Степенной корень как считать

Корень n-ой степени

Определение корня n-й степени из действительного числа

Корнем n-й степени (\(n=2, 3, 4, 5, 6… \)) некоторого числа \(a\) называют такое неотрицательное число \(b\), которое при возведении в степень \(n\) дает \(a\):

Число \(n\) при этом называют показателем корня.

Если \(n=2\), то перед вами корень 2-й степени или обычный квадратный корень.

Если \(n=3\), то корень 3-й степени и т.д.

Операция извлечения корня n-й степени является обратной к операции возведения в n-ю степень.

Кубический корень из числа 27 равняется 3. Действительно, если число 3 возвести в 3-ю степень, то мы получим 27.

Корень 4-й степени из 16-и равен 2. Двойка в 4-й степени равна 16.

Если извлечь корень n-й степени из 0, всегда будет 0.

Мы не можем в уме подобрать такое число, которое при возведении в 3-ю степень даст 19. Если посчитать на калькуляторе, то получим \(2,668…\) – иррациональное число с бесконечным количеством знаков после запятой.

Обычно, в математике, когда у вас получается иррациональное число, корень не считают и оставляют так как есть \(\sqrt[3]<19>\).

Что же делать, если под рукой нет калькулятора, а нужно оценить, чему равен такой корень. В этом случае нужно подобрать справа и слева такие ближайшие числа, корень из которых посчитать можно:

Получается, что наш корень лежит между числами 2 и 3.

Корень четной и нечетной степени

Надо четко различать правила работы четными и нечетными степенями. Дело в том, что корень четной степени можно взять только из положительного числа. Из отрицательных чисел корень четной степени не существует.

Корень нечетной степени можно посчитать из любых действительных чисел. Иногда в школьной программе встречаются задания, в которых требуется определить имеет ли смысл выражение:

Данное выражение имеет смысл, так как корень нечетной степени можно посчитать из любого числа, даже отрицательного.

Так как корень четной степени, а под корнем стоит отрицательное число, то выражение не имеет смысла.

Свойства корня n-й степени

Пусть есть два неотрицательных числа a и b, для них будут выполняться следующие свойства:

Корни нужны для точных и сокращенных подсчетов в математике. Это необходимая функция, без которой представить современную математику невозможно. Корень n-ой степени обозначается при помощи всем известного значка радикала. Даже самый простой корень из двух будет равен длинному набору чисел, округлив который вы получите лишь приблизительное значение. Такие числа называются иррациональными и намного лучше представить их в виде радикала.

В данном учебном ролике в понятной форме изложены все основные свойства и теоремы корней n-ой степени. Тема непонятна для большинства школьников 7-9 классов, но не по причине их сложности (всего пара определений и свойств), а вследствие неправильной подачи информации в учебниках. Поэтому в данном видео мы расскажем о самом грамотном и понятном определении корня – все то, что действительно нужно запомнить. Далее покажем, как все это можно применить на практике.

Источник

Перевод корней в степени и обратно: объяснение, примеры

Часто преобразование и упрощение математических выражений требует перехода от корней к степеням и наоборот. Данная статья рассказывает о том, как осуществлять перевод корня в степень и обратно. Рассматривается теория, практические примеры и наиболее распространенные ошибки.

Переход от степеней с дробными показателями к корням

Ответ вытекает из самого определения степени!

При этом, обязательно должно выполнятся условие:

Дробная степень числа нуль определяется аналогично, однако в этом случае число m принимается не целым, а натуральным, чтобы не возникло деления на 0 :

Как представить корень в виде степени?

Обратная замена корней степенями, когда вместо выражения с корнем записывается выражения со степенью, также возможна. Просто перевернем равенство из предыдущего пункта и получим:

Можно ли вообще преобразовать такие выражения со степенями? Да, если произвести некоторые предварительные преобразования. Рассмотрим, какие.

В случае с корнем нечетной степени из отрицательного числа, можно записать:

Разберемся теперь, как корни, под которыми содержатся выражения, заменяются на степени, содержащие эти выражения в основании.

Таким образом, в рассмотренном примере преобразование вида A m n = A m n является преобразованием, сужающим ОДЗ, а из-за неаккуратного применения формулы A m n = A m n нередко возникают ошибки.

Сведем все эти правила в таблицу и приведем несколько примеров их использования.

Степенной корень как считать. Смотреть фото Степенной корень как считать. Смотреть картинку Степенной корень как считать. Картинка про Степенной корень как считать. Фото Степенной корень как считать

Приведем еще один пример с корнями и степенями.

Пример. Перевод корня в степень

Источник

Корень степени N: основные определения

Поздравляю: сегодня мы будем разбирать корни — одну из самых мозговыносящих тем 8-го класса.:)

Степенной корень как считать. Смотреть фото Степенной корень как считать. Смотреть картинку Степенной корень как считать. Картинка про Степенной корень как считать. Фото Степенной корень как считатьУ вас тоже так? Читайте дальше — и всё поймёте

Многие путаются в корнях не потому, что они сложные (чего там сложного-то — пара определений и ещё пара свойств), а потому что в большинстве школьных учебников корни определяются через такие дебри, что разобраться в этой писанине могут разве что сами авторы учебников. Да и то лишь с бутылкой хорошего виски.:)

Поэтому сейчас я дам самое правильное и самое грамотное определение корня — единственное, которое вам действительно следует запомнить. А уже затем объясню: зачем всё это нужно и как это применять на практике.

Но сначала запомните один важный момент, про который многие составители учебников почему-то «забывают»:

Вот в этом грёбаном «несколько отличается» скрыто, наверное, 95% всех ошибок и недопонимания, связанного с корнями. Поэтому давайте раз и навсегда разберёмся с терминологией:

В любом случае корень обозначается вот так:

Примеры. Классические примеры квадратных корней:

Кубические корни тоже часто встречаются — не надо их бояться:

Ну, и парочка «экзотических примеров»:

Если вы не поняли, в чём разница между чётной и нечётной степенью — перечитайте определение ещё раз. Это очень важно!

А мы тем временем рассмотрим одну неприятную особенность корней, из-за которой нам и потребовалось вводить раздельное определение для чётных и нечётных показателей.

Зачем вообще нужны корни?

Прочитав определение, многие ученики спросят: «Что курили математики, когда это придумывали?» И вправду: зачем вообще нужны все эти корни?

Чтобы ответить на этот вопрос, вернёмся на минутку в начальные классы. Вспомните: в те далёкие времена, когда деревья были зеленее, а пельмени вкуснее, основная наша забота была в том, чтобы правильно умножать числа. Ну, что-нибудь в духе «пять на пять — двадцать пять», вот это вот всё. Но ведь можно умножать числа не парами, а тройками, четвёрками и вообще целыми комплектами:

Ну и так далее. Ладно, ладно: последние две строчки я считал на калькуляторе.:)

Однако суть не в этом. Фишка в другом: математики — людишки ленивые, поэтому им было в лом записывать умножение десяти пятёрок вот так:

\[5\cdot 5\cdot 5\cdot 5\cdot 5\cdot 5=15\ 625\]

Поэтому они придумали степени. Почему бы вместо длинной строки не записать количество множителей в виде верхнего индекса? Типа вот такого:

\[5\cdot 5\cdot 5\cdot 5\cdot 5\cdot 5=<<5>^<6>>=15\ 625\]

Проблема эта оказалась гораздо более глобальной, чем может показаться на первый взгляд. Потому что выяснилось, что для большинства «готовых» степеней таких «исходных» чисел нет. Судите сами:

Не спорю: зачастую эти корни легко считаются — мы видели несколько таких примеров выше. Но всё-таки в большинстве случаев, если вы загадаете произвольное число, а затем попробуете извлечь из него корень произвольной степени, вас ждёт жестокий облом.

