Светодиод как это сделано

Как делают светодиоды

Уже в 2007 году, в одном из докладов на пекинской конференции Международной Комиссии по Освещению, была особо отмечена важность экономичности и экологичности как уже используемых, так и еще только разрабатываемых, более совершенных светотехнических изделий.

Первоочередной акцент был сделан докладчиками на более рациональное и эффективное использование света. И это вовсе не было призывом как-то уменьшать освещенность. В качестве одного из важнейших шагов к данной цели выделяется разработка и внедрение энергетически более эффективных и экологически безопасных источников света — светодиодов.

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

Высокотехнологичная отрасль

Светодиоды — это полупроводниковые электротехнические изделия, предназначенные для получения света благодаря проходящему через p-n-переход электрическому току. Но ведь не каждый p-n-переход излучает свет.

Чтобы получить свет от полупроводника, необходимо соблюсти определенные условия: запрещенная зона перехода на полупроводнике должна иметь такую ширину, чтобы энергия получаемых квантов оказалась близка к энергии квантов света видимого диапазона, при этом вероятность излучения в процессе рекомбинации электронно-дырочных пар должна получиться высокой.

Для соблюдения названных условий, изготавливаемый кристалл должен иметь минимум дефектов, приводящих к рекомбинации электронов с дырками без излучения. Этого достичь не просто, одного p-n-перехода будет недостаточно, приходится создавать многослойные полупроводниковые структуры — гетероструктуры, положившие, кстати, в свое время начало новому этапу на пути развития технологии производства светоизлучающих диодов.

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

Создание светодиодов сопряжено с определенными препятствиями, ведь эта светотехническая отрасль все время развивается, и определенных устоявшихся регламентов в ней до сих пор не существует.

Процесс производства светодиодов, а также способы их непосредственной эксплуатации, до сих пор не подчиняются каким-то общим документам, поэтому каждый крупный производитель вырабатывает собственные принципы отбора надлежащей продукции.

Международных соглашений нет. И даже несмотря на то, что за последние годы уже достигнуты некоторые очень позитивные результаты, единых требований к led-технике по-прежнему не выработано. И сейчас вы все поймете, поскольку далее мы рассмотрим поэтапно технологию производства светодиодов.

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

Формирование кристалла

Кристалл светодиода выращивается. Ключевой процесс во всей этой цепочке называется металлоорганической эпитаксией, при которой реализуется ориентированный эпитаксиальный рост кристалла на подложке.

Полупроводник выращивается путем термического пиролиза (разложения) металлорганических соединений, в которых содержатся нужные химические элементы. Тут обязательно присутствие чистых газов, наличие которых обеспечивается современными установками.

Выращиваемый слой должен иметь определенную толщину, которая контролируется в ходе процесса эпитаксии. При этом структура на поверхности подложки должна получиться однородной.

Надежные и качественные установки для осуществления эпитаксиального роста стоят очень дорого, а процесс получения материалов высокого качества для производства качественных светодиодов длится не один год.

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

Изготовление чипов

Для получения чипа, выращенный на подложке кристалл подвергают травлению, затем создают контакты и нарезают полученный образец на кусочки. Это называется «планарная обработка пленок». Одну целую пленку разрезают на тысячи маленьких чипов.

Сортировка чипов

Сортировка нарезанных чипов называется биннированием. Бины — это группы. Сортировка очень важна, но о ней часто забывают, разбирая процесс создания светодиодов.

Суть в том, что при любом производстве важно произвести отбор качественной продукции, а также отсортировать продукт по параметрам, по определенным критериям, что особенно важно для светодиодов. На стадиях эпитаксии, и после нарезки, невозможно получить тысячи абсолютно идентичных по характеристикам кристаллов (чипов).

Так или иначе их характеристики будут разниться, и окажутся в некотором достаточно широком диапазоне параметров. Именно поэтому чипы необходимо отсортировать по характеристикам в группы (бины), чтобы в каждой группе были чипы с определенным значением какого-то параметра, подходящие под требования диапазона той или иной группы: по длине волны, по напряжению, по световому потоку и т. д.

В результате биннирования светодиоды будут разделены по областям применения и даже по наименованиям. Одни пойдут на одни цели, другие — на другие. Круг потребителей продукта расширится.

Почти готовый светодиод

Непосредственно готовый светодиод получается на заключительном этапе технологической цепочки. Здесь создается корпус будущего источника света, припаиваются выводы, подбирается подходящий люминофор. Выбирается оптическая система, форма и параметры линзы.

Линзы изготавливают из различных материалов (эпоксидная смола, пластик, силикон). В зависимости от требований выбирают материал оптической системы. Требования очень широки, ведь именно оптическая система будет играть решающую роль в том, как будет направлен световой поток, каким будет телесный угол и т. д.

Особенности линз

Линзы должны быть по возможности максимально прозрачными, пропускать свет во всем видимом диапазоне. При этом линза должна хорошо приклеиться к материалу печатной платы, быть термостабильной на протяжении всего срока службы. Это значит, что линза не должна пострадать от излучения кристалла и химического воздействия люминофора, если он применен.

Процесс производства светодиодов на заводе ОПТОГАН:

Светодиоды

Светодиоды не зря считаются лучшими источниками света. Они отличаются малой потребляемой мощностью, отсутствием вредных компонентов, таких как ртуть, безопасным напряжением питания, высокой надежностью, компактностью и другими полезными качествами.

Именно светодиоды позволяют строить системы освещения и осветительные приборы самых разных форм и размеров, при этом высокого качества: прожекторы, светодиодные ленты, светильники, лампы, панели и т. д.

Неоспоримо одно — светодиодное направление в светотехнической отрасли динамично развивается во всем мире. Технология является предметом внимания высококлассных специалистов и ученых из многих стран. В ближайшем будущем однозначно будут достигнуты еще более впечатляющие показатели.

Смотрите также по этой теме:

Источник

Самодельный светодиод из карбида кремния

Эта статья описывает процесс создания работающего самодельного светодиода. Долгое время я думал, что создание активных электронных компонентов самому c нуля — неосуществимая задумка. Как же я ошибался. Галеновый (из сульфида свинца PbS. — Прим. перев.) диодный детектор относится к эпохе зарождения радио. Светодиод появился примерно в то же время. Это моя первая (на самом деле вторая, после галена) попытка создания полупроводника.

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

Все, что вам нужно, это немного деталей, которые есть в каждом доме, а также несколько кусочков карбида кремния (SiC). Карбид кремния можно купить задешево на Ebay. Маленького кусочка хватит на десяток светодиодов.

Прежде всего нужно выбрать правильный кристалл SiC для ваших светодиодов. Возьмите карбид кремния и аккуратно разломите его на кусочки, настолько мелкие, чтобы брать их можно было только пинцетом. Найдите металлическую поверхность и положите на нее несколько таких кусочков. Соедините металл с положительным полюсом источника постоянного напряжения 10-15 В. К отрицательному полюсу источника подключите иглу. Придержите кусочек карбида кремния пинцетом и убедитесь, что он имеет хороший контакт с металлом. Затем дотроньтесь до кристалла иглой и найдите место, которое достаточно хорошо светится.

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

После того, как вы найдете годный кристалл, его нужно где-то зафиксировать неподвижно. Для этой цели я взял гвоздь с широкой шляпкой. Также он служит хорошим теплоотводом.

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

Положите на шляпку гвоздя припоя и расплавьте его паяльником. Пока припой жидкий, положите в него пинцетом кристаллик SiC, убедившись, что сторона кристалла, которая будет излучать свет, находилась сверху. Можно слегка утопить кристалл, чтобы припой обхватил его со всех сторон. После того, как вы уберете паяльник, и припой застынет, кристалл будет надежно зафиксирован. Если не получилось, можно повторить процесс еще и еще раз, карбид кремния не реагирует с припоем.

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

Теперь нужно сделать точечный контакт. Возьмите булавку и обмотайте вокруг нее проволоку. Я взял ногу от 0,25-ваттного резистора. Припаяйте проволоку к булавке и откусите лишнее, как показано на рисунке.

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

Cделайте на проволоке петлю, чтобы она пружинила, и припаяйте ее конец к второму гвоздю, закрепленному рядом с первым, на котором находится кристалл. Вся конструкция должна быть расположена так, как показано на рисунке ниже:

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

У меня два гвоздя просто впаяны в макетную плату, но я рекомендую укрепить конструкцию еще парой отрезков металла.

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

И наконец, нужно осторожно подогнуть пружину так, чтобы острие упиралось в ту область кристалла, которая излучает свет.

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

Лучшая рабочая точка для этого светодиода лежит в районе 9 вольт. При этом светодиод потребляет примерно 25 мА. При таких параметрах свечение достаточно яркое, а светодиод не перегревается. Чтобы убедиться, что получился именно диод, я инвертировал полярность источника питания, и никакого свечения, естественно, не получил.

Чтобы показать, что процесс можно повторить много раз с тем же результатом, я сделал второй светодиод. Результат получился в точности такой же. Второй светодиод я собрал всего за 10 минут.

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

Изготовление светодиодов описанным способом действительно простое и дешевое. Тем не менее, если вы предложите более надежный и простой способ, я буду рад его попробовать.

Источник

Хотите вечных светодиодов? Расчехляйте паяльники и напильники. Или домашнее освещение самодельщика

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

Когда-то давным давно, когда я еще учился в школе, а на дворе был конец перестройки, мой дядя (заронивший в меня интерес к электронике) припер домой сумку вынесенного через проходную завода добра. Собственно, такие сумки он приносил домой вполне регулярно, пополняя запасы, хранившиеся в диване. Диван этот, как вы догадываетесь, манил, и иногда в отсутствии дяди я в него заглядывал с восторгом. Но кое-что из этой сумки в диван не попало, а попало в мои руки. Дядя мне вручил пачку — штук десять — макетных плат, и новенькую нераспечатанную коробку дефицитных, да и не дешевых в то время светодиодов. Причем светодиоды были не простые: вместо привычной маркировки АЛ-что-то там на коробке стоял код из четырех цифр, как я понял — они были экспериментальные. И они были яркие. По сравнению с привычными АЛ307 или АЛ310 — просто ослепительные. И их к тому же было много — штук 50.

Идея «куда это богатство применить» возникла моментально: светодиоды были распаяны на одной из макетниц — сколько влезло (влезли не все), и из них вышел великолепный красный фонарь для печати фотографий, который абсолютно не засвечивал фотобумагу даже в упор. Правда, тут же я узнал о том, что «светодиоды не греются» — это вранье, так что ток пришлось снизить вдвое, с 10 мА на светодиод до 5. А еще через полгода успешной эксплуатации узнал и о том, что «светодиоды не перегорают» — это тоже неправда: первый светодиод в сборке погас, оказался пробит. А со временем и весь фонарь пришел в негодность.

И вот сейчас я снова слышу из каждого утюга про «вечные» светодиодные лампочки, а дома за неполный год перехода на светодиодные лампы перегорела уже третья по счету.

Почему светодиодные лампочки не вечны?

Да потому что ничего нет вечного. Светодиод, к тому же — штука тонкая. Буквально. В его структуре имеются слои толщиной в считанные нанометры, образующие квантовые ямы. Диффузия и электромиграция к таким слоям безжалостны — они размывают их, создают дефекты, постепенно снижая световыход и увеличивая вероятность катастрофы в масштабах крохотного кристалла, в котором, к слову, выделяется световая и тепловая энергия, удельное значение которой в расчете на кубический сантиметр p-n перехода можно сравнить разве что с ядерным взрывом (немного утрировано, но сами прикиньте плотность энерговыделения). Чем светодиод горячее, тем все эти негативные процессы будут идти быстрее. А он, как мы уже в курсе, греется. Греется даже тогда, когда через него идет ток в 10 миллиампер. А тем более — когда это мощный прибор, ток через который как минимум 100 мА, а бывает — и ампер, и даже три ампера. И в тепло, не смотря на всю энергетическую эффективность светодиодов, переходит значительная доля от подведенной к светодиоду электроэнергии. От двух третей до трех четвертей.

А куда охлаждаться светодиодам в светодиодной лампочке? А некуда, по большому счету. Светодиод сам по себе спроектирован, чтобы его можно было охлаждать. Кристалл припаян к массивному основанию из меди или высокотеплопроводной керамики, у этого основания есть специальная площадка для пайки к внешнему теплоотводу, в роли которой — плата с алюминиевой или медной подложкой. А подложка эта, по идее, должна быть через термопасту прикручена к хорошему радиатору с большой площадью. А прикручена она в лучшем случае к металлическому корпусу светодиодной лампы, площадь которого совершенно недостаточна для рассеивания более чем нескольких ватт тепла, да еще и в закрытом плафоне. В худшем — корпус вообще пластмассовый, и в этот корпус еще попадает тепло от драйвера и от не вышедшего наружу и потерявшегося в недрах лампочки света. Вот и жарятся светодиоды при температуре, превышающей 100, а то и 130°С. И, кстати, не только светодиоды, но и драйвер, который тоже нередко выходит из строя.

Что делать-то?

Одно из трех. Либо мы, оставив на месте старую люстру, ставим в нее лампочки меньшей мощности. Они меньше будут греться и у них больше шансов прожить долго. Разумеется, в комнате станет темно: мы вернемся во времена, когда в люстре из экономии и пожаробезопасности стояли лампочки по 25 ватт, от которых ушли, поставив на их место пятнадцативаттные энергосберегайки, сделавшие из темной берлоги светлое помещение, в котором приятно находиться.

Либо мы покупаем новую люстру, в которую можно вкрутить больше лампочек. Так мы останемся со светлой комнатой и получим (возможно) более долгую жизнь лампочек. Только на люстру, как и на лампочки, придется потратиться.

И, наконец, третий вариант: мы забываем само понятие «светодиодная лампа», как страшный сон и ставим на место люстры специально спроектированный светодиодный светильник. Продуманный и в плане хорошего использования светового потока (у светодиодных ламп типа «висит груша — нельзя скушать» с этим в приборах, рассчитанных на лампы накаливания, не всегда хорошо — они плоховато светят вбок и назад), и в плане качественного охлаждения.

Рынок

На рынке есть такие светильники. Но по большей части они во-первых, дорогие, а во вторых — страшные. Этакие промышленные штуковины, которые уместны в гараже, цеху, в торговом зале гипермаркета, в офисе, наконец — но не в квартире. Нет, есть и красивые, и дизайнерские очень эффектно выглядящие светильники. Но — во-первых, опять же, цена, а во-вторых, в жертву дизайну принесено охлаждение.

Так, классическая китайская светодиодная люстра-блин — это пятьдесят ватт светодиодов, сидящих на алюминиевой плате в виде кольца диаметром 45 см и шириной сантиметров 8. И — все. Никакого тебе корпуса с оребрением, ничего. И опять-таки, плата в почти наглухо закрытом корпусе. Ну хоть драйвер чуть наружу вынесен. Вердикт: жить будет, как светодиодная лампочка. Только когда сдохнет, менять придется не лампочку за 150 рублей, а люстру за пять-десять тысяч.

В общем, выход, кажется, один: умелые руки.

Самодельный светильник: проектирование

Сразу скажу: светильник будет не на светодиодной ленте и без блютуса.

Для начала, оценим, сколько нам нужно света. Тут дело вкуса, но я люблю, когда в жилище светло. Всякий интимный полумрак я люблю в особых случаях, в романтичной обстановке, но в обычной жизни он навевает тоску. Считать можно по-всякому, но я воспользуюсь тем фактом, что с люстрой с пятью энергосберегайками по 15 ватт, дававшими каждая по 950 лм, в комнате было хорошо. То есть 5 килолюмен нам будет достаточно. Теперь идем на сайт Cree, находим там Datasheet на модули CXA2530. Почему именно на них? Да потому что у меня есть несколько штук таких модулей, и с ними удобно работать: к ним просто припаиваются провода, а сами модули сажаются прямо на радиатор с помощью прилагающегося фланца. А еще их несложно купить — известный китайский интернет-магазин в помощь. У имеющихся у меня модулей бин светового потока Т4, это соответствует номинальному световому потоку 3440-3680 лм. Сразу 20% от этой цифры отнимаем — они потеряются на рассеивателе. Получаем световой поток 2750-2950 лм, а учитывая, что получается этот поток при мощности около 30 Вт, получаем потребную для освещения мощность (подведенную к светодиодам) около 50 Вт. Поскольку комната у нас длинная, мы уберем люстру из центра и сделаем два одинаковых светильника по 25 ватт.

Приняв КПД светодиодов за 25% (достаточно консервативная оценка — скорее всего, лучше, но уж точно не хуже), выясняем, что в каждом светильнике выделяется 18,75 Вт тепла. И наша задача — выбрать под это тепловыделение радиатор. Вот как мы это сделаем.

Будем исходить из максимальной температуры кристалла Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано= 85°C и температуры окружающей среды Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано= 35°C. То есть Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано= 50°C. Перепад температуры пропорционален рассеиваемой мощности, а коэффициент пропорциональности называется тепловым сопротивлением: Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано, и измеряется оно в кельвинах (или градусах цельсия) на ватт. В нашем случае тепловое сопротивление кристалл-окружающая среда должно быть равно 2 °С/Вт.
Из чего же состоит тепловое сопротивление? Первый его компонент — это тепловое сопротивление, присущее самому корпусу светодиода. Фирма Cree не дает эту величину в даташите напрямую, предлагая воспользоваться странным графиком, но в ранних публикациях в журналах о выпуске новых светодиодных матриц указывалось значение 0,8 °С/Вт.

Второй компонент общей величины теплового сопротивления — это сопротивление, создаваемое слоем термопасты между корпусом и радиатором. В качестве термопасты мы возьмем старый-добрый Алсил-3, с теплопроводностью Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано= 1,7-2 Вт/м*К. При слое пасты толщиной 50 мкм и площади теплорассеивающей поверхности 2,8 Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано(площадь круга диаметром 19 мм под излучающей поверхностью матрицы) получаем Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано= 0,105 °С/Вт.

Итак, на радиатор у нас остается 1,1 °С/Вт. Исходя из этой цифры, выбираем радиатор, накинув процентов 30 «на вранье», на растекание тепла от маленькой матрицы и на то, что радиатор будет неоптимально ориентирован в пространстве. Например, нам подойдет профиль АВМ-076 размером сечения 176х40 мм с тепловым сопротивлением куска длиной 100 мм 0,5 °С/Вт. Нам хватит куска этого профиля длиной 80-100 мм. 100 мм — это стандартные куски, имеющиеся в продаже, 80 нужно заказывать у производителя (Виртуальная механика, virtumech.ru), такой вариант выглядит несколько более эстетичным за счет меньшей ширины.

Осталось выбрать драйвер. Критерии для его выбора — это ток и рабочие пределы выходного напряжения. Мощность 25 Вт получается при токе около 0,7 А, напряжение на матрице при этом составит около 35-36 В.

Конструкция

Перебрав несколько вариантов конструкции светильника, я остановился на рассеивателе из матового полупрозрачного пластика, имеющем вид полуцилиндра. Форма эта получается простейшим способом — за счет крепления изогнутой пластины к боковым сторонам радиатора. Способ крепления достаточно произволен — на винтах с прижимными пластинами, на клею — я воспользовался красным двусторонним скотчем «Момент». В качестве рассеивателя я применил рассеивающую пленку из подсветки разбитого ЖК монитора — она имеет очень хорошее светопропускание. Можно также заматировать абразивом пленку для печати на лазерном принтере или любую другую плотную пластиковую пленку.

Матрица с предварительно припаянными проводами устанавливается с помощью комплектного фланца в центре радиатора с помощью двух винтов М3 (гайки использовать неудобно, так что придется поработать метчиком). Перед приклеиванием рассеивателя свободную от матрицы плоскую поверхность радиатора рекомендуется оклеить алюминиевым скотчем или окрасить белой краской — это снизит потери света.

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

По поводу термопасты — хотелось бы заметить, что использование темной термопасты не рекомендуется: она процентов на 10 снизит световой поток. Я это хорошо заметил на двух экземплярах, один из которых я сделал с Алсилом-3, а на второй алсила не хватило и я воспользовался пастой из комплекта кулера фирмы Scythe, имевшей темно-серый цвет. Разница при измерении люксметром очевидна. Также нет смысла использовать более дорогие, чем алсил, термопасты с большей теплопроводностью: и на алсиле падает в худшем случае пара-тройка градусов, погоды они не сделают.

После сборки первого светильника (в котором я использовал радиатор от процессора Pentium II и который поселился в кухне, у него чуть меньшая мощность в районе 15 Вт), я принял решение ставить в светильники для комнаты не одну матрицу, а две — это «размазало» пятно света на рассеивателе и сделало свет более комфортным. Более разумно было бы в таком случае ставить менее мощные модули, скажем, CXA1820. Модули соединил параллельно, нежелательных последствий в виде неравномерного распределения тока между ними это не вызвало — обе матрицы светятся на глаз одинаково. Но длину подводящих проводов я на всякий случай выровнял.

Крепление к потолку у меня — с помощью коромысла из жесткой стальной проволоки диаметром 2 мм, концы которого продеты в отверстия в крайних ребрах радиатора и загнуты. За центр коромысла зацеплен крючок, прикрепленный к потолку — такой длины, чтобы между натяжным потолком и радиатором оказалось расстояние в пару сантиметров. Драйвер спрятан за натяжным потолком. Если бы светильники делались до потолка, можно было бы в него запрятать и радиаторы.

Поверхность радиатора можно покрасить в черный цвет перманентным маркером или тонким слоем из баллончика (толстым не надо — теплоизоляция). А можно и не красить, глаза он особо не мозолит.

Результаты

Светодиод как это сделано. Смотреть фото Светодиод как это сделано. Смотреть картинку Светодиод как это сделано. Картинка про Светодиод как это сделано. Фото Светодиод как это сделано

Светло. Под лампами на высоте столешницы — 450 лк, в середине комнаты 380 лк. Свет комфортный, цветопередача — вполне (правда, на кухне оказалось, что сырое мясо под этим светом выглядит, как-будто его слегка подкрасили черничным соком). Радиаторы после многочасовой работы теплые, но не горячие. Мерцание равно нулю (заслуга качественных драйверов).

И по ценам: матрицы обошлись в 550 рублей каждая (курс с тех пор, конечно, поменялся), радиаторы — по 600 рублей, драйвера — по 250 рублей, пленка досталась бесплатно. Итого — 2200+1200+500 = 3900 рублей. Плюс два-три часа работы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *