной точки зрения, то это уче­ние о технически совершенном и рентабельном выращивании максимальных урожаев продукции сельскохозяйственных куль­тур при высоком ее качестве. Научное растениеводство строит­ся на принципах современной биологической науки, изучающей особенности развития растений, их требования к условиям сре­ды. Без глубокого знания биологии растений невозможна раз­работка правильной агротехники, новой технологии. Широко используются в растениеводстве данные многих смежных дис­циплин — селекции, почвоведения, агрохимии, физиологии рас­тений, земледелия, микробиологии, химии, физики, механиза­ции, экономики и др.

Как и всякая научная дисциплина, растениеводство имеет свои объекты изучения (растения полевой культуры), задачи и методы исследования. Задачи растениеводства : изучение закономерностей формирования урожая, выявление резервов увеличения производства продуктов полеводства, разработка теории и технологии получения наивысших урожаев и наилучшего качества при наименьших затратах труда и средств. Возделываемые в полевой культуре растёния различаются по продолжительности жизни, реакции на длину дня, типу развития и характеру роста, способу опыления, длине вегетационного периода и другим признакам.

По продолжительности жизни растения делят на однолет­ние, двулетние и многолетние (3 года и более), а по реакции на длину дня (фотопериодизм) — на растения короткого и растения длинного дня. У растений короткого дня (просо, куку­руза, соя, подсолнечник и др.) ускоренное созревание отмеча­ется при коротком дне (10ч), а у растений длинного дня (пшеница, овес, горох, лен и др.)- при длинном (14-16 ч). Существуют и фотопериодические нейтральные растения (обык­новенная фасоль, нут, гречиха и др.).

По способу опыления растения разделяются на самоопыля­ющиеся (пшеница, ячмень, горох и др.) и перекрестноопыляю­щиеся (рожь, кукуруза, гречиха, люцерна и др.). У последних пыльца переносится или насекомыми (энтомофилы), или вет­ром (анемофилы).

Различаются растения и по продолжительности цветения. Бывают растения с коротким периодом цветения и дружным созреванием (эйхронные) и с длинным периодом цветения и созревания (ахронные). Это свойство обусловлено особенностя­ми роста. У растений первой группы (пшеница, подсолнечник, лен и др.) соцветия образуются в результате дифференциации точки роста стебля, после цветения рост прекращается. У рас­тений второй группы (гречиха, горох, сахарная свекла, бахче­вые и др.) соцветия образуются в пазухе листьев, а точка роста стебля может образовывать вегетативные и генеративные органы до конца вегетации (до наступления засухи или замо­розков).

По продолжительности вегетационного периода однолетние полевые культуры делятся на растения с коротким периодом вегетации – 60-80 дней (горох, ячмень, гречиха и др.), со средним – 90-110 (овес, яровая пшеница, лен, горчица и др.) и продолжительным- 120-140 дней (сахарная свекла, куку­руза, рис, хлопчатник и др.). Вегетационный период у озимых хлебов длится от 280 до 340 дней. Большое влияние на про­должительность вегетационного периода оказывают климати­ческие и погодные условия, особенности сорта и другие факторы.

Вегетационный периодрастений протекает от начала появ­ления всходов до полной спелости новых семян; онтогенезна­чинается от образования зиготы и завершается естественной смертью растения; филогенез- эволюционные изменения всех сторон онтогенеза, происходящие при переходе от предков к потомкам.

Растениеводство располагает определенными методами ис­следования в основе которых лежит метод познания — мате­риалистическая диалектика.

Критерием ценности любого эксперимента, проводимого в точно учитываемых условиях, служат степень достоверности результатов, возможность их повторения и обобщение, приме­нимость на практике и экономическая эффективность.

В растениеводстве применяют следующие методы ис­следования :полевой, вегетационный и лабораторный. Ос­новным методом исследования был и остается полевой опыт, имеющий различные формы и типы в зависимости от поставленных задач. Этот метод позволяет решать многие практичес­кие вопросы агротехники, касающиеся обработки почвы, применения удобрений, способов, сроков посева и ухода за культу­рами, оценки предшественников, севооборотов и др., определения эффективности комплексов и отдельных приемов агротехники, а также подбора лучших сортов. Исследования выполняются как в научных учреждениях, так и непосредствен­но в колхозах или совхозах. Для получения достоверных ре­зультатов полевые опыты закладывают на участках с выровненным плодородием, проводят их на делянках размером от 10—25 до 100 м 2 при 4—6 кратной повторности.

Полевой метод имеет самостоятельное значение как синте­тический метод с элементами анализа. Разновидностями его являются массовые и географические опыты, закладываемые одновременно во многих пунктах по единым схемам и методи­кам, допускающим обобщение результатов. По этому принципу строится сеть государственных сортоиспытательных участков, размещаемых в колхозах или совхозах, проводятся географические опыты по изучению новых культур, эффективности удобрений и т. д.

Для предварительного изучения вопросов, решение которых на больших площадях затруднительно или связано с риском, организуют так называемые лабораторно-полевые опыты. Про­водят их на небольших делянках при малой повторности.

Для изучения действия факторов внешней среды (свет, теп­ло, влажность, минеральное питание), различных биохимиче­ских и физиологических процессов, а также для генетических и селекционных исследований используют камеры искусственного климата (фитотроны), где автоматически учитываются и регулируются исследуемые режимы.

Часто для правильного объяснения результатов полевых опытов нужны дополнительные сведения, к примеру, о степени плодородия почвы, взаимоотношении растения со средой, струк­туре урожая, особенностях развития корневой системы и ка­честве растительной продукции (содержание сахара, жира, белков, волокна и др.). В таких случаях применяют разнооб­разные лабораторные методы исследования.

Все большее значение для растениеводства приобретает метод меченых атомов, позволяющий изучать многие сложные физиологические процессы, происходящие в растениях.

Завершающее звено различных исследований, проводивших­ся полевым и другими методами в научных учреждениях, про­изводственный опыт — важный синтетический метод изучения вопросов растениеводства в конкретных условиях сельскохо­зяйственного производства, когда возможно дать полную и всестороннюю практическую оценку сортов, систем агротехни­ки и отдельных приемов, а главное — выявить их экономическую эффективность (новая система обработки почвы и удобрения в севообороте, комплексная агротехника, отдельные новые приемы агротехники, сорта и др.). Производственные опыты проводят на больших площадях (1—2 га и более) при двукратной повторности.

3. Интенсивная технология выращивания сои. Достижения

Семена по форме варьируют от овально-плоских до шаровидных, преобладают овальные. Окраска желтая (основная), зеленая, коричневая, черная. В отдельные годы, в связи с пигментацией, могут появляться светло-коричневые, коричневые и черные пятна различных размеров и формы. Толщина до 7, ширина до 8 и длина до 11 мм. Масса 1000 семян колеблется от 90 до 300 г (зависит от условий выращивания и сортовых особенностей), но чаще в пределах 110—180 г. Семена покрыты семенной кожурой, на ее поверхности различают семенной рубчик, рубчиковый след удлиненно-овальный, микропиле, бугорков халазы нет. Под кожурой две семядоли, корешок и почечка.

При прорастании семена поглощают до 140% влаги на абсолютносухую массу, продолжительность набухания до 50 часов. Начальная температура прорастания +6. +8°С и оптимальная +24. +30°С.

Технология выращивания сои

В структуре посевных площадей оптимум насыщения севооборота соей около 30-35%. При более высоком насыщении урожай ее| резко снижаются в основном из-за засорения сорняками.

По международной классификации все сорта сои разделены на 10 групп созревания — от 00 до VIII (00, 0, I, II, III и т. д.).

Таким образом, в хозяйстве рекомендуется выращивать не менее двух сортов, при этом учитывают: продолжительность периода вегетации, продуктивные возможности, устойчивость к полеганию, болезням, вредителям, растрескиванию бобов, высоту заложения бобов, степень повреждения семян при уборке и другие факторы.

— калибрование (выделяют для посева крупную 7,0-7,5 мм и среднюю 6,5-7,0 мм фракции);

— протравливание (бенлат и фундазол по 3 кг/т безопасны для клубеньковых бактерий);

— нитрагинизация проводится в день посева. Это обязательный прием, т. к. соя возделывается недавно и в почве мало спонтанных форм клубеньковых бактерий.

Основная и предпосевная обработка почвы. После колосовых предшественников и при наличии корнеотпрысковых сорняков применяют послойную обработку почвы: лущение БДТ-7 на глубину 10-12 см, после отрастания розеток сорняков внесение 2,4 Д (3 кг/га д.в.) и через 15—20 дней глубокая вспашка ПТК-9-35.

На полях, засоренных однолетними сорняками, применяют систему улучшенной (два предпахотных лущения и поздняя вспашка) или обычной зяблевой обработки (лущение стерни и вспашка на глубину до 25 см).

Весной, при наступлении физической спелости почвы, выполняют боронование со шлейфованием поперек или под углом к направлению вспашки (БЗСС-1,0 + ШБ-2,5). Затем проводят одну или две культивации в зависимости от степени засорения поля (КПС-4 + БЗСС-1,0): первая на глубину 6—8 см, предпосевная — на 4—6 см.

Сою высевают различными способами, но наибольшее распространение имеют следующие:

• широкорядный, с междурядьями 45, 60 и 70 см, при этом используют кукурузные СУПН-8, СКПП-12 или свекловичные
ССТ-12В сеялки;

• ленточный двух- или трехстрочный (60х15 или 45х15) овощными сеялками СКОН-4,2 или СО-4,2;

• рядовой с междурядьями 15 см на чистых от сорняков полях
зерновыми сеялками СЗП-3,6.

Норму высева рассчитывают таким образом, чтобы к уборке широкорядных и ленточных посевах для скороспелых, ранне- и средне неспелых сортов было около 0,45—0,50; 0,45—0,35 и 0,30—0,25 млн/га растений, а при рядовом посеве на 10—15% выше.

Глубина посева семян сои, которая выносит семядоли на поверхность почвы, небольшая, 3-4 см. Важно положить семена в прогретый влажный слой почвы, для чего приходится увеличивать глубины посева до 5—6 см. В практике глубину посева (6 см) определяют, умножая диаметр семени на 10. Посев на глубину более 6 см ведет к изреживанию посевов, т. к. часть семян загнивает и не дает всходов.

Уход за посевами начинается с довсходового боронования (в течение одного-трех дней после посева) легкими боронами ЗОР-0,7 на глубину 2—3 см, чтобы не затронуть высеянные семена.

В фазе одного-трех настоящих листьев проводят повсходовое боронование (ЗОР-0,7 или БЗСС-1,0).

Междурядные культивации (2-3) нужны при массовом появлении сорняков (междуряды 45 см обрабатывают УСМК-5,4, а междурядья 60 и 70 см — КРН-4,2) на глубину 6-8 см, оставляя защитную зону 8-10 см.

При большой засоренности полей сочетать механические и химические обработки:

-до посева внести почвенные гербициды (лассо 6,2 л/га, прометрин 3-5 кг/га);

-по вегетирующим растениям (фаза 1—5-го листа) рекоменду­ется базагран 1,5—3; фюзилад супер 2—4 л/га.

По мере достижения порога экономической вредоносности сою обрабатывают:

· против гусениц совок (люцерновой, стальниковой), лугового мотылька, долгоносика, акациевой огневки, соевой плодожор­ки, тлей, полосатой блошки — фосфомид 0,5—1 л/га, карбофос 0,6—1,0 л/га, фазолон 3 л/г;

· против клещей — каратэ 0,6—1,0 л/га, золон 3 л/га.

При появлении на листьях сои пятнистостей: бактериального ожога, ложной мучнистой росы, септориоза, мозаики, проводят опрыскивание бенлатом или фундазолом по 3 кг/га.

Уборка. Сою почти повсеместно убирают однофазным способом зерноуборочными комбайнами в фазе полной спелости, когда с рас­тений опадают листья, бобы побуреют, а влажность семян составит 13-16%. При встряхивании такие растения «гремят». Созревшие бобы ещё не растрескиваются, поэтому подсыхание семян происходит лучше на корню, чем в валках.

Во влажную погоду целесообразно ускорить созревание сои путем десикации. Ее проводят при влажности семян 40—50%. Посев опрыскивают раствором хлорида магния (20—30 кг/га) или реглона супер (2—3 л/га). Уборку проводят через 7—10 дней после десикации.

4. Влияние приемов агротехники на посевные и урожайные

Не всегда при высоком урожае формируются семена с высокоурожайными свойствами. Это связано с неодинаковым влиянием того или иного агротехнического приема на величину урожая и урожайные свойства семян. Прямое действие поло­жительного агроприема на урожайность, как правило, выше, чем его влияние на урожайные свойства семян, проявляемые в урожайности первого поколения. Величина урожая зависит от оптимального соотношения числа растений на 1 га и про­дуктивности каждого растения, а урожайные достоинства се­мян определяются их величиной и выравненностью, энергией прорастания и всхожестью, силой роста, содержанием белка, устойчивостью к болезням.

С учетом сказанного следует разрабатывать специальную семеноводческую агротехнику, обеспечивающую применитель­но к биологическим особенностям и требованиям различных сортов и гибридов наилучшие условия для развития каждого растения в отдельности и выращивания высокоурожайных се­мян.

Семенные посевы нужно размещать по лучшим предшественникам,обеспечивающим благоприятные условия для развития и созревания растений, а также исключающим воз­можность их видового и сортового засорения.

Нормы высева и способыпосева регулируют гус­тоту растений, которая, в свою очередь, влияет на развитие растений, их кустистость и ветвистость, продуктивность и вели­чину семян. По мере увеличения (до известного предела) нор­мы высева кустистость и продуктивность одного растения сни­жаются, несколько уменьшается и масса 1000 семян, тогда как урожайность растет. В этом случае урожай зерна создается главным образом за счет центральных стеблей, а зерно отли­чается большей выравненностью.

На разреженных посевах (широкорядные, ленточные) ку­щение усиливается, появляются побеги второго и последующих порядков, которые по продуктивности (озерненности и массе 1000 семян) уступают центральным стеблям. Однако, несмотря на появляющуюся при этом череззерницу колоса, разнокачественность и щуплость семян, общая продуктивность одного рас­тения повышается.

Применение оптимальных норм высева обеспечивает благо­приятные условия для формирования полноценных семян и по­лучения высокого урожая. Нормы высева на семенных посевах должны быть равны нормам, установленным в данной зоне для товарных посевов, или ниже их на 10—15%. Широкорядные посевы применяют, если необходимо ускорить размножение семян дефицитного сорта.

Сроки посева тоже существенно влияют на качество семян. Устанавливают сроки с учетом биологических особен­ностей полевых культур и экологических факторов каждой зоны: срок посева озимых хлебов должен обеспечивать благо­приятные условия для осеннего их развития и подготовки к пе­резимовке; для ранних яровых культур наиболее предпочтите­лен, возможно, ранний срок посева — при наступлении посевной зрелости почвы; для поздних яровых культур — при установ­лении оптимальной для каждой культуры температуры посевного слоя почвы и когда минует опасность возврата холодов.

Для товарных посевов озимых хлебов продолжительность посева составляет 10—15 дней. Сеять эти культуры на семена нужно в короткий срок и в наиболее благоприятных условиях.

Рациональное применение удобрений, при котором рас­тения полностью обеспечиваются всеми элементами питания в наилучшем их сочетании, гарантирует формирование высокока­чественных семян. Практика показала, что азотные удобрения, обеспечивая повышение общей урожайности, не способствуют образованию высокоурожайных семян (уменьшается масса 1000 семян, увеличивается доля щуплых семян, снижается сила роста). Фосфорные удобрения положительно влияют на семенную продуктивность, а также на посевные качества и уро­жайные свойства семян, повышают устойчивость растений к неблагоприятным факторам, ускоряют созревание семян. Ка­лийные удобрения усиливают устойчивость растений к полега­нию, способствуют образованию в семенах крахмала и улучше­нию их посевных качеств.

На урожайность и качество семян влияют и микроудобрения (бор, марганец, медь, цинк и др.). Они повышают общую физиологическую активность и устойчивость растений к болез­ням.

Способ уборки семенных посевов зависит от биологи­ческого состояния растений и зерна: например, раздельную уборку проводят в фазе восковой спелости при влажности зер­на 35—20%, а прямое комбайнирование — в фазе полной спе­лости при влажности зерна 18—14%. Семенные посевы необходимо убирать в короткий срок – в течении 6-8 дней. Уборка в такой период при умелом сочетании двух способов ее проведения будет проходить в благоприятных условиях. Для сокращения сроков уборки и предупреждения засорения семян в семхозах целесообразно выделять специализированные уборочные звенья по культурам и сортам.

Задержка с подбором и обмолотом валков, уборка перезревшего зерна сильно снижают качество семян и сопровождаются большими потерями урожая. При уборке неравномерно созревающих крупяных и зерновых бобовых культур хорошие результаты обеспечивает двойной обмолот, при котором в первой фазе при мягком режиме обмолота выделяется 60-70% более ценных для посевных целей не травмированных семян.

Механические повреждения отрицательно влияют на качество семян. Зерно разных культур при уборке и обработке на току повреждается в разной степени. Характер и степень механических повреждений зерна зависят от его влажности: сухие семена при обмолоте дробятся, а влажные получают микроповреждения, снижающие их всхожесть.

Список использованной литературы

2. «Растениеводство», Г. В. Коренев, В. А. Федотов, А.Ф. Попов и др.; Под ред. Г. В. Коренева – М.: Колос, 1999. – 368с.

3. «Растениеводство с основами селекции и семеноводства», Г. В. Коренев, П. И. Подгорный, С. Н. Щербак; Под ред. Г. В. Коренева. – 3-е изд. перераб. и доп. – М.: Агропромиздат, 1990. – 575с.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *