Стабилизатор тока как называется
Стабилизаторы тока. Виды и устройство. Работа и применение
Стабилизаторы тока предназначены для стабилизации тока на нагрузке. Напряжение на нагрузке зависит от его сопротивления. Стабилизаторы необходимы для функционирования различных электронных приборов, например газоразрядные лампы.
Для качественного заряда аккумуляторов также необходимы стабилизаторы тока. Они используются в микросхемах для настройки тока каскадов преобразования и усиления. В микросхемах они играют роль генератора тока. В электрических цепях всегда есть разного рода помехи. Они отрицательно влияют на действие приборов и электрических устройств. С такой проблемой легко справляются стабилизаторы.
Виды стабилизаторов тока
Отличительной чертой стабилизаторов тока является их значительное выходное сопротивление. Это дает возможность исключить влияние напряжения на входе, и сопротивления нагрузки, на значение тока на выходе устройства. Стабилизаторы тока поддерживают выходной ток в определенных пределах, меняя при этом напряжение таким образом, что ток, протекающий по нагрузке, остается постоянным.
Стабилизаторы тока на резисторе
В элементарном случае генератором тока может быть схема, состоящая из блока питания и сопротивления. Подобная схема часто используется для подключения светодиода, выполняющего функцию индикатора.
Из недостатков такой схемы можно отметить необходимость использования высоковольтного источника. Только при таком условии можно использовать резистор, имеющий высокое сопротивление, и получить хорошую стабильность тока. На сопротивлении рассеивается мощность P = I 2 х R.
Стабилизаторы на транзисторах
Значительно лучше функционируют стабилизаторы тока, собранные на транзисторах.
Можно выполнить настройку падения напряжения таким образом, что оно будет очень маленьким. Это дает возможность снижения потерь при хорошей стабильности тока на выходе. На выходе транзистора сопротивление очень большое. Такая схема применяется для подключения светодиодов или зарядки аккумуляторных батарей малой мощности.
Напряжение на транзисторе определяется стабилитроном VD1. R2 играет роль датчика тока и обуславливает ток на выходе стабилизатора. При увеличении тока падение напряжения на этом резисторе становится больше. Напряжение поступает на эмиттер транзистора. В итоге напряжение на переходе база-эмиттер, которое равно разности напряжения базы и эмиттерного напряжения, снижается, и ток возвращается к заданной величине.
Схема токового зеркала
Аналогично функционируют генераторы тока. Популярной схемой таких генераторов является «токовое зеркало», в которой вместо стабилитрона применяется биполярный транзистор, а точнее, эмиттерный переход. Вместо сопротивления R2 применяется сопротивление эмиттера.
Стабилизаторы тока на полевике
Схема с применением полевых транзисторов более простая.
Нагрузочный ток проходит через R1. Ток в цепи: «+» источника напряжения, сток-затвор VТ1, нагрузочное сопротивление, отрицательный полюс источника – очень незначительный, так как сток-затвор имеет смещение в обратную сторону.
Напряжение на R1 положительное: слева «-», справа напряжение равно напряжению правого плеча сопротивления. Поэтому напряжение затвора относительно истока минусовое. При снижении нагрузочного сопротивления, ток повышается. Поэтому напряжение затвора по сравнению с истоком имеет еще большую разницу. Вследствие этого транзистор закрывается сильнее.
При большем закрытии транзистора нагрузочный ток снизится, и возвратится к начальной величине.
Устройства на микросхеме
В прошлых схемах имеются элементы сравнения и регулировки. Аналогичная структура схемы применяется при проектировании устройств, выравнивающих напряжение. Отличие устройств, стабилизирующих ток и напряжение, заключается в том, что в цепь обратной связи сигнал приходит от датчика тока, который подключен к цепи нагрузочного тока. Поэтому для создания стабилизаторов тока используют популярные микросхемы 142 ЕН 5 или LМ 317.
Здесь роль датчика тока играет сопротивление R1, на котором стабилизатор поддерживает постоянное напряжение и нагрузочный ток. Величина сопротивления датчика значительно ниже, чем нагрузочное сопротивление. Снижение напряжения на датчике влияет на напряжение выхода стабилизатора. Подобная схема хорошо сочетается с зарядными устройствами, светодиодами.
Импульсный стабилизатор
Высокий КПД имеют импульсные стабилизаторы, выполненные на основе ключей. Они способны при незначительном напряжении входа создавать высокое напряжение на потребителе. Такая схема собрана на микросхеме МАХ 771.
Сопротивления R1 и R2 играют роль делителей напряжения на выходе микросхемы. Если напряжение на выходе микросхемы становится выше опорного значения, то микросхема снижает выходное напряжение, и наоборот.
Если схему изменить таким образом, чтобы микросхема реагировала и регулировала ток на выходе, то получится стабилизированный источник тока.
При падении напряжения на R3 ниже 1,5 В, схема работает в качестве стабилизатора напряжения. Как только нагрузочный ток повышается до определенного уровня, то на резисторе R3 падение напряжения становится больше, и схема действует как стабилизатор тока.
Сопротивление R8 подключается по схеме тогда, когда напряжение становится выше 16,5 В. Сопротивление R3 задает ток. Отрицательным моментом этой схемы можно отметить значительное падение напряжения на токоизмерительном сопротивлении R3. Эту проблему можно решить путем подключения операционного усилителя для усиления сигнала с сопротивления R3.
Устройство и принцип действия
На нестабильность нагрузочного тока влияет значение сопротивления и напряжения на входе. Пример: в котором сопротивление нагрузки постоянно, а напряжение на входе повышается. Ток нагрузки при этом также возрастает.
В результате этого повысится ток и напряжение на сопротивлениях R1 и R2. Напряжение стабилитрона станет равным сумме напряжений сопротивлений R1, R2 и на переходе VT1 база-эмиттер: Uvd1=UR1+UR2+UVT1(б/э)
Напряжение на VD1 не меняется при меняющемся входном напряжении. Вследствие этого ток на переходе база-эмиттер снизится, и повысится сопротивление между клеммами эмиттер-коллектор. Сила тока на переходе коллектор-эмиттере и нагрузочное сопротивление станет снижаться, то есть переходить к первоначальной величине. Так выполняется выравнивание тока и поддержание его на одном уровне.
Стабилизатор для светодиодов
Изготовить такое устройство самостоятельно можно с применением микросхемы LМ 317. Для этого останется только подобрать резистор. Питание для стабилизатора целесообразно применять следующее:
Достоинством такого устройства является низкая стоимость, простота конструкции, повышенная надежность. Сложную схему нет смысла собирать самостоятельно, проще ее приобрести.
Домашний стабилизатор напряжения: что это такое и в каких случаях он нужен
Содержание
Содержание
Как работают стабилизаторы напряжения? На что обращать внимание при выборе, как их подключать, чтобы продлить жизнь особо требовательным домашним электроприборам? Как определить, что стабилизатор нужен и можно ли как-то обойтись без него? Сейчас разберемся.
Что такое стабилизатор напряжения
Стабилизатор напряжения — это прибор, который поддерживает заданное напряжение и тем самым организует «здоровое электропитание». Например, если в сети вместо 220 вольт осталось всего 200 вольт, то после подключения стабилизатора на его выходе снова получится 220 вольт.
Аналогично стабилизатор справляется с повышенным напряжением, скачками напряжения в электросети и прочими трудностями. Прибор полезный, но нужен ли он лично вам? Это надо выяснить.
Как определить нестабильное напряжение в сети
Как понять, что в сети нестабильное напряжение? Проверить мультиметром либо ваттметром. Измерять напряжение в сети нужно в разное время: утром, вечером и в течение дня.
Многие источники бесперебойного питания, которые используют для защиты компьютера, не только работают как стабилизаторы, но и умеют вести журналы и строить графики, из которых видно, что даже в городских условиях напряжение неплохо «гуляет».
Перепады напряжения можно отследить и визуально. Например, по лампам накаливания — они будут менять яркость. Также можно заметить, что некоторые приборы работают вполсилы, некорректно или вовсе отключаются.
Современный стандарт — плюс-минус 230 вольт. Многие приборы способны работать в довольно широком диапазоне напряжений, но перестраховаться, особенно если прибор дорогостоящий, будет не лишним.
Что защищать стабилизатором
Какие именно приборы нужно защищать стабилизатором напряжения? Наиболее требовательны к качеству электропитания устройства, оснащенные электродвигателем или компрессором. Это холодильники, кондиционеры, стиральные машины, котлы отопления, насосы и т. д. А также любые устройства с импульсным блоком питания. То есть практически каждый электроприбор: от зарядного устройства для смартфона до телевизора.
И если зарядку мобильного можно поменять, то для сложной техники решение проблемы обойдется дороже. Особенно не любят скачки напряжения инверторные холодильники, а их ремонт может серьезно ударить по карману. Звучит пугающе. Но насколько проблема существенна?
Насколько опасно низкое напряжение
Чтобы выяснить, насколько опасно низкое напряжение, проведем простой и наглядный тест с лампочкой и электрочайником. Устройства настолько простые, что могут работать буквально при любом напряжении. В тестах поможет лабораторный трансформатор. С помощью него выходное напряжение можно регулировать, как в плюс, так и в минус.
Один светильник включаем в сеть трансформатора, где напряжение может плавать, а второй подключим через стабилизатор. И вот он — первый результат. При напряжении в 190 вольт лампочка ощутимо тусклее, а вот лампа, подключенная к стабилизатору, светит штатно.
Стоит отметить, что при перепадах напряжения в больших диапазонах, некоторые стабилизаторы, например, релейного типа, влияют на работу ламп: несмотря на подключенный стабилизатор, лампочки будут то ярко светить, то тускнеть.
Но если с лампочкой дело обстоит довольно неплохо — она все-таки продолжает светить, то с чайником получилось интереснее. При заниженном напряжении чайник в принципе работает. Но время закипания увеличилось почти в два раза, а автоматическое отключение сработало спустя минуту после того, как чайник закипел. Если выставить напряжение еще меньше, автоматика не сработает и чайник будет кипеть до последнего. Это уже опасно, поскольку чревато возгоранием.
Если даже такие примитивные приборы чувствительны к уровню напряжения, что говорить о более сложной технике. По этой причине стабилизатор лишним не будет. Но на какие параметры обращать внимание?
Диапазон и мощность стабилизатора
Минимальное и максимальное напряжение, с которым может работать стабилизатор, определяет диапазон стабилизации. Если напряжение выйдет за эти пределы, стабилизатор просто отключится. Важно выбирать модель, которая подойдет под конкретные условия.
Например, если напряжение часто бывает пониженным, то лучше подбирать диапазон от 140, а не от 180 вольт. Или еще ниже — некоторые модели работают даже при напряжении ниже ста вольт. Но это скорее промышленное решение. Следует также учитывать, что это повлияет на стоимость: чем шире диапазон, тем обычно дороже стабилизатор. В бытовых условиях лучше обратить внимание на мощность.
Модель на 600 Вт сможет защитить разве что телевизор или небольшой холодильник. Поэтому в квартире может потребоваться несколько таких устройств. А вот стабилизатор на 10 кВт можно ставить в квартиру, и он в одиночку защитит все устройства.
Бывают устройства на 30кВт. Этого хватит на большой частный дом, чтобы охватить все электроприборы, включая даже электрическое отопление.
Что же будет, если превысить максимальную нагрузку? К примеру, если к какому-нибудь малышу подключить двухкиловатный чайник? Сразу сработает автоматический выключатель, а стабилизатор отключится. Так что рассчитывайте нагрузку заблаговременно, еще до покупки, и выбирайте мощность с запасом.
Как подключить стабилизатор
С обычными маломощными стабилизаторами все понятно, у них обычная вилка и несколько розеток. А что делать с более серьезными моделями? У них нет ни кабеля, ни розетки, ни вилки.
Производитель не забыл положить их в комплект. Дело в том, что такой стабилизатор устанавливается на всю квартиру сразу. Если решились самостоятельно подключать такой аппарат, помните: электричество — серьезная вещь. Подходить к таким работам нужно со всей ответственностью. Заранее продумайте схему. Подключение несложное: два кабеля — на вход, два — на выход и еще два — на землю. Если кабель многопроволочный, его нужно обжать кримпером в клеммы. Это удобно, быстро и надежно.
Само подключение не составит труда, тут все просто. На корпусе стабилизатора есть все обозначения. Если проводка изначально подключена правильно, то синий кабель — это ноль, и обозначается он латинской N, коричневый — это фаза (латинская L), а желто-зеленый — это земля, она обозначается специальным значком.
На единицу заводим нестабильное напряжение, а на двойку подключаем «потребителя» т. е. кабель который идет в распределительный щиток с автоматическими выключателями. Вот и все.
Выводы
У стабилизатора, по большому счету, всего одна функция — уберечь подключенные устройства от скачков напряжения и обеспечить им «здоровое электропитание». Особенно уместны стабилизаторы в поселках, гаражах или загородном доме. Но даже в большом городе с, казалось бы, стабильным электроснабжением, не помешает дополнительно обезопасить дорогостоящие устройства.
Стабилизаторы напряжения
Введение
Повышенное либо пониженное напряжение сети — одна из самых распространенных причин выхода из строя электроприборов. При повышенном напряжении быстро выходят из строя нагревательные элементы котлов и электроплит в блоках питания может выйти из строя диодный мост или фильтрующий конденсатор, а при пониженном нестабильно работает электроника иными словами отклонение величины напряжения в сети в ту или иную сторону пагубно влияет практически на все, без исключения, электрооборудование.
Решением этой проблемы является установка на весь дом или для конкретного прибора стабилизатора напряжения.
Для чего нужны стабилизаторы напряжения?
Стабилизатор напряжения — это устройство, имеющее вход и выход, предназначенное для поддержания выходного напряжения в заданных пределах, при существенном изменении величины входного напряжения.
Иными словами стабилизатор нужен для того, чтобы подключенная к нему нагрузка питалась от стабильного напряжения величина которого будет неизменно находится в пределах стандартных номинальных значений (220 Вольт — для однофазной сети и 380 Вольт — для трехфазной).
В отличие от реле напряжения, которые просто отключают сеть при выходе значения напряжения за допустимые пределы, стабилизаторы выравнивают величину напряжения в сети обеспечивая тем самым бесперебойность ее работы.
Нормы кратковременного максимального отклонения от номинального напряжения в электросети лежат в пределах ±10% (согласно ГОСТ 29322-2014). Это значит, что допустимое напряжение в 1ф розетке находится в диапазоне от 207 до 253 Вольта. Однако даже 250 вольт могут быть губительны для некоторой техники, а в частном секторе, в посёлках и деревнях оно бывает часто и ниже 200 вольт, особенно в домах находящихся в конце линий электропередач (ЛЭП).
Давайте разберемся, что мы называем пониженным или повышенным напряжением — это напряжение отличное от номинального (220/380 Вольт) в течении длительного промежутка времени. Такое случается при чрезмерной нагрузке на слабый трансформатор ЛЭП с малой пропускной способностью.
Также встречается при переключениях или частичном выводе из работы высоковольтных линий, так как оставшиеся линии не справляются с возросшей нагрузкой в должной мере. Величина отклонения обычно зависит от нагрузки в сети. Возможно вы замечали, что ночью, когда все спят, напряжение повышается, как и днём, когда все находятся на работе и дома не включено мощных электроприемников. Вечером же по приходу с работы включают обогреватели или кондиционеры, электроплиты, нагрузка повышается, а напряжение понижается. Пример суточного изменения потребления мощности в 62 квартирном доме с газовыми плитами вы видите ниже.
Напряжение может отличаться от нормального и при перекосе фаз, который происходит в случае несимметричной нагрузки по фазам в результате заниженного сечения нулевого проводника, плохого контакта нуля или его полного отгорания на вводе объекта или в распределительном щите, как могут отличаться напряжения на фазах при этом вы видите ниже. (Подробнее читайте статью: «Обрыв нуля в трехфазной сети — причины и последствия«)
Отдельное внимание следует уделить импульсным перенапряжениям (скачкам в сети). В народе импульсные перенапряжения называют всплески или скачки напряжения. Они происходят в результате аварийных ситуаций на ЛЭП, при коммутации мощных электроприборов и установок, грозовых разрядов в линии электропередач и других случаях.
Отличительная черта скачков или импульсных перенапряжений заключается в том, что это происходит быстро, за доли секунды, тогда как повышенное или пониженное напряжение может наблюдаться как минутами, так и месяцами. При этом величины импульсного перенапряжения обычно достигает единиц и десятков киловольт.
В результате такого всплеска часто выходит из строя входной каскад импульсного блока питания, которые применяются во всей современной электронике, а в некоторых случаях – перенапряжение поступает и на питаемую плату с последующим выходом и её элементов.
ВАЖНО ЗНАТЬ! Стабилизаторы напряжения не могут обеспечить надежную защиту от импульсных перенапряжений, более того сами стабилизаторы при этом могут выйти из строя. Для защиты от импульсных перенапряжений следует применять УЗИПы.
Виды стабилизаторов напряжения и их устройство
Стабилизаторы напряжения бывают как однофазными (220В), так и трёхфазными (380В), далее мы сделаем акцент на однофазных приборах, но все нижесказанное абсолютно справедливо и для трёхфазных.
Стабилизаторы напряжения бывают разных видов, большинство из них построено на базе автотрансформатора. Если говорить простым языком, то от обычного трансформатора автотрансформатор отличается тем, что у него только 1 обмотка.
К условно первичной стороне подключается источник питания, при этом одна из точек подключения к источнику питания не является концом вторичной обмотки, что указано на схеме ниже. Нагрузка подключается также между концом обмотки и отводам от неё. Подключившись к определенному из витков, мы можем получить как пониженное, так и повышенное напряжение относительно источника питания.
Итак, различают 5 основных видов стабилизаторов напряжения:
Деление при этом происходит по принципу действия исполнительных регулирующих органов. Автотрансформаторы лежат в основе первых трёх видов стабилизаторов.
Прежде чем перейти к обзору стабилизаторов поговорим о других функциях, которые они выполняют, кроме основного назначения – поддерживать стабильные 220В. Анализ рынка показал, что независимо от принципа действия и исполнительных элементов современные стабилизаторы напряжения имеют ряд защит:
Учтите, что функционал может отличаться в зависимости от модели и производителя, наличие данных функций необходимо уточнять в паспорте устройства.
Стоит отметить, что диапазон регулировки напрямую связан с типом используемого автотрансформатора, а не с принципом действия прибора. Обычно он находится в пределах 130-270 вольт, в продвинутых моделях может расширятся — 100-295 вольт.
Большинство стабилизаторов могут работать в режиме байпас (транзит, обход) при нормальном напряжении в сети. Что снижает потери (у любого аппарата есть определенный КПД) и повышает срок службы устройства.
2.1 Релейные стабилизаторы
Пожалуй, самым дешевым и распространенными в быту являются релейные стабилизаторы напряжения. Такое название они получили из-за того, что отводы обмоток автотрансформатора переключаются с помощью обычных электромагнитных реле.
В настоящее время аналоговые схемы или схемы на дискретных логических элементах почти не используются в цепях измерения и контроля бытовых стабилизаторов напряжения. В них используются микроконтроллеры, например, семейства PIC12 и других.
Структурную схему такого стабилизатора вы видите ниже.
Принцип действия заключается в следующем: плата управления анализирует уровень напряжения в сети и переключает реле подключая нужную часть обмотки для повышения или понижения напряжения соответственно.
Внутреннее устройство такого стабилизатора вы видите ниже.
Недостатки релейного стабилизатора:
Преимущества релейного стабилизатора:
Тем не менее быстродействие распространенных моделей релейных стабилизаторов составляет порядка 100-200 миллисекунд и более, реже — до 35 мс,чего достаточно в большинстве случаев для питания бытовой техники.
Но стоит учесть, из-за недостаточного быстродействия не может обеспечить качественную защиту от резкого повышения напряжения.
В зависимости от модели шаг регулирования может быть разным, чем больше шагов регулирования, тем больше точность и стабильность поддержания уровня напряжения на выходе.
2.2 Электронные (симисторные и тиристорные) стабилизаторы.
Принимая во внимание недостатки релейных стабилизаторов, их можно избежать – заменив электромагнитные реле на полупроводниковые ключи. Вторым по популярности видом стабилизаторов являются электронные. В качестве коммутационных элементов в них используются симисторы или тиристоры.
Такие стабилизаторы напряжения обладают большим быстродействием(10-20 миллисекунд, в редких случаях больше) и сроком службы.
Однако симисторы могут выйти из строя и значительно раньше, чем реле. Например, если произойдет сильный всплеск напряжения любой полупроводниковый ключ может пробить накоротко. Если при этом не пострадали другие элементы схемы, то достаточно замены ключей, в противном случае диагностика и ремонт значительно усложняются.
Пример блочной схемы электронного стабилизатора приведен ниже.
Из схемы видно, что и у релейного и у электронного стабилизатора регулировка происходит ступенчато с количеством шагов равным количеству отводов обмотки.
Преимущества электронных стабилизаторов:
Недостатки электронных стабилизаторов:
2.3 Электромеханические стабилизаторы
Если предыдущие два типа в сущности представляли вариации одного решения, то в случае электромеханического стабилизатора напряжения принцип регулировки существенно отличается. Такие стабилизаторы часто называют сервоприводными.
Основной особенностью является плавная регулировка выходного напряжения. Она обеспечивается с помощью скользящего по виткам автотрансформатора графитового электрода, подобно щётке в электродвигателе.Им управляет сервопривод.
Если говорить простым языком, то сервоприводом называется устройство на основе электродвигателя предназначенное для управления и позиционирования рабочего органа. Ниже изображен внешний вид внутренностей электромеханического стабилизатора.
Такой же принцип работы и у лабораторных автотрансформаторов, один из них вы видите на фотографии ниже.
Из этого следует, что понятия количества ступеней нет, как и точности регулировки как таковой, а скорость реакции на изменение питающего напряжения ограничена только параметрами сервопривода. Здесь она измеряется не в миллисекундах, а в вольтах на секунду(В/с)— что отражает угол, на который повернется траверса, на которой закреплен графитовый электрод за определенный отрезок времени.
Скорость реакции обычно лежит в пределах 8-15 вольт за секунду.
Сервоприводные стабилизаторы хорошо подходят там, где наблюдаются периодические сезонные или суточные изменения напряжения, но из-за невысокого быстродействия они не спасут технику от резкого повышения на пару десятков вольт.
Преимущества сервоприводных стабилизаторов:
Недостатки сервоприводных стабилизаторов:
2.4 Инверторные стабилизаторы
Самый дорогой и совершенный тип стабилизаторов инверторные, или как их еще называют «с двойным преобразованием». Это устройство представляет собой преобразователь напряжения на базе импульсного трансформатора. Здесь в отличии от предыдущих вариантов первичная и вторичная цепи гальванически развязаны, то есть не имеют электрического контакта.
Название «с двойным преобразованием» — связано со схемотехники и принципом работы. Сначала переменный ток из сети выпрямляется, затем подаётся на инвертор, и преобразовывается обратно в переменный синусоидальный ток.
Инверторные стабилизаторы с двойным преобразованием обеспечивают высшую точность и плавность регулировки, однако из-за сложности их цена значительно выше релейных и симисторных аналогов. Такие устройства подходят там, где нужна высокая надежность и безотказность оборудования.Например, для питания средств производственной автоматизации или дорогих устройств.
Преимущества инверторных стабилизаторов:
Главный недостаток — высокая стоимость
2.5 Феррорезонансные стабилизаторы
Нельзя не сказать о феррорезонансных стабилизаторах. Они состоят из двух дросселей и конденсаторов. Принцип работы заключается на основе феррорезонанса, подробное его описание достаточно сложное, поэтому я его приводить не буду.
Об этих приборах стоит знать лишь то, что в них нет движущихся или переключающих элементов, по своей сути это полностью пассивный прибор, который в большей степени фильтрует скачки напряжения и помехи, а не выравнивает его до номинальной величины. Такие приборы использовались раньше, во времена СССР для защиты телерадиоаппаратуры.
Преимущества феррорезонансных стабилизаторов:
Недостатки феррорезонансных стабилизаторов:
Сравнение стабилизаторов напряжения
Подведем итоги и сравним основные параметры распространённых моделей современных стабилизаторов напряжения разных типов. Таблица ниже поможет сравнить стоимость приборов и сделать выбор. Преимущества и недостатки каждого из них мы описали выше.
Как выбрать стабилизатор напряжения
Есть разные способы подбора стабилизатора напряжения, но мы предлагаем вам воспользоваться следующим алгоритмом.
Допустим, что у вас стоит однофазный вводной автомат на 25А. Чтобы узнать мощность – умножьте ток на напряжение в сети – 220В.
25*220=5500Вт=5.5 кВт
Рассчитав мощность следует добавить 20-30% запаса по мощности (защита от пусковых токов и перегрузок). В нашем случае сделаем запас 20% для этого полученную мощность умножим на 1,2:
5.5*1,2=6,6 кВт
После этого выбираем ближайшее большее стандартное значение мощности стабилизатора напряжения, в нашем случае необходимо будет приобрести стабилизатор 7-7,5кВт.
Если у вас трёхфазный ввод, и вы обнаружили автомат на 25А, например, то мощность считают по следующей формуле:
P=U*I*1.73=380*25*1.73=16435Вт = 16.44кВт
Далее, как и в предыдущем случае, добавляем запас мощности 20-30% и выбираем стабилизатор с ближайшим большим значением мощности.
Примечание: расчет мощности вы так же можете произвести с помощью нашего онлайн калькулятора расчета мощности сети.
Схемы подключения стабилизаторов
В зависимости от конструкции и исполнения стабилизатора может отличаться и способ подключения. Общий принцип один – ко «входным» клеммам подключают источник питания, а к «выходным» — нагрузку.
Если стабилизатор маломощный, то к сети он подключается вилкой в розетку. На корпусе самого прибора есть розетка, в которой уже стабилизированное напряжение – к ней подключают защищаемый прибор.
В моделях большой мощности, которые устанавливают на всю квартиру или на дом, обычно есть и розетка для подключения и клеммная колодка с болтами и шпильками для подключения жил кабеля или другими видами клемм (винтовые, рычажные и пр.). При этом на клеммной колодке обычно находится контакт для заземляющего проводника, но не на всех моделях. Клеммы куда подключается фаза в однофазных моделях всегда 2 их подписывают как L1 и L2.Нулевых клеммы может быть, как 2, так и одна.
Ниже представлены два варианта клеммных колодок стабилизаторов:
Схема подключения стабилизатора к однофазному вводному щиту будет выглядеть так:
Если у вас трёхфазный ввод, схема будет отличаться только количеством проводов, логика подключения остаётся неизменной. При этом как именно подключать зависит от самого стабилизаторы, многие модели имеют блочное исполнение и колодки для каждой из фаз разделены. Также можно использовать по одному однофазному стабилизатору на каждую из фаз.
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.