Как видите, после запятой идёт бесконечная последовательность цифр, которые не подчиняются никакой логике. Можно, конечно, округлить это число, чтобы быстро сравнить с другими числами. Например:

\[\sqrt<2>=1,4142. \approx 1,4 \lt 1,5\]

Или вот ещё пример:

\[\sqrt<3>=1,73205. \approx 1,7 \gt 1,5\]

Но все эти округления, во-первых, довольно грубые; а во-вторых, работать с примерными значениями тоже надо уметь, иначе можно словить кучу неочевидных ошибок (кстати, навык сравнения и округления в обязательном порядке проверяют на профильном ЕГЭ).

Рассмотрим несколько примеров, где после всех вычислений иррациональные числа всё же останутся в ответе.

Именно для этого их и придумали. Чтобы удобно записывать ответы.

Почему нужны два определения?

Внимательный читатель уже наверняка заметил, что все квадратные корни, приведённые в примерах, извлекаются из положительных чисел. Ну, в крайнем случае из нуля. А вот кубические корни невозмутимо извлекаются абсолютно из любого числа — хоть положительного, хоть отрицательного.

Степенной корень как считать. Смотреть фото Степенной корень как считать. Смотреть картинку Степенной корень как считать. Картинка про Степенной корень как считать. Фото Степенной корень как считатьГрафик квадратичной функции даёт два корня: положительный и отрицательный

С первым числом всё понятно — оно положительное, поэтому оно и есть корень:

Но что тогда делать со второй точкой? Типа у четвёрки сразу два корня? Ведь если возвести в квадрат число −2, мы тоже получим 4. Почему бы тогда не записать$\sqrt<4>=-2$? И почему учителя смотрят на подобные записи так, как будто хотят вас сожрать?:)

В том-то и беда, что если не накладывать никаких дополнительных условий, то квадратных корней у четвёрки будет два — положительный и отрицательный. И у любого положительного числа их тоже будет два. А вот у отрицательных чисел корней вообще не будет — это видно всё по тому же графику, поскольку парабола нигде не опускается ниже оси y, т.е. не принимает отрицательных значений.

Подобная проблема возникает у всех корней с чётным показателем:

Степенной корень как считать. Смотреть фото Степенной корень как считать. Смотреть картинку Степенной корень как считать. Картинка про Степенной корень как считать. Фото Степенной корень как считатьКубическая парабола принимает любые значения, поэтому кубический корень извлекается из любого числа

Из этого графика можно сделать два вывода:

Жаль, что эти простые вещи не объясняют в большинстве учебников. Вместо этого нам начинают парить мозг всякими арифметическими корнями и их свойствами.

Но сначала надо чётко усвоить то определение, которое я дал выше. Иначе из-за обилия терминов в голове начнётся такая каша, что в итоге вообще ничего не поймёте.

А всего-то и нужно понять разницу между чётными и нечётными показателями. Поэтому ещё раз соберём всё, что действительно нужно знать о корнях:

Разве это сложно? Нет, не сложно. Понятно? Да вообще очевидно! Поэтому сейчас мы немного потренируемся с вычислениями.

Основные свойства и ограничения

У корней много странных свойств и ограничений — об этом будет отдельный урок. Поэтому сейчас мы рассмотрим лишь самую важную «фишку», которая относится лишь к корням с чётным показателем. Запишем это свойство в виде формулы:

Чтобы детально разобраться в вопросе, давайте на минуту забудем все формулы и попробуем посчитать два числа напролом:

Это очень простые примеры. Первый пример решит большинство людишек, а вот на втором многие залипают. Чтобы без проблем решить любую подобную хрень, всегда учитывайте порядок действий:

Затем извлекаем корень четвёртой степени из числа 81:

Теперь сделаем то же самое со вторым выражением. Сначала возводим число −3 в четвёртую степени, для чего потребуется умножить его само на себя 4 раза:

Получили положительное число, поскольку общее количество минусов в произведении — 4 штуки, и они все взаимно уничтожится (ведь минус на минус даёт плюс). Дальше вновь извлекаем корень:

В принципе, эту строчку можно было не писать, поскольку и ежу понятно, что ответ получится один и тот же. Т.е. чётный корень из той же чётной степени «сжигает» минусы, и в этом смысле результат неотличим от обычного модуля:

Эти вычисления хорошо согласуются с определением корня чётной степени: результат всегда неотрицателен, да и под знаком радикала тоже всегда стоит неотрицательное число. В противном случае корень не определён.

Замечание по поводу порядка действий

Таким образом, ни в коем случае нельзя бездумно сокращать корни и степени, тем самым якобы «упрощая» исходное выражение. Потому что если под корнем стоит отрицательное число, а его показатель является чётным, мы получим кучу проблем.

Впрочем, все эти проблемы актуальны лишь для чётных показателей.

Вынесение минуса из-под знака корня

Естественно, у корней с нечётными показателями тоже есть своя фишка, которой в принципе не бывает у чётных. А именно:

Короче говоря, можно выносить минус из-под знака корней нечётной степени. Это очень полезное свойство, которое позволяет «вышвырнуть» все минусы наружу:

Это простое свойство значительно упрощает многие вычисления. Теперь не нужно переживать: вдруг под корнем затесалось отрицательное выражение, а степень у корня оказалась чётной? Достаточно лишь «вышвырнуть» все минусы за пределы корней, после чего их можно будет умножать друг на друга, делить и вообще делать многие подозрительные вещи, которые в случае с «классическими» корнями гарантированно приведут нас к ошибке.

И вот тут на сцену выходит ещё одно определение — то самое, с которого в большинстве школ и начинают изучение иррациональных выражений. И без которого наши рассуждения были бы неполными. Встречайте!

Арифметический корень

Давайте предположим на минутку, что под знаком корня могут находиться лишь положительные числа или в крайнем случае ноль. Забьём на чётные/нечётные показатели, забьём на все определения, приведённые выше — будем работать только с неотрицательными числами. Что тогда?

А тогда мы получим арифметический корень — он частично пересекается с нашими «стандартными» определениями, но всё же отличается от них.

Как видим, нас больше не интересует чётность. Взамен неё появилось новое ограничение: подкоренное выражение теперь всегда неотрицательно, да и сам корень тоже неотрицателен.

Чтобы лучше понять, чем арифметический корень отличается от обычного, взгляните на уже знакомые нам графики квадратной и кубической параболы:

Степенной корень как считать. Смотреть фото Степенной корень как считать. Смотреть картинку Степенной корень как считать. Картинка про Степенной корень как считать. Фото Степенной корень как считатьОбласть поиска арифметического корня — неотрицательные числа

Возможно, вы спросите: «Ну и зачем нам такое кастрированное определение?» Или: «Почему нельзя обойтись стандартным определением, данным выше?»

Что ж, приведу всего одно свойство, из-за которого новое определение становится целесообразным. Например, правило возведения в степень:

Обратите внимание: мы можем возвести подкоренное выражение в любую степень и одновременно умножить на эту же степень показатель корня — и в результате получится то же самое число! Вот примеры:

Как видите, в первом случае мы вынесли минус из-под радикала (имеем полное право, т.к. показатель нечётный), а во втором — воспользовались указанной выше формулой. Т.е. с точки зрения математики всё сделано по правилам.

WTF?! Как одно и то же число может быть и положительным, и отрицательным? Никак. Просто формула возведения в степень, которая прекрасно работает для положительных чисел и нуля, начинает выдавать полную ересь в случае с отрицательными числами.

Вот для того, чтобы избавиться от подобной неоднозначности, и придумали арифметические корни. Им посвящён отдельный большой урок, где мы подробно рассматриваем все их свойства. Так что сейчас не будем на них останавливаться — урок и так получился слишком затянутым.

Алгебраический корень: для тех, кто хочет знать больше

Долго думал: выносить эту тему в отдельный параграф или нет. В итоге решил оставить здесь. Данный материал предназначен для тех, кто хочет понять корни ещё лучше — уже не на среднем «школьном» уровне, а на приближенном к олимпиадному.

Принципиальное отличие от стандартного определения, приведённого в начале урока, состоит в том, что алгебраический корень — это не конкретное число, а множество. А поскольку мы работаем с действительными числами, это множество бывает лишь трёх типов:

Последний случай заслуживает более подробного рассмотрения. Посчитаем парочку примеров, чтобы понять разницу.

Решение. С первым выражением всё просто:

Именно два числа входят в состав множества. Потому что каждое из них в квадрате даёт четвёрку.

Тут мы видим множество, состоящее лишь из одного числа. Это вполне логично, поскольку показатель корня — нечётный.

Наконец, последнее выражение:

Получили пустое множество. Потому что нет ни одного действительного числа, которое при возведении в четвёртую (т.е. чётную!) степень даст нам отрицательное число −16.

Однако в современном школьном курсе математики комплексные числа почти не встречаются. Их вычеркнули из большинства учебников, поскольку наши чиновники считают эту тему «слишком сложной для понимания».

На этом всё. В следующем уроке мы рассмотрим все ключевые свойства корней и научимся, наконец, упрощать иррациональные выражения.:)

Источник

Корни и степени

Здесь — основание степени, — показатель степени.

Степень с натуральным показателем

Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.

Возвести число в куб — значит умножить его само на себя три раза.

Возвести число в натуральную степень — значит умножить его само на себя раз:

Степень с целым показателем

Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

Определим также, что такое степень с целым отрицательным показателем.

Заметим, что при возведении в минус первую степень дробь переворачивается.

Свойства арифметического квадратного корня:

Кубический корень

Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.

Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

Сразу договоримся, что основание степени больше 0.

При этом также выполняется условие, что больше 0.

Запомним правила действий со степенями:

— при перемножении степеней показатели складываются

— при делении степени на степень показатели вычитаются

— при возведении степени в степень показатели перемножаются

Ты нашел то, что искал? Поделись с друзьями!

Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:

Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.

Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.

Это полезно

В нашей статье вы найдете всю необходимую теорию для решения задания №9 ЕГЭ по теме «Графики функций». Это задание появилось в 2022 году в вариантах ЕГЭ Профильного уровня.

Степенной корень как считать. Смотреть фото Степенной корень как считать. Смотреть картинку Степенной корень как считать. Картинка про Степенной корень как считать. Фото Степенной корень как считать

Степенной корень как считать. Смотреть фото Степенной корень как считать. Смотреть картинку Степенной корень как считать. Картинка про Степенной корень как считать. Фото Степенной корень как считать

Степенной корень как считать. Смотреть фото Степенной корень как считать. Смотреть картинку Степенной корень как считать. Картинка про Степенной корень как считать. Фото Степенной корень как считать

Степенной корень как считать. Смотреть фото Степенной корень как считать. Смотреть картинку Степенной корень как считать. Картинка про Степенной корень как считать. Фото Степенной корень как считать

Источник

Арифметические корни натуральной степени

Арифметический корень второй степени

Корень второй степени (квадратный корень) из числа a — это число, которое становится равным a, если его возвести во вторую степень (в квадрат).

Не забудем упомянуть, что есть числа, для которых невозможно найти равный этому числу квадрат, который являлся бы действительным числом. Проще говоря, не для всех чисел можно найти действительное число, квадрат которого был бы равен данному числу.

Знак арифметического корня « » также имеет название «радикал». Следует запомнить, что «корень» и «радикал» являются полными синонимами (имеют абсолютно одинаковое значение и употребляются и в том, и в том варианте).

Число, стоящее под знаком корня, — это подкоренное число. Если под знаком корня стоит целое выражение, то его принято называть подкоренным выражением, соответственно.

Глядя на определение понятия «арифметический корень», можно вывести следующую формулу:

Слово «арифметический» при чтении записи 9 можно опустить.

Далее мы рассмотрим исключительно арифметические корни из неотрицательных чисел и выражений.

Кубический корень

Число 3 в данной записи — показатель корня. Число или выражение, стоящее под знаком корня — подкоренное.

Опять же, слово «арифметический» чаще всего не используют, а просто говорят: «корень третьей степени из числа a ».

Арифметический корень n-ной степени

Арифметический корень можно записать при помощи следующих символов:

y 2 + 6 6 — арифметический корень из y 2 + 6 где y 2 + 6 — подкоренное выражение, а 6 — показатель корня.

Из этого следует, что для нечетных показателей арифметического корня записывают следующее равенство:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *