Резистор 51к как выглядит
Маркировка резисторов
Визуально определить значение сопротивления резистора не представляется возможным. Ввиду очень малых размеров резисторов, полностью написать их номинал на корпус не предоставляется возможным. Поэтому и применяют маркировку резисторов, которая бывает кодовой, и цветовой, цифро-буквенной.
Цифро-буквенная маркировка резисторов
Самым простым в части оценки является советский резистор, номинал его мощности наносится прямо на корпусе маркировкой МЛТ-1 и так далее, где единица измерения – это мощность, а МЛТ – это вид наиболее ходовые в свое советское время резисторы а эта сокращение означает что резистор М- металлопленочный, Л- лакированный, Т-термоустойчивый. Мощность таких резисторов зависит от их размеров, чем больше размеры резистора – тем большую мощности он способен рассеять. Эти резисторы уже вымирающий вид, найти их можно в старой радиоэлектронной технике.
Для резисторов МЛТ типа единицей измерения сопротивления как и у других выступают Омы, обозначаются они как R и E. Точный размер мощности обозначает дополнительной буквой «К» – килоомы или буквой «М» — мегаомы, система измерения здесь достаточно проста. Например: 33E – это 33 Ома, а 47К – это 47 кОм, соответственно 1М2 – 1.2 Мегаом и так далее.
Примеры цифро-буквенной маркировки резисторов
3E9И или 3R9 означает что сопротивления 3,9 Ом, допуск 5%
2К2И означает что сопротивления 2,2 кОм,допуск 5%
5К1С означает что сопротивления 5,1 кОм,допуск 10%
Цветовая маркировка резисторов
Цветовая маркировка немного упростила процесс маркировки в масштабах массового производства, но также и запутала некоторых радиолюбителей, но на самом деле все просто.
Стартовой точкой отчета принято считать золотую полоску или же серебряную – это начальное звено, и оно не считается, необходимо повернуть сориентировать таким образом, чтобы цветные полоски начинались с левой стороны.
Далее считывает номер по полоскам:
Третья полоса в штрих коде имеет немного иное значение – она отмеряет количество нулей, которые необходимо добавить к полученному значению. Следовательно, черный – 0, коричный – 1 ноль (0), красный – 2 нуля (00) и так далее.
Чтобы упростить себе подсчеты можно воспользоваться программой на компьютере которая называется Резистор 2.2 (ссылка на скачивание программы во вложении). Она упростит подсчеты и автоматически покажет мощность резистора при вводе всех полосок. Либо же воспользоваться калькулятором цветовой маркировки резистора прямо онлайн.
Маркировка SMD резисторов
С маркировкой SMD немного сложнее, размеры SMD резисторов не позволяют нанести на них цветовые кольца либо написать номинал. Поэтому маркируются они 3 или 4 цифрами, кроме резисторов типоразмера 0402. Значения резисторов типа 0402 можно найти в таблице. Остальные имеют следующий порядок маркировки.
Резисторы с допуском до 10 % имеют в маркировке 3 цифры, где первые 2 цифры – это номинал резистора, а последняя – обозначает десятичное значение.
Пример маркировки SMD резисторов:
Резистор с 3 символами
Резистор с цифрами 222 – означает 22 * 102 = 2200 Ом или другими словами 2,2 кОм.
Резистор с 4 символами
Резисторы с 4 символами имеют допуск 1 %, подсчет проводим аналогичным образом: 4422 это 442*2 * 102 = 44,2 кОм
Бывают также smd резистор без маркировки, таких резисторов сопротивление равно 0, нужны они просто чтобы заполнить пустое пространство в плате, их еще называют нулевыми резисторами.
Использованием кодов в настоящее время – самый популярный способ маркировки SMD резисторов, основанный на табличных кодах каждого показателя.
Таблица кодов SMD резисторов и их значений
Код smd | Значение | Код smd | Значение | Код smd | Значение | Код smd | Значение |
---|---|---|---|---|---|---|---|
R10 | 0.1 Ом | 1R0 | 1 Ом | 100 | 10 Ом | 101 | 100 Ом |
R11 | 0.11 Ом | 1R1 | 1.1 Ом | 110 | 11 Ом | 111 | 110 Ом |
R12 | 0.12 Ом | 1R2 | 1.2 Ом | 120 | 12 Ом | 121 | 120 Ом |
R13 | 0.13 Ом | 1R3 | 1.3 Ом | 130 | 13 Ом | 131 | 130 Ом |
R15 | 0.15 Ом | 1R5 | 1.5 Ом | 150 | 15 Ом | 151 | 150 Ом |
R16 | 0.16 Ом | 1R6 | 1.6 Ом | 160 | 16 Ом | 161 | 160 Ом |
R18 | 0.18 Ом | 1R8 | 1.8 Ом | 180 | 18 Ом | 181 | 180 Ом |
R20 | 0.2 Ом | 2R0 | 2 Ом | 200 | 20 Ом | 201 | 200 Ом |
R22 | 0.22 Ом | 2R2 | 2.2 Ом | 220 | 22 Ом | 221 | 220 Ом |
R24 | 0.24 Ом | 2R4 | 2.4 Ом | 240 | 24 Ом | 241 | 240 Ом |
R27 | 0.27 Ом | 2R7 | 2.7 Ом | 270 | 27 Ом | 271 | 270 Ом |
R30 | 0.3 Ом | 3R0 | 3 Ом | 300 | 30 Ом | 301 | 300 Ом |
R33 | 0.33 Ом | 3R3 | 3.3 Ом | 330 | 33 Ом | 331 | 330 Ом |
R36 | 0.36 Ом | 3R6 | 3.6 Ом | 360 | 36 Ом | 361 | 360 Ом |
R39 | 0.39 Ом | 3R9 | 3.9 Ом | 390 | 39 Ом | 391 | 390 Ом |
R43 | 0.43 Ом | 4R3 | 4.3 Ом | 430 | 43 Ом | 431 | 430 Ом |
R47 | 0.47 Ом | 4R7 | 4.7 Ом | 470 | 47 Ом | 471 | 470 Ом |
R51 | 0.51 Ом | 5R1 | 5.1 Ом | 510 | 51 Ом | 511 | 510 Ом |
R56 | 0.56 Ом | 5R6 | 5.6 Ом | 560 | 56 Ом | 561 | 560 Ом |
R62 | 0.62 Ом | 6R2 | 6.2 Ом | 620 | 62 Ом | 621 | 620 Ом |
R68 | 0.68 Ом | 6R8 | 6.8 Ом | 680 | 68 Ом | 681 | 680 Ом |
R75 | 0.75 Ом | 7R5 | 7.5 Ом | 750 | 75 Ом | 751 | 750 Ом |
R82 | 0.82 Ом | 8R2 | 8.2 Ом | 820 | 82 Ом | 821 | 820 Ом |
R91 | 0.91 Ом | 9R1 | 9.1 Ом | 910 | 91 Ом | 911 | 910 Ом |
Код smd | Значение | Код smd | Значение | Код smd | Значение | Код smd | Значение |
---|---|---|---|---|---|---|---|
102 | 1 кОм | 103 | 10 кОм | 104 | 100 кОм | 105 | 1 МОм |
112 | 1.1 кОм | 113 | 11 кОм | 114 | 110 кОм | 115 | 1.1 МОм |
122 | 1.2 кОм | 123 | 12 кОм | 124 | 120 кОм | 125 | 1.2 МОм |
132 | 1.3 кОм | 133 | 13 кОм | 134 | 130 кОм | 135 | 1.3 МОм |
152 | 1.5 кОм | 153 | 15 кОм | 154 | 150 кОм | 155 | 1.5 МОм |
162 | 1.6 кОм | 163 | 16 кОм | 164 | 160 кОм | 165 | 1.6 МОм |
182 | 1.8 кОм | 183 | 18 кОм | 184 | 180 кОм | 185 | 1.8 МОм |
202 | 2 кОм | 203 | 20 кОм | 204 | 200 кОм | 205 | 2 МОм |
222 | 2.2 кОм | 223 | 22 кОм | 224 | 220 кОм | 225 | 2.2 МОм |
242 | 2.4 кОм | 243 | 24 кОм | 244 | 240 кОм | 245 | 2.4 МОм |
272 | 2.7 кОм | 273 | 27 кОм | 274 | 270 кОм | 275 | 2.7 МОм |
302 | 3 кОм | 303 | 30 кОм | 304 | 300 кОм | 305 | 3 МОм |
332 | 3.3 кОм | 333 | 33 кОм | 334 | 330 кОм | 335 | 3.3 МОм |
362 | 3.6 кОм | 363 | 36 кОм | 364 | 360 кОм | 365 | 3.6 МОм |
392 | 3.9 кОм | 393 | 39 кОм | 394 | 390 кОм | 395 | 3.9 МОм |
432 | 4.3 кОм | 433 | 43 кОм | 434 | 430 кОм | 435 | 4.3 МОм |
472 | 4.7 кОм | 473 | 47 кОм | 474 | 470 кОм | 475 | 4.7 МОм |
512 | 5.1 кОм | 513 | 51 кОм | 514 | 510 кОм | 515 | 5.1 МОм |
562 | 5.6 кОм | 563 | 56 кОм | 564 | 560 кОм | 565 | 5.6 МОм |
622 | 6.2 кОм | 623 | 62 кОм | 624 | 620 кОм | 625 | 6.2 МОм |
682 | 6.8 кОм | 683 | 68 кОм | 684 | 680 кОм | 685 | 6.8 МОм |
752 | 7.5 кОм | 753 | 75 кОм | 754 | 750 кОм | 755 | 7.5 МОм |
822 | 8.2 кОм | 823 | 82 кОм | 824 | 820 кОм | 815 | 8.2 МОм |
912 | 9.1 кОм | 913 | 91 кОм | 914 | 910 кОм | 915 | 9.1 МОм |
Маркировка SMD резисторов по EIA-96
SMD резисторы с более большей точностью и более малыми размерами привели к созданию компактной маркировке. Был придуман стандарт EIA-96. Этот стандарт создан для резисторов с допуском по сопротивлению в 1%.
Эта система маркировки состоит из трех символов: две первые цифры это код номинала резистора, а следующий за ними символ это множитель. Берем SMD резистор смотрим первые 2 цифры и находим соответствующее сопротивление по таблице, далее смотрим на цифру и также по таблице смотри множитель на который на нужно умножиться. Все довольно просто.
Радиоэлементы из старой аппаратуры
Большинство людей приходят в радиолюбительство из-за желания сделать что-то своими руками, чего-то неповторимого, что несомненно принесет пользу себе и окружающим… Но выбрав конструкцию для самостоятельной сборки зачастую возникает масса проблем связанная со скудным запасом знаний в области радиоэлектроники. Конечно сразу начинается повальное чтение книг соответствующей тематики и извлечение оттуда ценной информации о разнообразии радиоэлементов, о работе транзистора и прочих приборов. Когда много чего прочитано, уже имеется представление об условном графическом отображении элементов на схеме, и есть какие-то понятия о принципе работы, возникает проблема переноса схемы с бумаги в реальность, а именно поиск компонентов схемы. Сейчас не составляет проблемы составить список сходить и купить радиодетали, но у многих все же отсутствует возможность приобретения деталей, и на помощь приходит старая сломанная радиоаппаратура. О том как найти нужные радиодетали в старой технике и пойдет речь в этой статье. Я преднамеренно не буду описывать какую-то конкретную схему, поскольку невозможно охватить все разнообразие электронных компонентов в рамках одного устройства. Так же не буду описывать принципа работы элементов, все это вы уже должны знать.
Пассивные компоненты
Резисторы
Самым часто встречающимся элементом является резистор, без него невозможно построить ни одну схему. Встретить его можно практически в любом электронном устройстве, резистор представляет из себя цилиндр с двумя диаметрально-противоположными выводами. Служит для ограничения тока в цепи и имеет определенное сопротивление, измеряемое в Омах. Обозначается прямоугольником с двумя черточками с противоположных сторон, внутри прямоугольника обычно указывают мощность(рис.1).
В бытовой аппаратуре применяются резисторы с номиналами, расположенными по ряду Е24, это значит, что в диапазоне от 1 до 10 имеется 24 номинала сопротивления. Существует множество типов резисторов, вот наиболее часто встречающиеся:
Рис. 1. Обозначение резисторов. Тип МЛТ
Резисторы типа МЛТ (металлический лакированный теплостойкий) – часто встречаются в ламповой аппаратуре(обычно не меньше 0,5 Вт), и в советской аппаратуре 80 годов. В зависимости от габаритов имеют различную мощность, если на схеме мощность не указана, то как правило, можно применять резисторы 0,125 Вт.
На резисторах данного типа ставится маркировка, обозначающая непосредственно сопротивление, далее буква русского или латинского алфавита обозначает множитель, составляющий сопротивление и определяет положение запятой десятичного знака («R(E)»=1; «К(К)»=10^3; «М(М)»=10^6; «G(Г)»=10^9; «Т(Т)» =10^12).
18 – 18 Ом, при обозначениях единиц Ом буква иногда не ставится, в том числе и на схемах.
Если же номинальное сопротивление выражено целым числом с дробью, то единицу измерения ставят на месте запятой.
К51- 510 Ом, если буква стоит перед числом, то это значит, что сопротивление меньше килоома (мегаома), следующая цифра показывает сопротивление.
Дальше в обозначении стоит буква, обозначающая величину допуска в процентах: (Е=±0.001; L=±0.002; R=±0.005; Р=±0.01; U=±0, 02; В(Ж)=±0.1; С(У)=±0.25; D(Д)=±0.5; F(Р)=±1; G(Л)=±2; J(И)=±5; К(С)=±10; М(В)=±20; N(Ф)=±30. Величина допуска может быть нанесена под номиналом сопротивления во второй строке и будет выражена в процентах.
Резисторы типа ВС (водостойкие) можно встретить в ламповой аппаратуре 60-70х годов (рис.2). А именно в радиолах и черно-белых телевизорах. Практической ценности в настоящее время не несут. Маркировка схожа с МЛТ, имеют несколько габаритных размеров в зависимости от мощности.
Рис. 2. Тип ВС
В середине 80-х годов появилась цветовая маркировка резисторов (рис.3, рис.4), которая существует и по сей день, что позволило быстро определять номинал без выпайки из схемы (нам это тоже на руку, поиск нужного резистора значительно ускоряется). Резисторов с такого рода маркировкой производит множество отечественных и зарубежных фирм, поэтому определить конкретный тип резистора весьма сложно, да зачастую и не нужно.
Рис. 3. Резисторы с цветовой кодовой маркировкой
Рис. 4. Расшифровка цветовой маркировки резисторов
В таблице показана методика определения номинала резистора и класса точности. Класс точности показывает на сколько процентов может отличаться сопротивление от заявленного номинала.
Определить сопротивление по цветовым полосам можно с помощью: калькулятора цветовой маркировки резистора.
В последнее время появилась тенденция к минимизации и стали появляться компоненты для поверхностного монтажа(SMD). Вот так называемые чип-резисторы (рис.5).
Рис. 5. Чип-резисторы
Применяются в современной технике повсеместно и имеют несколько типоразмеров (рис.6).
Рис. 6. Основные типоразмеры SMD резисторов
Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают номинал резистора без множителя, а последняя — показатель степени по основанию 10 для определения множителя. Например: 123 – 12* 10^3 =12000 Ом =12 кОм. Часто встречаются чип резисторы с обозначением 0, это резистор нулевого сопротивления или попросту перемычка.
Рис. 7. Резисторы ПЭВ
Рис. 8
Отдельное место среди постоянных резисторов занимают резисторные сборки (рис.9), которые очень удобны при построении схем, где требуется много одинаковых резисторов.
Рис. 9. Резисторные сборки dip и smd
Сборки имеют два типа соединения, либо в виде нескольких обычных резисторов, только в одном корпусе, либо резисторов с одним общим выводом. Встретить можно во многих цифровых устройствах, там они, как правило применяются, как подтягивающие.
Резисторы переменные:
Рис. 10. Переменные резисторы
1.Со встроенным тумблером, можно встретить в ламповых телевизорах и радиолах 70-х годов
2. Резистор типа СП3-30а можно встретить в телевизорах, приемниках, абонентских громкоговорителях до 90-х годов выпуска.
3. Резистор Сп-04, встречаются в телевизорах и носимых магнитофонах 80-х годов.
4. СП3-4а во всей технике конца 80-х начала 90-х.
5. Специализированный счетверенный с тумблером СП3-33-30, обычно встречается в разного типа магнитолах.
Рис. 11. Ползунковые переменные резисторы
Ползунковые резисторы (рис.11) часто встречаются в магнитофонах 80-90х годов в качестве регуляторов звука и тембра.
Рис. 12. Современные переменные резисторы
Более современные резисторы(рис. 12), можно встретить в любой импортной технике с начала 90-х годов, от кассетных плееров и автомагнитол, до телевизоров и музыкальных центров. Часто встречаются сдвоенные резисторы для регулировки звука сразу по двум каналам (стерео). Очень интересен последний резистор (на рисунке), так называемый 3D – резистор или же джойстик, представляет из себя несколько сочлененных резисторов и отслеживает перемещение рукоятки влево-вправо, вверх- вниз и вращение вокруг своей оси. Встретить такой экземпляр можно в джойстиках от игровых консолей.
Для всех переменных резисторов помимо сопротивления есть очень важный параметр – зависимость сопротивления от угла поворота вала (линейного перемещения), обозначается буквой после значения сопротивления:
Для регулировки громкости как правило используют резисторы с логарифмической зависимостью.
Подстроечные резисторы:
Рис. 13. Подстроечные резисторы СССР
Рис. 14
Рис. 15. Многооборотные резисторы
Все переменные и подстроечные резисторы, также различаются по мощности, которая как правило указана на корпусе или в документации на элемент. Для своих конструкций можно применять практически любые из перечисленных исходя из требуемых габаритов и мощности.
Со временем и подстроечные и переменные резисторы портятся и у них появляется нежелательное явление, именуемое шорохом. Вызвано это явление недостаточным прижимом (контактом) ползунка или износом подложки, как правило ремонтировать резисторы смысла нет, хотя иногда встречаются очень редкие и уникальные(например в большинстве микшерных пультов), что найти замену, не представляется возможным. В этом случае резистор нужно аккуратно разобрать, подогнуть контакт, восстановить при помощи твердого карандаша графитовое покрытие и смазав силиконовой смазкой собрать назад. Резистор после такой реанимации сможет еще послужить.
Существуют также резисторы, реагирующие на изменения окружающей среды, в любительских конструкциях используются мало, но все же о них стоит упомянуть: терморезисторы
Рис. 16. Терморезисторы
Применяются для термостабилизации схемы, встречаются очень часто, но в самодельных устройствах применяются мало.
Фоторезисторы
Рис. 17. Фоторезистор
Изменяет свое сопротивление в зависимости от освещенности. Можно вынуть из любительских фотоаппаратов, там они применяются в качестве датчика света.
Тензорезиторы
Рис.18. Тензорезисторы
Изменяют свое сопротивление в зависимости от деформации, их в бытовой аппаратуре встретить можно очень редко и применяются они как правило в виде датчиков в устройствах автоматики.
Варисторы
Варистором называется полупроводниковый резистор, сопротивление которого эффективно уменьшается под действием приложенного к нему напряжения, а ток, протекающий в цепи, нарастает.
Рис. 19. Варисторы
Применяются как устройство защиты в импульсных блоках питания бытовой аппаратуры от превышения напряжения питания. Можно встретить в любом современном устройстве.
Как проверить резистор мультиметром
При работе с электрической схемой возникают ситуации, когда необходимо проверить сопротивление резистора. Это может понадобиться при проверке исправности или подгонке его величины под требуемое значение, которое отличается от номинального. Проверять сопротивление можно, не выпаивая резистор, или после его выпайки. В этой статье я расскажу, как правильно проверить резистор мультиметром.
Содержание статьи
Особенности измерения сопротивления резистора мультиметром
Для того, чтобы узнать сопротивление резистора, нужно воспользоваться обычным мультиметром. Принцип измерений основан на законе Ома, который гласит, что сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональной от сопротивления. Определение сопротивления происходит косвенным путем по формуле R = U/I. То есть, при известных напряжении и силе тока легко определить сопротивление.
Если ранее применялись стрелочные тестеры, то сегодня радиолюбители для проверки исправности резисторов чаще всего используют цифровые мультиметры с круговым переключателем, с помощью которого выставляется тип рабочего режима и диапазон измерений.
Цифровой тестер для проверки резисторов
Для измерения величины R переключатель выставляют в диапазон Ω. В комплекте к такому прибору идет один комплект щупов, имеющих разную расцветку. Принято красный щуп вставлять в отверстие com, а черный – VΩCX+.
Как проверить резистор не выпаивая: визуальная проверка
Процесс проверки резистора на работоспособность непосредственно на плате без полной выпайки является довольно трудоемким занятием, поэтому предварительно можно определить сгоревшую деталь визуально. Прежде всего осматривают корпус на предмет повреждений и сколов, надежности закрепления выводов.
О неисправностях свидетельствуют:
Если условия позволяют, то неисправный резистор выпаивают, а на его место впаивают новый с таким же номиналом.
Внимание! Осмотр не гарантирует точного определения исправности, резистор может выглядеть как новый даже при оборванном контакте.
Подготовка мультиметра к проведению измерений: какие установить настройки
Перед измерениями прибор готовят к работе. Для этого его включают и концы щупов закорачивают между собой. Если на дисплее появляются нули, то прибор исправен и в цепи нет обрыва. На дисплее могут отражаться не нули, а доли Ома.
Подготовка прибора к проверке
При разомкнутых щупах на исправном мультиметре отображается цифра 1 и диапазон измерений. Кабельные шнуры подключают в соответствии с тем режимом, который вам необходим, – «Прозвонка» или «Измерение».
Как прозвонить резистор
Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.
Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.
Как определить номинал резистора по маркировке
Для определения работоспособности желательно знать номинал. Как определить номинал резистора по цветовой маркировке, мы подробно рассказали в этой статье.
Немного дополним информацию о способах маркировки SMD резисторов. Из-за малого размера на них практически невозможно нанести традиционную цветовую маркировку, поэтому предусмотрена особая система идентификации. В обозначение входят: 3 или 4 цифры, 2 цифры и буква.
В первой системе первые две или три цифры характеризуют численное значение резистора, а последняя является показателем множителя, обозначающим степень, в которую возводят 10 для получения окончательного результата. Если сопротивление ниже 1 Ом, то для определения местонахождения запятой служит символ R. Например, сопротивление 0,05 Ом выглядит как 0R05.
Высокоточные (прецизионные) резисторы имеют очень малые размеры, поэтому нуждаются в компактной маркировке. Она состоит из трех цифр – первые две являются кодом, а третья – множителем. Каждому коду соответствует трехзначное значение сопротивления, определяемое по таблице. Такая маркировка выполняется в соответствии со стандартом EIA-96, разработанным для резисторов с допуском по сопротивлению не выше 1%.
Таблица кодов для прецизионных резисторов
Код | Значение | Код | Значение | Код | Значение | Код | Значение | Код | Значение | Код | Значение |
01 | 100 | 17 | 147 | 33 | 215 | 49 | 316 | 65 | 464 | 81 | 681 |
02 | 102 | 18 | 150 | 34 | 221 | 50 | 324 | 66 | 475 | 82 | 698 |
03 | 105 | 19 | 154 | 35 | 226 | 51 | 332 | 67 | 487 | 83 | 715 |
04 | 107 | 20 | 158 | 36 | 232 | 52 | 340 | 68 | 499 | 84 | 732 |
05 | 110 | 21 | 162 | 37 | 237 | 53 | 348 | 69 | 511 | 85 | 750 |
06 | 113 | 22 | 165 | 38 | 243 | 54 | 357 | 70 | 523 | 86 | 768 |
07 | 115 | 23 | 169 | 39 | 249 | 55 | 365 | 71 | 536 | 87 | 787 |
08 | 118 | 24 | 174 | 40 | 255 | 56 | 374 | 72 | 549 | 88 | 806 |
09 | 121 | 25 | 178 | 41 | 261 | 57 | 383 | 73 | 562 | 89 | 825 |
10 | 124 | 26 | 182 | 42 | 267 | 58 | 392 | 74 | 576 | 90 | 845 |
11 | 127 | 27 | 187 | 43 | 274 | 59 | 402 | 75 | 590 | 91 | 866 |
12 | 130 | 28 | 191 | 44 | 280 | 60 | 412 | 76 | 604 | 92 | 887 |
13 | 133 | 29 | 196 | 45 | 287 | 61 | 422 | 77 | 619 | 93 | 909 |
14 | 137 | 30 | 200 | 46 | 294 | 62 | 432 | 78 | 634 | 94 | 931 |
15 | 140 | 31 | 205 | 47 | 301 | 63 | 443 | 79 | 649 | 95 | 953 |
16 | 143 | 32 | 210 | 48 | 309 | 64 | 453 | 80 | 665 | 96 | 976 |
Проверка сопротивления постоянного резистора
После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.
Как проверяют сопротивление резистора
При обрыве цепи на экране горит «1».
Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера.
Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.
СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.
Проверка переменного резистора
Проверка без выпайки из схемы переменных резисторов, имеющих как минимум три ножки, более сложная, по сравнению с проверкой постоянного резистора.
Наиболее легким вариантом является положение резистора в самом начале схемы, поскольку одна из крайних «ножек» подключается через емкость. Поэтому по постоянному току приравнивается к свободно висящей. Такой способ измерения позволяет определить общее сопротивление, которое присутствует между крайними контактами.
Провести точные измерения сопротивления резистора позволяет его выпайка из схемы. Аналогично выпаянной, проверяется и новая деталь. Этапы измерений: