Сильный окислитель как определить

Окислитель

Что такое окислитель

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определитьОкислителями могут быть нейтральные атомы или положительно заряженные ионы.

Нейтральные атомы. Окислителями могут быть только те из нейтральных атомов, которые, принимая электроны, переходят в отрицательно заряженные ионы, т. е. только нейтральные атомы неметаллов.

Рис. Перекись водорода окислитель.

Самые сильные окислители — атомы галогенов, так как они могут принимать только один электрон. Самые слабые окислители— атомы неметаллов четвертой группы.

В группах (4 — 7) окислительные свойства падают с возрастанием величин радиусов нейтральных атомов. Следовательно, из нейтральных атомов самый сильный окислитель — фтор, а самый слабый — свинец. Неметаллы могут быть не только окислителями, т. е. принимать электроны, но и отдавать электроны, т. е. быть восстановителями.

Положительно заряженные ионы как металлов, так и неметаллов также могут быть окислителями, так как они принимают электроны от других атомов или ионов. В процессе реакции они переходят: а) в положительные ионы низшей зарядности, б) в нейтральные атомы и в) в отрицательно заряженные ионы. Например:

Чем больше энергии было затрачено на отрыв электронов, тем сильнее они будут притягиваться образовавшимися ионами. Поэтому к сильным окислителям относятся, например, ионы „благородных» металлов, их ионизационные потенциалы довольно высокие: Au — 9,18 V, Ag — 7,54 V, Pd —8,3 V, Pt —8,88 V.

Необходимо заметить, что, хотя такие многозарядные положительные ионы в растворе существуют только в виде сложных анионов типов ЭO3, ЭO»4, ЭO4 и др., это, однако, нисколько не понижает их окислительной способности. Они являются сильными окислителями. К наиболее сильным окислителям принадлежат: фтор, озон, двуокись свинца, ионы «благородных» металлов и многовалентные положительные ионы.

Применяемые окислители в технике и лабораторной практике делятся на нейтральные, кислые и щелочные.

Нейтральные окислители

1. Кислород применяется для интенсификации производственных процессов в металлургической и химической промышленности (например, в доменном процессе, в производстве серной и азотной кислоты и т. д.). В нейтральной среде реакция окисления кислородом протекает по уравнению: O2 + 2Н2O + 4ē ⇄4OН, а в кислой среде:

2. Озон отличается от кислорода более сильной окислительной способностью: он многие красящие вещества обесцвечивает, металлы (за исключением Au, Pt и др.) окисляет, аммиак окисляет в азотистую и азотную кислоты, сернистые соединения — в сернокислые и т. д. В нейтральной среде реакция окисления озоном протекает по уравнению: O3 + H2O + ē → O2 + 2H, в кислой среде: O3 + 2Н • + 2ē → O2 + Н2O.

3. Электрический ток широко используется в технике не только как восстановитель, но и как окислитель для получения различных химически чистых веществ.

Кислые окислители

1. Хромовая и двухромовая кислоты известны только в растворе, поэтому вместо свободных кислот пользуются их устойчивыми солями (К2Сr2O7 и К2СrO4), которые и применяются в промышленности и лабораторной практике для окисления различных веществ. Обычно пользуются для этой цели смесью бихроматов калия или натрия с серной кислотой (60 ч. К2Сr2O7 +80 ч. конц. H2SO4 + 270 ч. Н2O).

2. Азотная кислота—один из сильнейших окислителей. Она окисляет очень многие металлы. Ею относительно легко окисляются и многие неметаллы, например: сера (при кипячени) до H2SO4, фосфор —до Р3РО4 углерод —до СО2 и т. д.

3.Азотистая кислота хотя и является окислителем, но при взаимодействии с более сильными окислителями сама проявляет восстановительные свойства, окисляясь до азотной кислоты. Азотистая кислота и её соли (KNО2 и NaNО2) применяются в качестве окислителей главным образом в производстве органических красителей.

4. Серная кислота концентрированная—сравнительно сильный окислитель, особенно при высокой температуре. Она окисляет С до СО2, S до SO2, HJ и НВr (частично) до свободных галогенов (J2 и Вr2). Серная кислота окисляет также многие металлы: Cu, Ag, Hg и др. Однако такие металлы, как Au, Pt, Ru, Os и др., устойчивы по отношению к ней. Проявляя окислительные свойства, H2SO4 обычно восстанавливается до SO2, с более сильными восстановителями— до S и даже до H2S. Разбавленной серной кислотой окисляются только активные металлы, стоящие в ряду напряжений выше пары водорода.

5. Хлорноватая кислота — в растворе является энергичным окислителем. Так, например, 40% водный раствор её окисляет горючие вещества (например, бумагу и др.) с воспламенением. Соли её, хлорноватокислые или хлораты, в растворе окислительных свойств не проявляют, но, будучи в кристаллическом состоянии при сплавлении, являются сильными окислителями. Наиболее важной солью из них является хлорноватокислый калий (бертолетова соль).

6. Перекись водорода, являясь сильным окислителем, используется в тех случаях, когда требуется окислить вещество, сравнительно легко разрушающееся от других окислителей. В технике Н2O2 применяется для отбеливания тканей, слоновой кости, соломы, мехов, перьев и т. д. Разрушая красящие вещества, перекись водорода почти не затрагивает отбеливаемого материала. В медицине Н2O2, сильно разбавленная, применяется для полоскания горла и промывки ран. Она применяется также для обновления потускневших картин, написанных масляными красками. В реакциях с более сильными окислителями Н2O2 сама проявляет восстановительные свойства. Она способна также к реакциям самоокисления-самовосстановления.

7. Двуокись марганца в кислой среде применяется при получении хлора из соляной кислоты, в стекольной промышленности, для окисления различных сернистых соединений и производных железа, при изготовлении гальванических элементов типа Лекланше и т. д.

8. Двуокись свинца является исключительно сильным окислителем. Она широко применяется в работе свинцовых аккумуляторов.

Щелочные окислители

1. Марганцовокислый калий (перманганат калия)— сильный окислитель, применяется для окисления многих органических соединений. Перманганат калия в кислой среде окисляет соли двухвалентного олова и железа в соли четырёх- и трёхвалентные. Он также окисляет: сульфиты — в сульфаты, нитриты — в нитраты, йодистый калий — до свободного йода, соляную кислоту — до хлора, перекись водорода— до кислорода и т. д. Характер восстановления КМnO4 зависит от среды, в которой протекает реакция.

2. Хлорная (или белильная) известь относится к числу наиболее сильных окислителей, широко применяется

для отбелки тканей и бумаги, для дезинфекции и т. д. В военное время хлорная известь используется для дегазации местности, заражённой отравляющим веществом.

3. Растворы гипохлорита калия и натрия

2KOH + Cl2 = KOCl + KCl + H2O

2NaOH + Cl2 = NaOCl + NaCl + H2O

применяются для отбелки тканей, главным образом хлопчатобумажных и льняных, а также бумаги.

Особое место занимают ионы так называемой промежуточной зарядности, которые в зависимости от условий реакции могут быть как окислителями, так и восстановителями. Таковы, например:

Следовательно, подразделение веществ на восстановители и окислители имеет до некоторой степени условный характер и преследует цель — указать на преобладание окислительных или восстановительных свойств у данного вещества в определённых условиях.

Статья на тему Окислитель

Похожие страницы:

Понравилась статья поделись ей

Источник

ОКИСЛИТЕЛИ И ВОССТАНОВИТЕЛИ В ХИМИЧЕСКИХ РЕАКЦИЯХ

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Окислители и восстановители в химии — интересный, но очень часто вызывающий затруднения, вопрос.

К примеру, превращение с помощью нитрифицирующих бактерий атмосферного азота в легко усваиваемую растениями форму, фотосинтез, дыхание живых организмов (от бактерий до высших растений и животных) — это ОВР в природе.

А вот выплавка стали, промышленное получение аммиака из азота и водорода, гальванические процессы, электролиз – эти и огромное количество других процессов являются примерами ОВР в технике.

Так что же такое окислительно-восстановительные реакции (процессы)?

Понятие окислительно-восстановительной реакции

Окислительно-восстановительные реакции (ОВР) – это процессы, в ходе которых изменяются степени окисления атомов химических элементов.

Окисление и восстановление сопровождают друг друга. Один процесс без другого просто не существует. Почему?

Изменение степени окисления всегда означает переход электронов от одних частиц к другим. То есть одни частицы отдают электроны в ходе химического или электрохимического взаимодействия, а другие частицы принимают. Здесь срабатывает закон сохранения материи.Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Окислители, восстановители. Окисление, восстановление

Итак, окисление – это процесс, в ходе которого частица передает свои электроны другой частице. В качестве таких частиц могут выступать отдельные атомы или ионы, а также молекулы.

Переход электронов принято показывать с помощью полуреакций:

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Как не сложно заметить из представленных полуреакций, окислительный процесс приводит к увеличению степени окисления.

Частица, принимающая электроны, является окислителем.

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Восстановление всегда сопровождается уменьшением степени окисления!

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Способность к окислению и восстановлению: как определить

Существует несколько закономерностей, которые помогают определить наличие у частицы (атома, иона, молекулы) способности окисляться или восстанавливаться. Обратимся к периодической таблице химических элементов.

1) В периодах слева направо (т.е. с повышением порядкового номера элемента) восстановительные свойства простых веществ уменьшаются, а окислительные увеличиваются:

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

То есть в начале периода находятся явные восстановители, а в конце – окислители. Например, в III периоде активным восстановителем является натрий, а активным окислителем – хлор.

А причина данной закономерности кроется в строении атомов элементов.

У атомов элементов одного периода:

В связи с этим растет и сила притяжения электронов к ядру. В результате радиус атома уменьшается.

У элементов конца периода эта сила велика. Поэтому атомы очень трудно отдают свои электроны в химических взаимодействиях и легче принимают их от других атомов, стремясь завершить внешний энергетический уровень. Так проявляются их окислительные свойства.

Атомам элементов начала периода для завершения внешнего уровня до устойчивого 8-электронного состояния легче отдать свои немногочисленные электроны, проявив тем самым восстановительные свойства.

2) Элементы побочных подгрупп (это металлы четных рядов больших периодов) на внешнем уровне имеют 2 или 3 (реже 1 в случае «провала») электрона, поэтому легко могут их отдавать, являясь, таким образом, восстановителями:

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

3) Элементы одной главной подгруппы имеют одинаковое число электронов на внешнем энергетическом уровне (например, элементы VI группы – шесть электронов). Число же энергетических уровней увеличивается и, соответственно, радиусы атомов тоже увеличиваются. Это приводит к тому, что электроны внешних уровней удаляются от ядра и притяжение их к нему ослабевает.

Вот именно поэтому, восстановительная способность (способность отдавать электроны) у элементов главных подгрупп сверху вниз растет, а окислительная способность (способность принимать электроны) снижается:

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Так, среди элементов главной подгруппы VI группы окислительная способность сильнее всего проявляется у кислорода, а теллур в некоторых взаимодействиях способен проявлять восстановительные свойства.

4) Определить, чем будет являться частица (или вещество, в состав которого она входит) в окислительно-восстановительном процессе, можно по значению степени окисления (с.о.).

Если атомы имеют самую наименьшую с.о., то проявят они восстановительные свойства. Если самую высокую – то окислительные. А если с.о. является промежуточной по значению, то проявят как те, так и другие свойства (в зависимости от конкретных условий химической реакции). Например:

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Сильные или слабые окислители и восстановители: как определить

Часто говорят: сильный окислитель, слабый окислитель, сильный восстановитель, слабый восстановитель. А что это значит? И как определить эту самую силу?

Мерой окислительно-восстановительной способности вещества служит значение стандартного электродного потенциала: чем оно больше, тем и окислительные свойства проявляются сильнее.

Обратимся к таблице стандартных электродных потенциалов. В ней значения потенциалов расположены в порядке уменьшения:Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определитьЗначения восстановительных стандартных потенциалов фтора и лития таковы:

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определитьАнализируя эти полуреакции и значения восстановительных потенциалов, приходим к выводу, что сильнее других окисляют атомы фтора: они, восстанавливаясь, легче других принимают электроны. А ионы лития восстанавливаются с большим трудом.

Окислительные потенциалы фтора и лития будут иметь противоположные значения.

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определитьА говорить они будут о том, что ион фтора окисляется с очень большим трудом, а атом лития, наоборот, легко превращается при окислении в ион.

Пример . Используя таблицу стандартных электродных потенциалов, определите, какая из частиц проявляет более сильные окислительные свойства:

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определитьРешение:

Наиболее сильным окислителем будет та частица, которая лучше всего восстанавливается, а, значит, имеет более высокий восстановительный электродный потенциал.

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Сравним значения восстановительных потенциалов:

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Таким образом, наиболее сильным окислителем из представленных является нитрат-ион.

Основные окислители и восстановители в химии

В технике применяется огромное количество окислителей и восстановителей с разной окислительной и восстановительной способностью.

Важнейшие из них представлены в таблице:

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Итак, окисление и восстановление – два взаимосвязанных процесса. Они широко представлены в природе и играют огромную роль в промышленных производствах. Окислители и восстановители очень разнообразны. Чем будет являться частица (или вещество, в состав которого она входит): окислителем или восстановителем, – можно определить, используя некоторые закономерности.

Источник

Окислительно-восстановительные реакции

Окислительно-восстановительные реакции — это химические реакции, сопровождающиеся изменением степени окисления у атомов реагирующих веществ. При этом некоторые частицы отдают электроны, а некоторые получают.

Окислители и восстановители

Окислители — это частицы (атомы, молекулы или ионы), которые принимают электроны в ходе химической реакции. При этом степень окисления окислителя понижается. Окислители при этом восстанавливаются.

Восстановители — это частицы (атомы, молекулы или ионы), которые отдают электроны в ходе химической реакции. При этом степень окисления восстановителя повышается. Восстановители при этом окисляются.

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Химические вещества можно разделить на типичные окислители, типичные восстановители, и вещества, которые могут проявлять и окислительные, и восстановительные свойства. Некоторые вещества практически не проявляют окислительно-восстановительную активность.

К типичным окислителям относят:

Типичные восстановители – это, как правило:

Большинство остальных веществ может проявлять как окислительные, так и восстановительные свойства.

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Типичные окислители и восстановители приведены в таблице.

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

В лабораторной практике наиболее часто используются следующие окислители :

Классификация окислительно-восстановительных реакций

Окислительно-восстановительные реакции обычно разделяют на четыре типа: межмолекулярные, внутримолекулярные, реакции диспропорционирования (самоокисления-самовосстановления), и реакции контрдиспропорционирования.

C 0 + 4H N +5 O3(конц) = C +4 O2 ↑ + 4 N +4 O2 ↑+ 2H2O.

Внутримолекулярные реакции – это такие реакции, в которых разные элементы из одного реагента переходят в разные продукты, например:

Реакции диспропорционирования (самоокисления-самовосстановления) – это такие реакции, в которых окислитель и восстановитель – один и тот же элемент одного реагента, который при этом переходит в разные продукты:

3Br2 + 6 KOH → 5KBr + KBrO3 + 3 H2O,

Репропорционирование (конпропорционирование, контрдиспропорционирование ) – это реакции, в которых окислитель и восстановитель – это один и тот же элемент, который из разных реагентов переходит в один продукт. Реакция, обратная диспропорционированию.

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Основные правила составления окислительно-восстановительных реакций

Окислительно-восстановительные реакции сопровождаются процессами окисления и восстановления:

Окисление — это процесс отдачи электронов восстановителем.

Восстановление — это процесс присоединения электронов окислителем.

В окислительно-восстановительных реакциях соблюдается электронный баланс: количество электронов, которые отдает восстановитель, равно количеству электронов, которые получает окислитель. Если баланс составлен неверно, составить сложные ОВР у вас не получится.

Используется несколько методов составления окислительно-восстановительных реакций (ОВР): метод электронного баланса, метод электронно-ионного баланса (метод полуреакций) и другие.

«Опознать» ОВР довольно легко — достаточно расставить степени окисления во всех соединениях и определить, что атомы меняют степень окисления:

Выписываем отдельно атомы элементов, меняющих степень окисления, в состоянии ДО реакции и ПОСЛЕ реакции.

Степень окисления меняют атомы марганца и серы:

Mn +7 + 1e = Mn +6

Марганец поглощает 1 электрон, сера отдает 2 электрона. При этом необходимо, чтобы соблюдался электронный баланс. Следовательно, необходимо удвоить число атомов марганца, а число атомов серы оставить без изменения. Балансовые коэффициенты указываем и перед реагентами, и перед продуктами!

Схема составления уравнений ОВР методом электронного баланса:

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Внимание! В реакции может быть несколько окислителей или восстановителей. Баланс необходимо составить так, чтобы ОБЩЕЕ число отданных и полученных электронов было одинаковым.

Общие закономерности протекания окислительно-восстановительных реакций

Самый очевидный фактор, определяющий — среда раствора реакции — кислая, нейтральная или щелочная. Как правило (но не обязательно), вещество, определяющее среду, указано среди реагентов. Возможны такие варианты:

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Среда протекания реакции позволяет определить состав и форму существования остальных продуктов ОВР. Основной принцип — продукты образуются такие, которые не взаимодействуют с реагентами!

Обратите внимание! Е сли среда раствора кислая, то среди продуктов реакции не могут присутствовать основания и основные оксиды, т.к. они взаимодействуют с кислотой. И, наоборот, в щелочной среде исключено образование кислоты и кислотного оксида. Это одна из наиболее частых, и наиболее грубых ошибок.

При увеличении температуры большинство ОВР, как правило, проходят более интенсивно и более глубоко.

Рассмотрим наиболее типичные лабораторные окислители.

Основные схемы окислительно-восстановительных реакций

Схема восстановления перманганатов

В составе перманганатов есть мощный окислитель — марганец в степени окисления +7. Соли марганца +7 окрашивают раствор в фиолетовый цвет.

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Перманганаты, в зависимости от среды реакционного раствора, восстанавливаются по-разному.

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

3 K2S + 2 KMnO4 + 4 H2O = 2 MnO2↓ + 3 S↓ + 8 KOH,

Распространенной ошибкой в этой реакции является указание на взаимодействие серы и щелочи в продуктах реакции. Однако, сера взаимодействует с щелочью в довольно жестких условиях (повышенная температура), что не соответствует условиям этой реакции. При обычных условиях правильно будет указывать именно молекулярную серу и щелочь отдельно, а не продукты их взаимодействия.

При составлении этой реакции также возникают трудности. Дело в том, что в данном случае написание молекулы среды (КОН или другая щелочь) в реагентах не требуется для уравнивания реакции. Щелочь принимает участие в реакции, и определяет продукт восстановления перманганата калия, но реагенты и продукты уравниваются и без ее участия. Этот, казалось бы, парадокс легко разрешим, если вспомнить, что химическая реакция — это всего лишь условная запись, которая не указывает на каждый происходящий процесс, а всего лишь является отображением суммы всех процессов. Как определить это самостоятельно? Если действовать по классической схеме — баланс-балансовые коэффициенты-уравнивание металла, то вы увидите, что металлы уравниваются балансовыми коэффициентами, и наличие щелочи в левой части уравнения реакции будет лишним.

Перманганаты окисляют:

KMnO4 + неМе (низшая с.о.) = неМе 0 + другие продукты

KMnO4 + неМе (промежуточная с.о.) = неМе(высшая с.о.) + др. продукты

KMnO4 + Ме 0 = Ме (стабильная с.о.) + др. продукты

Схема восстановления хроматов/бихроматов

Сильный окислитель как определить. Смотреть фото Сильный окислитель как определить. Смотреть картинку Сильный окислитель как определить. Картинка про Сильный окислитель как определить. Фото Сильный окислитель как определить

Соединения хрома VI окисляют:

Хромат/бихромат + неМе (отрицательная с.о.) = неМе 0 + другие продукты

Хромат/бихромат + неМе (промежуточная положительная с.о.) = неМе(высшая с.о.) + др. продукты

Хромат/бихромат + Ме 0 = Ме (стабильная с.о.) + др. продукты

Хромат/бихромат + P, As (отрицательная с.о.) = P, As +5 + другие продукты

Разложение нитратов

Например:

Активные металлы в природе встречаются в виде солей (KCl, NaCl).

Металлы средней активности чаще всего в природе встречаются в виде оксидов (Fe2O3, Al2O3 и др.).

Неактивные металлы в природе встречаются в виде простых веществ.

Некоторые исключения!

Разложение нитрата аммония :

При нагревании нитрат аммония разлагается. При температуре до 270 о С образуется оксид азота (I) («веселящий газ») и вода:

Результирующая степень окиcления азота — среднее арифметическое степени окисления атомов азота в исходной молекуле.

При более высокой температуре оксид азота (I) разлагается на простые вещества — азот и кислород :

При разложении нитрита аммония NH4NO2 также происходит контрдиспропорционирование.

Термическое разложение нитрата марганца (II) сопровождается окислением металла:

Нитрат железа (II) при низких температурах разлагается до оксида железа (II), при нагревании железо окисляется до степени окисления +3:

Нитрат никеля (II) разлагается до нитрита при нагревании до 150 о С под вакуумом и до оксида никеля при более высоких температурах (разложения нитрата никеля в ЕГЭ по химии не должно быть, но это не точно)).

Окислительные свойства азотной кислоты

Это связано с тем, что в составе кислоты есть очень сильный окислитель — азот в степени окисления +5. При взаимодействии с восстановителями — металлами образуются различные продукты восстановления азота.

Азотная кислота + металл = соль металла + продукт восстановления азота + H2O

Некоторые закономерности позволят верно определять основной продукт восстановления металлами азотной кислоты в реакции:

пассивация металлов — это перевод поверхности металла в неактивное состояние за счет образования на поверхности металла тонких слоев инертных соединений, в данном случае преимущественно оксидов металлов, которые не реагируют с концентрированной азотной кислотой

Для приближенного определения продуктов восстановления азотной кислоты при взаимодействии с разными металлами я предлагаю воспользоваться принципом маятника. Основные факторы, смещающие положение маятника: концентрация кислоты и активность металла. Для упрощения используем 3 типа концентраций кислоты: концентрированная (больше 30%), разбавленная (30% или меньше), очень разбавленная (меньше 5%). Металлы по активности разделим на активные (до алюминия), средней активности (от алюминия до водорода) и неактивные (после водорода). Продукты восстановления азотной кислоты располагаем в порядке убывания степени окисления:

Чем активнее металл, тем больше мы смещаемся вправо. Чем больше концентрация или меньше степень разбавления кислоты, тем больше мы смещаемся влево.

Взаимодействие металлов с серной кислотой

Например :

Концентрированная серная кислота взаимодействует с металлами, стоящими в ряду напряжений как до, так и после водорода.

H2SO4 (конц) + металл = соль металла + продукт восстановления серы (SO2, S, H2S) + вода

Основные принципы взаимодействия концентрированной серной кислоты с металлами:

1. Концентрированная серная кислота пассивирует алюминий, хром, железо при комнатной температуре, либо на холоду;

2. Концентрированная серная кислота не взаимодействует с золотом, платиной и палладием ;

3. С неактивными металлами концентрированная серная кислота восстанавливается до оксида серы (IV).

Cu 0 + 2H2 S +6 O4(конц) = Cu +2 SO4 + S +4 O2 + 2H2O

4. При взаимодействии с активными металлами и цинком концентрированная серная кислота образует серу S либо сероводород H2S 2- (в зависимости от температуры, степени измельчения и активности металла).

Пероксид водорода

При взаимодействии с окислителями перекись окисляется до молекулярного кислорода (степень окисления 0): O2. Например :

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *