Саморегуляция как свойство живого

Саморегуляция и устойчивое развитие живых систем

Понятие гомеостаза и гомеокинеза. Стабильность физико-химических условий во внутренней среде в теории К. Бернара. Формирование инстинктов и процессов высшей нервной деятельности. Иммунный гомеостаз организма и гомеокинетические процессы организма.

РубрикаБиология и естествознание
Видконтрольная работа
Языкрусский
Дата добавления15.12.2015
Размер файла3,4 M

Саморегуляция как свойство живого. Смотреть фото Саморегуляция как свойство живого. Смотреть картинку Саморегуляция как свойство живого. Картинка про Саморегуляция как свойство живого. Фото Саморегуляция как свойство живого

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Саморегуляция и устойчивое развитие живых систем

1. Общие принципы саморегуляции

1.1 Гомеостаз и гомеокинез

Действительно, окружающая среда очень переменчива. Изменяются температура, освещенность, влажность. Для животных, да и для растений, нерегулярна доступность пищи. Атакуют паразиты, хищники и просто конкуренты за среду обитания. Тем не менее животные и растения выносят эти колебания среды, поддерживают внутреннее постоянство химического состава, живут, растут, размножаются. Экологические сообщества долгое время сохраняют определенный видовой состав.

В случае положительной обратной связи первый элемент сигнализирует второму о некоторых изменениях своего состояния, а в ответ получает команду на закрепление этого нового состояния и даже его дальнейшее изменение в том же направлении (рис. 1, А). Цикл за циклом первый элемент с помощью второго (контрольного) элемента накапливает и закрепляет изменения, его состояние необратимо сдвигается в одну сторону. Эта ситуация характеризуется как развитие, эволюция, и ни о какой стабильности системы в этом случае говорить не приходится.

Рис. 1. Управление системой по принципу положительных (А) и отрицательных (Б) обратных связей:

Кроме того, строго гомеостатическая система оказывается малоустойчивой и ненадежной при чрезмерно длительных или коротких, но резких нагрузках, что особенно актуально для выживания клеток, организмов и биоценозов в экстремальных условиях. Для их большей устойчивости нужна как минимум тернарная (состоящая из трех элементов) структура управления.

Действительно, в сложных живых системах бинарная (двойственная) гомеостатическая саморегуляция дополняется механизмами перестройки режима управления, на основе чего возникает приспособительная изменчивость. Это состояние перестройки системы для достижения нового уровня гомеостаза обозначается в физиологии как гомеокинез. В ходе реакций гомеокинеза создаются новые условия для функционирования системы на качественно новом уровне.

Таким образом, как и в случае индивидуального развития организма, при саморегуляции функций живой системы мы имеем триаду управления:

Далее на фактическом материале покажем саморегуляцию биологических систем разных уровней сложности: организменного, популяционного, экосистемного.

2. Саморегуляция в организме

У многоклеточных организмов имеется внутренняя среда, в которой находятся различные органы, при этом функционируют сложные механизмы гомеостаза и гомеокинеза. У растений обеспечивается оптимальный газообмен, поглощение воды и питательных веществ из почвы, испарение воды через устьица листьев. У животных формируются органы дыхания, пищеварения, выделения, кровообращения, появляются также специализированные эндокринная и нервная системы с многочисленными внешними и внутренними связями, непосредственно участвующие в саморегуляции. Стратегической задачей этих структур и регуляций является обеспечение нормального формирования половых клеток и процесса оплодотворения, развития зародышей, а часто и юных постэмбриональных стадий новых поколений.

Особую координирующую роль в поддержании физиологического гомеостаза многоклеточных животных играют нервная и гуморальная (эндокринная) системы регуляции. Кроме того, молекулярно-клеточно-тканевой гомеостаз организма обеспечивается иммунными механизмами. Дадим самую общую характеристику этих систем как главных участников процесса саморегуляции организма.

2.1 Нервная регуляция

Таким образом, буквально каждый участок тела пронизан чувствительными и двигательными нервными окончаниями, что позволяет организму иметь информацию о состоянии условий среды во всех его точках и управлять этими состояниями, как правило, с участием гуморальной регуляции. У человека, кроме того, головной мозг осуществляет психические функции (обучение, память, речь, мышление). В итоге нервная система регулирует работу внутренних органов, а также координирует взаимоотношение организма с внешним миром и организует сложные поведенческие акты.

Это классический пример контура регуляции, построенного на обратной отрицательной связи элементов управления.

Рис. 2. Схема рефлекторной дуги

Представление о рефлексах было выдвинуто еще в XVII веке французским натуралистом и философом Р. Декартом, относившим их к автоматическим, непроизвольным действиям. Российский физиолог Иван Михайлович Сеченов в 1863 г. утверждал, что “все акты сознательной и бессознательной жизни по способу происхождения суть рефлексы”. В XX веке эта концепция была развита И.П. Павловым в учении о безусловных и условных рефлексах.

2.2 Гуморальная регуляция

Рис. 3. Нейрогуморальная система регуляции у человека

Принципиально важно, что работа гипофиза и местных эндокринных желез, в свою очередь, контролируется нервной системой. Нервное возбуждение всегда оборачивается волной гормональных воздействий, которые мобилизуют организм на адекватную, соответствующую возбуждению, реакцию. Фактически благодаря связи нервной и эндокринной систем осуществляется единая нейрогуморальная саморегуляция организма.

2.3 Примеры комплексной нейрогуморальной регуляции

Работа нейрогуморальной регуляторной системы сочетается с работой внутренних органов и мышц, так что представляет собой комплексную рефлекторную реакцию.

Относительно просто, в гомеостатическом режиме, работают системы поддержания физиологических параметров организма, например, система регуляции артериального давления. Изменение давления крови воспринимается чувствительными нервными окончаниями, расположенными в стенках кровеносных сосудов и реагирующими на их растяжение. Возбуждение передается в нервный центр продолговатого мозга, а обратные сигналы изменяют мышечный тонус сосудов и сердечную деятельность. Одновременно эндокринные железы выделяют необходимые гормоны, корректирующие работу сердечно-сосудистой системы, так что кровяное давление плавно удерживается в пределах нормы.

Интересна и показательна регуляция пищевого поведения у позвоночных животных и человека (рис. 4).

В гипоталамусе, отделе головного мозга, связующем нервную и эндокринную системы, есть центры голода и насыщения. В крови голодного животного (или человека) возникает недостаток глюкозы, что приводит к раздражению центра голода. По нервным связям отдаются команды в мозг, на мышцы, и организуется поиск пищи. Параллельно с помощью гормонов из печени и мышц извлекаются резервы глюкозы (за счет расщепления гликогена), которые временно обеспечивают энергетический обмен.

Когда пища найдена, съедена и переварена, концентрация глюкозы в крови растет, что приводит к раздражению центра насыщения, подавлению аппетита и прекращению питания. Когда глюкоза расходуется, ее концентрация в крови вновь понижается, от чего раздражается центр голода. Цикл повторяется.

Рис.4. Схема регуляции пищевого поведения у млекопитающих животных

У человека пищевое поведение более сложное и разнообразное, так как зависит не только от наличия или отсутствия пищи. Имеет значение социальное положение (фермер, рабочий и бизнесмен будут “искать” пищу в разных местах и разными способами), финансовые возможности (покупка пищи), взаимоотношения с другими людьми (возможность взять пищу или деньги в долг) и т.д.

Таким образом, та или иная функциональная система возникает как временное объединение активностей разных органов посредством многосторонних нейрогуморальных связей. Когда полезный приспособительный результат достигнут, функциональная система “распадается” или перестраивается в соответствии с новыми потребностями организма. В ходе жизнедеятельности периодически формируются и распадаются разнообразные функциональные системы, среди которых одна, как правило, является доминирующей. Таким образом, при ограниченном числе анатомических структур и гормонов число их функциональных комбинаций (функциональных систем), организующих разнообразные поведенческие акты, может быть достаточно большим.

2.4 Иммунный гомеостаз организма

К числу регуляторных систем, обеспечивающих внутреннее постоянство организма, следует отнести также иммунную систему. Белковые антитела и клеточные компоненты иммунной системы (лимфоциты, фагоциты) отслеживают и поддерживают генетическую чистоту внутренней среды и тканей организма, устраняя проникшие вирусы, микробы или собственные мутантные клетки. При инфицировании организма или при паразитарной инвазии, а также при опухолевых новообразованиях иммунная система, если она здорова, дает резкий ответ повышением концентрации защитных белков и клеток. По окончании воспалительной реакции, при выздоровлении организма, иммунные показатели крови приходят в норму. Таким образом, сложный цикл выработки иммунных факторов, их взаимодействие с разнообразными чужеродными антигенами и восстановление нормальной внутренней среды организма представляют звенья саморегулирующегося механизма.

Первопричина биоритмов, по-видимому, вытекает из самой природы механизма регуляции: прямая и обратная связи замкнуты в цикл, на “оборот” которого требуется определенное время. За это время регулируемая система успевает измениться в ту или иную сторону, что и выражается в колебании ее параметров. Но средний уровень параметра должен соответствовать норме, а коридор его колебаний не должен выходить за физиологические пределы. Большинство организменных ритмов имеют околосуточную периодичность, есть также месячные, годичные и даже многолетние ритмы. Внутренний механизм, управляющий такими биоритмами, принято называть биологическими часами, что подчеркивает их связь с астрономическим временем.

2.6 Гомеокинетические процессы

Наконец, поставим вполне ожидаемый вопрос: если в организме столь эффективно работают механизмы саморегуляции, значит ли это, что его гомеостаз бесконечен? Почему рано или поздно наступают необратимые изменения органов? Почему возможна перестройка биоритмов, например, когда мы перелетаем с востока на запад и наоборот? Ответ мы уже знаем: при достаточно длительном и сильном (запороговом) воздействии на структурно-функциональные системы организма, наряду с процессами гомеостатической саморегуляции, включаются механизмы гомеокинеза, направленные на перестройку организменных структур и функций.

В частности, изменяется уровень активности соответствующих генов, вследствие чего происходит гипертрофия органов, то есть их чрезмерное развитие. Так обеспечивается приспособительная изменчивость клеток, тканей и органов для достижения нового уровня гомеостаза в новых условиях жизнедеятельности. По существу эти гомеокинетические изменения противоположны саморегуляции и гомеостазу, так как они поддерживаются обратными положительными (а не отрицательными) связями.

3. Саморегуляция в популяциях и экосистемах

Общее представление о структуре экологической системы было изложено при характеристике уровней организации жизни (глава 2) и глобального круговорота веществ и энергии (глава 3).

Состояние гомеостаза проявляется в том, что

1) организмы нормально размножаются;

2) несмотря на высокую естественную смертность, численность различных популяций в сообществе поддерживается на определенных уровнях, хотя и в колебательном режиме;

3) биоценоз сохраняет устойчивость и самовоспроизводится при колебаниях климатических условий.

Теперь несколько подробнее рассмотрим эти закономерности и вскроем основные механизмы экологической устойчивости.

3.1 Саморегуляция в популяциях организмов

Элементарная саморегуляция осуществляется на уровне отдельных популяций конкретных видов животных, растений, грибов, бактерий. Численность популяции зависит от противодействия двух начал: биотического (репродуктивного) потенциала популяции и сопротивления среды, между которыми устанавливаются прямая и обратная связи (рис. 5).

Поясним это конкретным примером. Когда европейцы завезли в Австралию кроликов, последние, не встретив хищников, быстро расселялись по богатым растительностью территориям, их численность быстро возрастала. Этому способствовал высокий биотический потенциал (плодовитость) кроликов. Но вскоре пищи стало не хватать, возник голод, распространились болезни, и численность кроликов пошла на убыль. Сработал фактор сопротивления среды, который и выступил в качестве отрицательной обратной связи. Пока популяция кроликов пребывала в угнетенном состоянии, среда (растительность) восстановилась, и процесс пошел на новую волну. Через несколько циклов амплитуда колебаний численности кроликов сократилась и установилась некоторая средняя плотность популяции.

Рис. Саморегуляция численности особей в популяции

Кроме действия среды, численность популяции саморегулируется поведением ее членов. Например, у многих грызунов в перенаселенной популяции повышается агрессивность особей, возникает каннибализм (взрослые особи поедают детенышей), что тормозит дальнейший рост численности. Происходят изменения в гормональной регуляции размножения, уменьшается рождаемость и увеличивается смертность. В основе этих регуляторных механизмов лежит физиологическая реакция стресса, управляемая выделением адреналина (см. предыдущий раздел). Так механизмы саморегуляции отдельных организмов согласуются с механизмами саморегуляции популяций.

3.2 Саморегуляция в биоценозе

Сложнее организована саморегуляция в биоценозе, так как он состоит из нескольких взаимодействующих сообществ животных, растений, грибов, микробов, составленных многочисленными популяциями разных видов. Все эти популяции взаимодействуют на основе многочисленных прямых и обратных связей.

Прежде всего, важны трофические (пищевые) связи, которые выстраиваются в несколько уровней. Как мы выяснили ранее, по характеру пищевых отношений все организмы делятся на три большие группы, три трофических уровня: продуценты, консументы и редуценты (раздел 3.4, рис. 3.4). Пути передачи вещества и энергии через пищевые отношения организмов обозначаются как цепи питания, или пищевые цепи. Эти цепи имеют одностороннюю направленность: от автотрофной биомассы продуцентов, в основном зеленых растений, к гетеротрофным консументам и далее к редуцентам.

Рис. 6. Пищевые цепи в морской экосистеме

Теперь сформулируем главную мысль настоящего раздела: пищевая пирамида экосистемы осуществляет саморегуляцию, т.е. сохраняет внутренний, экосистемный гомеостаз. Оптимальные численность и пропорция разных обитателей биоценоза устанавливаются сами по себе, в результате процессов саморегуляции. Во всех популяциях, на всех трофических уровнях всегда происходит колебание численности особей, причем колебания на низшем уровне неизменно ведут к колебаниям на следующем уровне, но в целом на значительном протяжении времени система поддерживает равновесное состояние.

Рис. 7. Саморегуляция биоценоза на основе пищевых связей

3.3 Устойчивое развитие экологических систем

Как отмечено вначале, биоценоз должен не просто саморегулироваться (судя по приведенной схеме, это не так уж и сложно), но он должен иметь устойчивость к изменениям внешних (абиотических, погодно-климатических) факторов, так сказать, запас прочности на случай временных неблагоприятных условий среды или даже долгосрочного направленного изменения климата.

Но процесс устойчивого развития экосистемы может быть нарушен. Наиболее типичны два сценария. В естественных условиях биоценоз практически разрушается при сильных, катастрофических изменениях внешней среды (пожары, наводнения, продолжительные засухи, оледенения и другие природные катаклизмы). Кроме того, биоценоз существенно меняет свой облик при резких изменениях состава сообществ (обычно человеком), например в результате массового отстрела хищников, заселения новых видов, как было с кроликами или овцами в Австралии, вырубки лесов, распашки степей под монокультуру, осушения болот и т.д. Такие катастрофические события приводят к гибели значительной части населения биоценоза, полному исчезновению отдельных видов, разрушению пищевых связей и, естественно, прерывают состояние устойчивого развития. Биоценоз в его прежнем составе перестает существовать.

гомеостаз гомеокинез инстинкт нервный

Подведем общий итог проблемы саморегуляции и устойчивого развития.

Вместе с тем клетки не только делятся, развиваются и работают, но в итоге они и умирают. Организмы тоже стареют и умирают. Биоценозы разрушаются и подвергаются сукцессиям, а в итоге погибнут вследствие остывания Земли и Солнца. Эти изменения обычно происходят в череде кризисов и катастроф. Они неизбежны, как неизбежна эволюция Вселенной.

Понятно, что продлить жизнь человека или биоценоза, как и всей Биосферы, можно в форме устойчивого развития, за счет максимально возможного продления гомеостатических состояний и надежности гомеокинетических механизмов. Для этого необходимы не только совершенные механизмы саморегуляции систем, но и относительно стабильные условия внешней среды. В определенной мере эти условия подконтрольны человеку, а значит, и его будущее находится в его собственных руках.

1. Горелов А.А. Концепции современного естествознания. М.: Изд-во “Центр”, 1997.

2. Карпенко С.Х. Концепции современного естествознания. М.: Культура и спорт, ЮНИТИ, 1997.

3. Концепции современного естествознания / Под ред. В.Н. Лавриненко и В.П. Ратникова. М.: Культура и спорт, ЮНИТИ, 1997.

4. Кэмп П., Армс К. Введение в биологию. М.: Мир, 1988.

5. Общая биология. Базовый уровень: учебник для 10-11-х классов общеобразовательных учреждений / Сивоглазов В.И., Агафонова И.Б., Захарова Е.Т.; под ред. В.Б. Захарова. М.: Дрофа, 2005.

6. Потеев М.И. Концепции современного естествознания. СПб.: Изд-во “Питер”, 1999.

7. Другие учебные пособия по “Концепциям современного естествознания” и “Общей биологии”.

8. Баранцев Р.Г. Синергетика в современном естествознании. М.: Едиториал УРСС, 2003.

9. Вернадский В.И. Биосфера и ноосфера. М., 1989.

10. Гаврилов Л.А., Гаврилова Н.С. Биология продолжительности. М.: Наука, 1991.

11. Исаева В.В. Синергетика для биологов: вводный курс. М.: Наука, 2005.

12. Ичас М. О природе живого: механизм и смысл. М.: Мир, 1994.

13. Кормилицын В.И., Цицкишвили М.С., Яламов Ю.И. Основы экологии. М.: Интерстиль, 1997.

14. Линден Ю. Обезьяны, человек и язык. М.: Мир, 1981.

15. Мандельброт Б. Фрактальная геометрия природы. М.: Институт компьютерных исследований, 2002.

16. Пайс А. Гении науки. М.: Институт компьютерных исследований, 2002.

17. Стил Э., Линдли Р., Бланден Р. Что, если Ламарк прав? Иммуногенетика и эволюция. М.: Мир, 2002.

18. Тётушкин Е.Я. Хронология эволюционной истории человека. Успехи соврем. биол., 2000, т. 120, № 3, с. 227-239.

19. Уинфри А.Т. Время по биологическим часам. М.: Мир, 1990.

20. Шредингер Э. Что такое жизнь? Физический аспект живой клетки. Москва-Ижевск, 2002.

21. Эткинс П. Порядок и беспорядок в природе. М.: Мир, 1987.

22. Эфроимсон В.П. Генетика этики и эстетики. СПб.: Талисман, 1995.

Размещено на Allbest.ru

Подобные документы

Единство химического состава как основное свойство живых организмов. Сущность пластического и энергетического метаболизма. Клетка как наименьшая структурная единица живого. Саморегуляция как поддержание постоянства внутренней среды организма (гомеостаза).

презентация [710,3 K], добавлен 29.10.2012

Физиологическая стабильность и концепция К. Бернара о внутренней среде. Разделение животных на конформеров и регуляторов. Типы регуляторных механизмов, гомеостаз. Терморегуляция: экзотермные и эндотермные животные. Мотивационные системы и состояние.

курсовая работа [822,5 K], добавлен 08.08.2009

Кровь, тканевая жидкость и лимфа как компоненты внутренней среды человеческого организма, их состав форменных элементов, функции и местонахождение. Механизмы поддержания кислотно-щелочного равновесия. Понятие и закономерности проявления гомеостаза.

презентация [16,4 K], добавлен 14.01.2011

Понятие о внутренней среде организма. Обеспечение определенного уровня возбудимости клеточных структур. Постоянство состава и свойств внутренней среды, гомеостаз и гомеокинез. Функции, константы и состав крови. Объем циркулирующей в организме крови.

презентация [967,9 K], добавлен 26.01.2014

Деятельность гормональной и иммунной систем. Рост и развитие организма, обмен веществ. Железы внутренней секреции. Влияние гормонов надпочечников на метаболические процессы растущего организма. Критерии аэробной и анаэробной работоспособности у людей.

реферат [17,9 K], добавлен 13.03.2011

Источник

КОНЦЕПЦИЯ САМОРЕГУЛЯЦИИ ЖИВЫХ СИСТЕМ

КОНЦЕПЦИЯ САМОРЕГУЛЯЦИИ ЖИВЫХ СИСТЕМ

Действительно, окружающая среда очень переменчива. Изменяются температура, освещенность, влажность. Для животных, да и для растений не регулярна доступность пищи. Донимают паразиты, хищники и просто конкуренты за среду обитания. Тем не менее, животные и растения выносят эти колебания среды, живут, растут, размножаются. Экологические сообщества долгое время сохраняют некий средний состав.

Основоположник идеи о физиологическом гомеостазе Клод Бернар рассматривал стабильность физико-химических условий во внутренней среде как основу свободы и независимости живых организмов в непрерывно меняющейся внешней среде. (слайд 3)

Эта ситуация характеризуется как самоорганизация, развитие, эволюция, и ни о какой стабильности системы говорить не приходится. Это может быть любой рост (клетки, организма, популяции), изменение видового состава в сообществе организмов, изменение концентрации мутаций в генофонде популяции, ведущее через отбор к эволюции видов. Естественно, что обратные положительные связи не только не поддерживают, но, напротив, разрушают гомеостаз.

Обратная отрицательная связь стимулирует изменения в регулируемой системе с противоположным знаком относительно тех первичных изменений, которые породили прямую связь. Первоначальные сдвиги параметров системы устраняются, и она приходит в исходное состояние. Цикличное сочетание прямых положительных и обратных отрицательных связей может быть, теоретически, бесконечно долгим, так как система колеблется около некоторого равновесного состояния (рис. 1б). Таким образом , для поддержания гомеостаза системы используется принцип отрицательной обратной связи.

Далее на конкретных примерах покажем саморегуляцию биологических систем разного уровня сложности.

В клетке для поддержания гомеостаза используются в основном химические (молекулярные) механизмы регуляции. Наиболее важна регуляция генов, от которых зависит производство белков, в том числе многочисленных и разнообразных ферментов.

По своей простоте система регуляции гена концентрацией субстрата похожа на простые технические регуляторы. Однако, у эукариот регуляция генной активности более сложная.

Другой пример простых саморегулирующихся систем, использующих обратную отрицательную связь, представляют ферментативные цепи, ингибируемые конечным продуктом. Суть регуляции состоит в том, что конечный продукт имеет сродство с первым ферментом. Связываясь с ферментом, продукт ингибирует (подавляет) его активность, так как полностью искажает его третичную структуру. Работает следующий регуляторный цикл. При повышении концентрации конечного продукта выше необходимого уровня его избыток ингибирует ферментную цепь (для этого достаточно остановить самый первый фермент). Ферментация прекращается, а свободный продукт расходуется на нужды клетки. Через некоторое время возникает дефицит продукта, блок с ферментов снимается, цепь активируется, и производство продукта снова растет. (слайд 7)

Заметим, однако, что регулируемые параметры не бывают абсолютно постоянными, они поддерживаются в допустимых границах. В каждом случае это свои физиологические границы, позволяющие нормально осуществлять клеточные функции.

САМОРЕГУЛЯЦИЯ МНОГОКЛЕТОЧНОГО ОРГАНИЗМА

У многоклеточных организмов появляется внутренняя среда, в которой находятся клетки различных органов и тканей, происходит усложнение и совершенствование механизмов гомеостаза. В ходе эволюции формируются специализированные органы кровообращения, дыхания, пищеварения, выделения и др., участвующие в поддержании гомеостаза.

Основную роль в поддержании гомеостаза организма играют нервная и гормональная системы регуляции (слайд 9).

Выделяемые эндокринными железами гормоны с током крови (гуморально) распространяются ко всем органам-мишеням и участвуют в регуляции их роста и функционирования. Таким образом, фактически благодаря связи нервной и эндокринной систем осуществляется единая нейрогормональная саморегуляция организма. (слайд 10)

Механизм обратной отрицательной связи вовлечен в поддержание постоянства числа клеток в обновляющихся тканях, таких как кровь, кишечный или кожный эпителий. (слайд 12)

В этих тканях имеется резерв недифференцированных клеток (например, красный костный мозг для крови), которые многократно делятся, дифференцируются, работают, стареют и отмирают. Считают, что зрелые клетки выделяют вещества, ингибирующие молодые делящиеся клетки. Выстраивается цепь взаимозависимых реакций: при избытке зрелых клеток продукция ингибитора высока и размножение клеток подавляется; уменьшение числа зрелых клеток в результате их естественной гибели сопровождается снижением концентрации ингибитора в среде; блок клеточных делений снимается; размножение молодых клеток усиливается; число зрелых клеток восстанавливается. Далее вновь возрастает продукция ингибитора и цикл повторяется. Общее число зрелых клеток в ткани колеблется около некоторого среднего уровня, резко не снижается и не повышается. По механизму передачи сигнала здесь мы имеем гуморальную систему, ингибитор работает как внутритканевой «гормон».

САМОРЕГУЛЯЦИЯ В ЭКОСИСТЕМАХ

Концепция гомеостаза экосистемы в экологии была разработана Ф. Клементсом (1949) (слайд 15). Равновесие в экосистемах процессами с обратной связью. Гомеостаз –это способность популяции или экосистемы поддерживать устойчивое динамическое равновесие в изменяющихся условиях среды. В гомеостазе (устойчивости) живых систем выделяют:

Упругость (резистентность, сопротивляемость) –способность быстро самостоятельно возвращаться в нормальное состояние из неустойчивого, которое возникло в результате внешнего неблагоприятного воздействия на систему.

Гомеостаз популяции определяется поддержанием пространственной структуры, плотности и генетического разнообразия. На уровне экосистем гомеостаз проявляется в наиболее устойчивых формах взаимодействия между видами, что выражается в приспособленности к особенностям среды и поддержании циклов круговорота биогенов. Можно рассматривать даже гомеостаз биосферы, в которой взаимодействие разнообразных организмов поддерживает постоянство газового состава атмосферы, состав почв, состава и концентрации солей мирового океана и др.

Гомеостаз обеспечивается работой механизмов регулирования, действующих по принципу отрицательной обратной связи. Резкие изменения характеристик окружающей среды, при которых они (или одна из них) выходят за границы допустимого, называют экологическим стрессом.

В экосистемах в результате взаимодействия круговорота веществ, потоков энергии и сигналов обратной связи от субсистем возникает саморегулирующийся гомеостаз. В число управляющих механизмов на уровне экосистемы входят, например, такие субсистемы, как микробное население, регулирующее накопление и высвобождение биогенных элементов.

Субсистема «хищник-жертва» также регулирует плотность: популяций и хищника, и жертвы. Рассмотрим простейшую экосистему: заяц –рысь, состоящую из двух трофических уровней. (слайд 16) Когда численность зайцев невелика, каждый из них может найти достаточно пищи и удобных укрытий для себя и своих детенышей. Т.е. сопротивление среды невысоко, и численность зайцев увеличивается, несмотря на присутствие хищника. Изобилие зайцев облегчает рыси охоту и выкармливание детенышей. В результате численность хищника также возрастает. В этом проявляется обратная положительная связь. Однако с ростом численности зайцев уменьшается количество корма, убежищ и усиливается хищничество, т.е. усиливается сопротивление среды. В результате численность зайцев снижается. Охотиться хищникам становится труднее, они испытывают нехватку пищи и их численность падает. В этом проявляется обратная отрицательная связь, которая компенсирует отклонения и возвращает экосистему в исходное состояние.

Подобные колебания происходят периодически вокруг некого среднего уровня. Рост, снижение и постоянство популяции зависит от соотношения между биотическим потенциалом и сопротивлением среды. Принцип изменения популяции: это результат нарушения равновесия между биотическим потенциалом и сопротивлением окружающей её среды. Подобное равновесие является динамическим, т.к. факторы сопротивления среды редко подолгу остаются неизменными. (слайд 17)

Равновесие в экосистемах обеспечивается избыточностью организмов, выполняющих одинаковые функции. Например, если в сообществе имеются несколько видов растений, каждое из которых развивается в своем температурном диапазоне, то скорость фотосинтеза экосистемы в течение длительного времени может оставаться почти неизменной. При возрастании стресса система может оказаться неспособной возвратиться на прежний уровень, хотя и остается управляемой. Для экосистем возможно не одно, а несколько состояний равновесия. После стрессовых воздействий они часто возвращаются в другое, новое, состояние равновесия.

По мере увеличения притока СО 2 буферная ёмкость биосферы может оказаться недостаточной, и в атмосфере установится новое равновесие между

СО 2 и О 2. В этом случае даже небольшие изменения могут иметь далеко идущие последствия: должна происходить эволюционная подгонка, чтобы вновь появился надежный гомеостатический контроль. Кроме рассмотренных, имеют место и многие другие механизмы, обеспечивающие стабильность и гомеостаз экосистем. Так, например, способность популяции адаптироваться к новым условиям среды зависит от степени гетерозиготности. Конкуренция тоже является механизмом гомеостаза.

Равновесие –понятие относительное. Равновесие в природных экосистемах зависит от плотности популяции. Если плотность популяции растет –сопротивление среды увеличивается, в связи с чем увеличивается смертность и рост численности прекращается. И, наоборот, с уменьшением плотности популяции сопротивление среды ослабевает и восстанавливается прежняя численность. Воздействие человека на природу часто приводит к вымиранию популяции, т.к. не зависит от плотности популяции.

Стабильность экосистем в экологии означает свойство любой системы возвращаться в исходное состояние после того, как она была выведена из состояния равновесия. Стабильность определяется устойчивостью экосистем к внешним воздействиям. Выделят два типа устойчивости: резистентную и упругую.

Резистентная устойчивость –это способность экосистемы сопротивляться нарушениям, поддерживая неизменными свою структуру и функцию.

Упругая устойчивость –способность системы быстро восстанавливаться после нарушения структуры и функции.

Системе трудно одновременно развивать оба типа устойчивости: они связаны обратной связью, а иногда исключают друг друга. Например, калифорнийский лес из секвойи устойчив к пожарам (высокая резистентная устойчивость), но если сгорит, то восстанавливается очень медленно или вовсе не восстанавливается (низкая упругая устойчивость). Заросли вереска легко выгорают (низкая резистентная устойчивость), но быстро восстанавливаются (высокая упругая устойчивость)

Человек самое могущественное существо, способное изменять функционирование экосистем. Человеческий мозг до сих пор опирался в основном на положительную обратную связь, управляя природой и властвуя над ней. Это привело к развитию техники и росту эксплуатации ресурсов. Но этот процесс, в конце концов приведет к снижению качества жизни и разрушению окружающей среды, если не будут найдены пути адекватного управления с помощью отрицательной обратной связи.

Существование человечества возможно только при сохранении регулирующих механизмов, которые позволяют биосфере приспособиться к некоторым антропогенным воздействиям. Стремясь снизить уровень загрязнения окружающей среды, человек должен в равной степени стремиться к сохранению механизмов саморегуляции, поддерживающих естественные системы жизнеобеспечения планеты, т.е. к сохранению установившегося в природе экологического равновесия, что не всегда достигается только снижением уровня загрязнения и экономным использованием природных ресурсов.

Заключение (слайд 19)

В то же время живые системы направленно и необратимо изменяются, самоорганизуются, что составляет сущность их развития. Клетки дифференцируются, работают и умирают. Организмы растут, размножаются, стареют и умирают. Биоценозы подвергаются сукцессиям и так же необратимо изменяются с изменением климата на Земле. Направленное изменение биосистемы по сути противоположно гомеостазу, оно происходит на основе обратных положительных связей.

1.А.П.Анисимов Концепция современного естествознания. Биология. Дальневосточный государственный университет, тихоокеанский институт дистанционного образования и технологий, Владивосток, 2000

2 Биологический энциклопедический словарь

3. Гомеостаз в экосистеме /Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям./ http://oplib.ru/random/view/1196532

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *