Теплоемкость воды как обозначается
Удельная теплоемкость вещества
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Нагревание и охлаждение
Эти два процесса знакомы каждому. Вот нам захотелось чайку, и мы ставим чайник, чтобы нагреть воду. Или ставим газировку в холодильник, чтобы охладить.
Логично предположить, что нагревание — это увеличение температуры, а охлаждение — ее уменьшение. Все, процесс понятен, едем дальше.
Но не тут-то было: температура меняется не «с потолка». Все завязано на таком понятии, как количество теплоты. При нагревании тело получает количество теплоты, а при нагревании — отдает.
В процессах нагревания и охлаждения формулы для количества теплоты выглядят так:
Нагревание
Охлаждение
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
В этих формулах фигурирует и изменение температуры, о котором мы сказали выше, и удельная теплоемкость, речь о которой пойдет дальше.
А вот теперь поговорим о видах теплопередачи.
Виды теплопередачи
Здесь все совсем несложно, их всего три: теплопроводность, конвекция и излучение.
Теплопроводность
Тот вид теплопередачи, который можно охарактеризовать, как способность тел проводить энергию от более нагретого тела к менее нагретому.
Речь о том, чтобы передать тепло с помощью соприкосновения. Признавайтесь, грелись же когда-нибудь возле батареи. Если вы сидели к ней вплотную, то согрелись вы благодаря теплопроводности. Обниматься с котиком, у которого горячее пузо, тоже эффективно.
Порой мы немного перебарщиваем с возможностями этого эффекта, когда на пляже ложимся на горячий песок. Эффект есть, только не очень приятный. Ну а ледяная грелка на лбу дает обратный эффект — ваш лоб отдает тепло грелке.
Конвекция
Когда мы говорили о теплопроводности, мы приводили в пример батарею. Теплопроводность — это когда мы получаем тепло, прикоснувшись к батарее. Но все вещи в комнате к батарее не прикасаются, а комната греется. Здесь вступает конвекция.
Дело в том, что холодный воздух тяжелее горячего (холодный просто плотнее). Когда батарея нагревает некий объем воздуха, он тут же поднимается наверх, проходит вдоль потолка, успевает остыть и спуститься обратно вниз — к батарее, где снова нагревается. Таким образом, вся комната равномерно прогревается, потому что все более горячие потоки сменяют все менее холодные.
Излучение
Пляж мы уже упоминали, но речь шла только о горячем песочке. А вот тепло от солнышка — это излучение. В этом случае тепло передается через волны.
Обоими способами. То тепло, которое мы ощущаем непосредственно от камина (когда лицу горячо, если вы расположились слишком близко к камину) — это излучение. А вот прогревание комнаты в целом — это конвекция.
Удельная теплоемкость: понятие и формула для расчета
Формулы количества теплоты для нагревания и охлаждения мы уже разбирали, но давайте еще раз:
Нагревание
Охлаждение
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
В этих формулах фигурирует такая величина, как удельная теплоемкость. По сути своей — это способность материала получать или отдавать тепло.
С точки зрения математики удельная теплоемкость вещества — это количество теплоты, которое надо к нему подвести, чтобы изменить температуру 1 кг вещества на 1 градус Цельсия:
Удельная теплоемкость вещества
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
Также ее можно рассчитать через теплоемкость вещества:
Удельная теплоемкость вещества
c — удельная теплоемкость вещества [Дж/кг*˚C]
C — теплоемкость вещества [Дж/˚C]
Величины теплоемкость и удельная теплоемкость означают практически одно и то же. Отличие в том, что теплоемкость — это способность всего вещества к передаче тепла. То есть формулу количества теплоты для нагревания тела можно записать в таком виде:
Количество теплоты, необходимое для нагревания тела
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!
Таблица удельных теплоемкостей
Удельная теплоемкость — табличная величина. Часто ее указывают в условии задачи, но при отсутствии в условии — можно и нужно воспользоваться таблицей. Ниже приведена таблица удельных теплоемкостей для некоторых (многих) веществ.
Теплоёмкость
Единица измерения теплоёмкости в системе СИ — Дж/К.
Содержание
Удельная теплоёмкость
Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.
Массовая теплоёмкость ( С ) — это количество теплоты, которое необходимо подвести к единице массы вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на килограмм на кельвин (Дж·кг −1 ·К −1 ).
Объёмная теплоёмкость ( С′ ) — это количество теплоты, которое необходимо подвести к единице объёма вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на кубический метр на кельвин (Дж·м −3 ·К −1 ).
Молярная теплоёмкость ( Сμ ) — это количество теплоты, которое необходимо подвести к 1 молю вещества, чтобы нагреть его на единицу температуры. В СИ измеряется в джоулях на моль на кельвин (Дж/(моль·К)).
Теплоёмкость для различных состояний вещества
Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа).
Для примера, в молекулярно-кинетической теории газов показывается, что молярная теплоёмкость идеального газа с i степенями свободы при постоянном объёме (для одного моля идеального газа) равна:
А при постоянном давлении
Удельные теплоёмкости многих веществ приведены в справочниках обычно для процесса при постоянном давлении. К примеру, удельная теплоёмкость жидкой воды при нормальных условиях — 4200 Дж/(кг·К); льда — 2100 Дж/(кг·К).
Теория теплоёмкости
Существует несколько теорий теплоёмкости твердого тела:
Теплоёмкость системы невзаимодействующих частиц (например, газа) определяется числом степеней свободы частиц.
См. также
Полезное
Смотреть что такое «Теплоёмкость» в других словарях:
теплоёмкость — теплоёмкость, и … Русский орфографический словарь
теплоёмкость — теплоёмкость … Словарь употребления буквы Ё
ТЕПЛОЁМКОСТЬ — количество теплоты, поглощаемой телом при нагревании на 1 градус (1°С или 1К); точнее отношение кол ва теплоты, поглощаемой телом при бесконечно малом изменении его темп ры, к этому изменению. Т. ед. массы в ва (г, кг) наз. удельной Т., 1 моля в… … Физическая энциклопедия
теплоёмкость — теплоёмкость, теплоёмкости, теплоёмкости, теплоёмкостей, теплоёмкости, теплоёмкостям, теплоёмкость, теплоёмкости, теплоёмкостью, теплоёмкостями, теплоёмкости, теплоёмкостях (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») … Формы слов
ТЕПЛОЁМКОСТЬ — физ. величина, характеризующая тепловые свойства тела и равная отношению количества теплоты, полученного телом при бесконечно малом изменении его состояния в каком либо процессе, к вызванному им изменению температуры, т. е. теплоёмкость С = d Q/d … Большая политехническая энциклопедия
ТЕПЛОЁМКОСТЬ — ТЕПЛОЁМКОСТЬ, теплоёмкости, мн. нет, жен. (физ.). Количество тепла, необходимое для того, чтобы нагреть данное тело на 1°. Удельная теплоёмкость (количество тепла, необходимое для того, чтоб нагреть 1 г на 1°). Толковый словарь Ушакова. Д.Н.… … Толковый словарь Ушакова
теплоёмкость — и; ж. Физ. Количество теплоты, поглощаемой телом при нагревании на 1 градус (по Цельсию) или отдаваемой при остывании на 1 градус (по Цельсию). Т. металла, пластмассы. Удельная т. (количество теплоты, потребное для нагревания 1 грамма вещества на … Энциклопедический словарь
ТЕПЛОЁМКОСТЬ — ТЕПЛОЁМКОСТЬ, и, жен. (спец.). Количество теплоты (во 2 знач.), необходимое для нагревания данного тела на 1°. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
Теплоёмкость — горных пород (a. heat capacity of rocks; н. Warmekapazitat der Gesteine; ф. capacite calorifique des roches; и. capacidad termica de rocas) свойство г. п. аккумулировать тепло. Удельной Т. С наз. кол во энергии, необходимое для повышения… … Геологическая энциклопедия
теплоёмкость — сущ., кол во синонимов: 1 • теплоемкость (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
теплоёмкость — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN heat capacitythermal capacity … Справочник технического переводчика
Удельная теплоемкость воды H2O
Приведены таблицы значений удельной теплоемкости воды H2O и водяного пара в зависимости от температуры и давления. В первой таблице дана удельная теплоемкость воды в жидком состоянии при нормальном атмосферном давлении и температуре от 0,1 до 100°С.
Во второй таблице значения теплоемкости указаны в интервале температуры от 0 до 800°С и давлении от 0,1 до 100 бар. Вода в этих условиях может находится в жидком или газообразном состоянии, поскольку с понижением давления и (или) с ростом температуры она переходит в пар.
Жидкая вода обладает значительной величиной массовой удельной теплоемкости, по сравнению с другими жидкостями. При атмосферном давлении и температуре до 100°С она находится в виде жидкости и ее теплоемкость изменяется в диапазоне от 4174 до 4220 Дж/(кг·град).
При температуре 20 градусов Цельсия и нормальном атмосферном давлении удельная теплоемкость воды равна 4183 Дж/(кг·град). При температуре 100°С эта величина достигает значения 4220 Дж/(кг·град).
Изменение давления и температуры воды существенно влияет на ее удельную теплоемкость. Зависимость теплоемкости воды от температуры при атмосферном давлении не линейна. При нагревании воды до 30°С теплоемкость уменьшается, затем в интервале температуры 30…40°С значение этой величины остается практически постоянным (следует отметить, что в этом диапазоне температуры вода обладает наименьшей теплоемкостью). При температуре выше 40°С ее удельная теплоемкость увеличивается и достигает своего максимума при температуре кипения.
t, °С | 0,1 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
---|---|---|---|---|---|---|---|---|---|---|
Cp, Дж/(кг·град) | 4217 | 4191 | 4187 | 4183 | 4179 | 4174 | 4174 | 4174 | 4177 | 4181 |
t, °С | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
Cp, Дж/(кг·град) | 4182 | 4182 | 4185 | 4187 | 4191 | 4195 | 4202 | 4208 | 4214 | 4220 |
Если продолжить нагрев воды до перехода ее в пар, то тогда, при дальнейшем нагреве пара при атмосферном давлении, величина теплоемкости будет снижаться до некоторого предела, а затем снова начнет увеличиваться. Эта точка перегиба кривой теплоемкости определяется значениями соответствующих температуры и давления.
Как видно по данным в таблице, с повышением давления удельная теплоемкость воды уменьшается, но увеличивается также и температура кипения воды, например, при давлении в 100 бар (атмосфер) она находится в жидком состоянии даже при температуре 300°С. Удельная теплоемкость воды при этом составляет величину 5700 Дж/(кг·град). При продолжении нагрева воды, например до 320°С, она переходит в пар, который имеет большую теплоемкость.
Однако, при низких давлениях, вода начинает кипеть и переходит в пар при температурах гораздо ниже 100°С. Например, по данным таблицы, при давлении 0,1 бар и температуре 50°С, вода уже находится в виде водяного пара и его теплоемкость при этих условиях составляет величину, равную 1929 Дж/(кг·град).
↓ t, °С | P, бар → | 0,1 | 1 | 10 | 20 | 40 | 60 | 80 | 100 |
---|---|---|---|---|---|---|---|---|
0 | 4218 | 4217 | 4212 | 4207 | 4196 | 4186 | 4176 | 4165 |
50 | 1929 | 4181 | 4179 | 4176 | 4172 | 4167 | 4163 | 4158 |
100 | 1910 | 2038 | 4214 | 4211 | 4207 | 4202 | 4198 | 4194 |
120 | 1913 | 2007 | 4243 | 4240 | 4235 | 4230 | 4226 | 4221 |
140 | 1918 | 1984 | 4283 | 4280 | 4275 | 4269 | 4263 | 4258 |
160 | 1926 | 1977 | 4337 | 4334 | 4327 | 4320 | 4313 | 4307 |
180 | 1933 | 1974 | 2613 | 4403 | 4395 | 4386 | 4378 | 4370 |
200 | 1944 | 1975 | 2433 | 4494 | 4483 | 4472 | 4461 | 4450 |
220 | 1954 | 1979 | 2316 | 2939 | 4601 | 4586 | 4571 | 4557 |
240 | 1964 | 1985 | 2242 | 2674 | 4763 | 4741 | 4720 | 4700 |
260 | 1976 | 1993 | 2194 | 2505 | 3582 | 4964 | 4932 | 4902 |
280 | 1987 | 2001 | 2163 | 2395 | 3116 | 4514 | 5250 | 5200 |
300 | 1999 | 2010 | 2141 | 2321 | 2834 | 3679 | 5310 | 5700 |
320 | 2011 | 2021 | 2126 | 2268 | 2649 | 3217 | 4118 | 5790 |
340 | 2024 | 2032 | 2122 | 2239 | 2536 | 2943 | 3526 | 4412 |
350 | 2030 | 2038 | 2125 | 2235 | 2504 | 2861 | 3350 | 4043 |
360 | 2037 | 2044 | 2127 | 2231 | 2478 | 2793 | 3216 | 3769 |
365 | 2040 | 2048 | 2128 | 2227 | 2462 | 2759 | 3134 | 3655 |
370 | 2043 | 2050 | 2128 | 2222 | 2446 | 2725 | 3072 | 3546 |
375 | 2046 | 2053 | 2127 | 2218 | 2428 | 2690 | 3018 | 3446 |
380 | 2049 | 2056 | 2127 | 2212 | 2412 | 2657 | 2964 | 3356 |
385 | 2052 | 2059 | 2126 | 2207 | 2396 | 2627 | 2913 | 3274 |
390 | 2056 | 2061 | 2125 | 2202 | 2381 | 2600 | 2867 | 3201 |
395 | 2059 | 2065 | 2125 | 2200 | 2369 | 2575 | 2826 | 3137 |
400 | 2062 | 2068 | 2126 | 2197 | 2358 | 2553 | 2789 | 3078 |
405 | 2066 | 2071 | 2127 | 2195 | 2349 | 2534 | 2756 | 3025 |
410 | 2069 | 2074 | 2128 | 2193 | 2340 | 2517 | 2727 | 2979 |
415 | 2072 | 2077 | 2129 | 2192 | 2334 | 2501 | 2700 | 2936 |
420 | 2076 | 2080 | 2131 | 2192 | 2327 | 2487 | 2675 | 2898 |
425 | 2079 | 2083 | 2132 | 2190 | 2321 | 2474 | 2653 | 2863 |
430 | 2082 | 2086 | 2134 | 2190 | 2316 | 2462 | 2632 | 2830 |
440 | 2089 | 2093 | 2138 | 2190 | 2307 | 2441 | 2596 | 2773 |
450 | 2095 | 2099 | 2141 | 2191 | 2300 | 2424 | 2565 | 2726 |
460 | 2102 | 2106 | 2146 | 2192 | 2294 | 2409 | 2538 | 2684 |
480 | 2116 | 2119 | 2154 | 2196 | 2286 | 2385 | 2496 | 2618 |
500 | 2129 | 2132 | 2164 | 2201 | 2281 | 2368 | 2464 | 2569 |
520 | 2142 | 2146 | 2175 | 2208 | 2280 | 2357 | 2441 | 2531 |
540 | 2156 | 2159 | 2185 | 2216 | 2280 | 2349 | 2423 | 2502 |
560 | 2170 | 2173 | 2197 | 2226 | 2285 | 2349 | 2416 | 2487 |
580 | 2184 | 2187 | 2208 | 2233 | 2285 | 2342 | 2401 | 2465 |
600 | 2198 | 2200 | 2219 | 2240 | 2287 | 2336 | 2389 | 2445 |
620 | 2212 | 2213 | 2230 | 2250 | 2291 | 2334 | 2381 | 2431 |
640 | 2226 | 2227 | 2243 | 2260 | 2298 | 2337 | 2379 | 2423 |
660 | 2240 | 2241 | 2256 | 2272 | 2307 | 2343 | 2381 | 2421 |
680 | 2254 | 2255 | 2270 | 2286 | 2317 | 2352 | 2388 | 2424 |
700 | 2268 | 2270 | 2283 | 2299 | 2330 | 2362 | 2398 | 2429 |
800 | 2339 | 2341 | 2352 | 2364 | 2389 | 2414 | 2440 | 2465 |
Примечание: В таблице синим цветом показаны значения удельной массовой теплоемкости воды в жидком состоянии, а черным – значения теплоемкости водяного пара.
Количество теплоты. Удельная теплоёмкость
1. Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количеством теплоты.
Количеством теплоты называется изменение внутренней энергии тела в процессе теплопередачи без совершения работы.
Количество теплоты обозначают буквой \( Q \) . Так как количество теплоты является мерой изменения внутренней энергии, то его единицей является джоуль (1 Дж).
При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.
2. Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество теплоты требуется ему для нагревания. То же самое и с охлаждением: тело большей массы при охлаждении отдаёт большее количество теплоты. Эти тела сделаны из одного и того же вещества и нагреваются они или охлаждаются на одно и то же число градусов.
3. Если теперь нагревать 100 г воды от 30 до 60 °С, т.е. на 30 °С, а затем до 100 °С, т.е. на 70 °С, то в первом случае на нагревание уйдёт меньше времени, чем во втором, и, соответственно, на нагревание воды на 30 °С, будет затрачено меньшее количество теплоты, чем на нагревание воды на 70 °С. Таким образом, количество теплоты прямо пропорционально разности конечной \( (t_2\,^\circ C) \) и начальной \( (t_1\,^\circ C) \) температур: \( Q\sim(t_2-t_1) \) .
4. Если теперь в один сосуд налить 100 г воды, а в другой такой же сосуд налить немного воды и положить в неё такое металлическое тело, чтобы его масса и масса воды составляли 100 г, и нагревать сосуды на одинаковых плитках, то можно заметить, что в сосуде, в котором находится только вода, температура будет ниже, чем в том, в котором находятся вода и металлическое тело. Следовательно, чтобы температура содержимого в обоих сосудах была одинаковой нужно воде передать большее количество теплоты, чем воде и металлическому телу. Таким образом, количество теплоты, необходимое для нагревания тела зависит от рода вещества, из которого это тело сделано.
5. Зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.
Физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К), называется удельной теплоёмкостью вещества.
Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.
Удельная теплоёмкость обозначается буквой \( c \) . Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг К.
Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.
Удельная теплоёмкость свинца 140 Дж/кг °С. Это значит, что для нагревания 1 кг свинца на 1 °С необходимо затратить количество теплоты 140 Дж. Такое же количество теплоты выделится при остывании 1 кг воды на 1 °С.
Поскольку количество теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.
По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.
6. Пример решения задачи. В стакан, содержащий 200 г воды при температуре 80 °С, налили 100 г воды при температуре 20 °С. После чего в сосуде установилась температура 60 °С. Какое количество теплоты получила холодная вода и отдала горячая вода?
При решении задачи необходимо выполнять следующую последовательность действий:
1. Условие задачи.
Дано:
\( m_1 \) = 200 г
\( m_2 \) = 100 г
\( t_1 \) = 80 °С
\( t_2 \) = 20 °С
\( t \) = 60 °С
______________
2. СИ: \( m_1 \) = 0,2 кг; \( m_2 \) = 0,1 кг.
3. Анализ задачи. В задаче описан процесс теплообмена между горячей и холодной водой. Горячая вода отдаёт количество теплоты \( Q_1 \) и охлаждается от температуры \( t_1 \) до температуры \( t \) . Холодная вода получает количество теплоты \( Q_2 \) и нагревается от температуры \( t_2 \) до температуры \( t \) .
4. Решение задачи в общем виде. Количество теплоты, отданное горячей водой, вычисляется по формуле: \( Q_1=c_1m_1(t_1-t) \) .
5. Вычисления.
\( Q_1 \) = 4200 Дж/кг · °С · 0,2 кг · 20 °С = 16800 Дж
\( Q_2 \) = 4200 Дж/кг · °С · 0,1 кг · 40 °С = 16800 Дж
6. В ответе получено, что количество теплоты, отданное горячей водой, равно количеству теплоты, полученному холодной водой. При этом рассматривалась идеализированная ситуация и не учитывалось, что некоторое количество теплоты пошло на нагревание стакана, в котором находилась вода, и окружающего воздуха. В действительности же количество теплоты, отданное горячей водой, больше, чем количество теплоты, полученное холодной водой.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Удельная теплоёмкость серебра 250 Дж/(кг · °С). Что это означает?
1) при остывании 1 кг серебра на 250 °С выделяется количество теплоты 1 Дж
2) при остывании 250 кг серебра на 1 °С выделяется количество теплоты 1 Дж
3) при остывании 250 кг серебра на 1 °С поглощается количество теплоты 1 Дж
4) при остывании 1 кг серебра на 1 °С выделяется количество теплоты 250 Дж
2. Удельная теплоёмкость цинка 400 Дж/(кг · °С). Это означает, что
1) при нагревании 1 кг цинка на 400 °С его внутренняя энергия увеличивается на 1 Дж
2) при нагревании 400 кг цинка на 1 °С его внутренняя энергия увеличивается на 1 Дж
3) для нагревания 400 кг цинка на 1 °С его необходимо затратить 1 Дж энергии
4) при нагревании 1 кг цинка на 1 °С его внутренняя энергия увеличивается на 400 Дж
3. При передаче твёрдому телу массой \( m \) количества теплоты \( Q \) температура тела повысилась на \( \Delta t^\circ \) . Какое из приведённых ниже выражений определяет удельную теплоёмкость вещества этого тела?
4. На рисунке приведён график зависимости количества теплоты, необходимого для нагревания двух тел (1 и 2) одинаковой массы, от температуры. Сравните значения удельной теплоёмкости ( \( c_1 \) и \( c_2 \) ) веществ, из которых сделаны эти тела.
1) \( c_1=c_2 \)
2) \( c_1>c_2 \)
3) \( c_1
4) ответ зависит от значения массы тел
5. На диаграмме представлены значения количества теплоты, переданного двум телам равной массы при изменении их температуры на одно и то же число градусов. Какое соотношение для удельных теплоёмкостей веществ, из которых изготовлены тела, является верным?
1) \( c_1=c_2 \)
2) \( c_1=3c_2 \)
3) \( c_2=3c_1 \)
4) \( c_2=2c_1 \)
6. На рисунке представлен график зависимости температуры твёрдого тела от отданного им количества теплоты. Масса тела 4 кг. Чему равна удельная теплоёмкость вещества этого тела?
1) 500 Дж/(кг · °С)
2) 250 Дж/(кг · °С)
3) 125 Дж/(кг · °С)
4) 100 Дж/(кг · °С)
7. При нагревании кристаллического вещества массой 100 г измеряли температуру вещества и количество теплоты, сообщённое веществу. Данные измерений представили в виде таблицы. Считая, что потерями энергии можно пренебречь, определите удельную теплоёмкость вещества в твёрдом состоянии.
1) 192 Дж/(кг · °С)
2) 240 Дж/(кг · °С)
3) 576 Дж/(кг · °С)
4) 480 Дж/(кг · °С)
8. Чтобы нагреть 192 г молибдена на 1 К, нужно передать ему количество теплоты 48 Дж. Чему равна удельная теплоёмкость этого вещества?
9. Какое количество теплоты необходимо для нагревания 100 г свинца от 27 до 47 °С?
1) 390 Дж
2) 26 кДж
3) 260 Дж
4) 390 кДж
10. На нагревание кирпича от 20 до 85 °С затрачено такое же количество теплоты, как для нагревания воды такой же массы на 13 °С. Удельная теплоёмкость кирпича равна
1) 840 Дж/(кг · К)
2) 21000 Дж/(кг · К)
3) 2100 Дж/(кг · К)
4) 1680 Дж/(кг · К)
11. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.
1) Количество теплоты, которое тело получает при повышении его температуры на некоторое число градусов, равно количеству теплоты, которое это тело отдаёт при понижении его температуры на такое же число градусов.
2) При охлаждении вещества его внутренняя энергия увеличивается.
3) Количество теплоты, которое вещество получает при нагревании, идёт главным образом на увеличение кинетической энергии его молекул.
4) Количество теплоты, которое вещество получает при нагревании, идёт главным образом на увеличение потенциальной энергии взаимодействия его молекул
5) Внутреннюю энергию тела можно изменить, только сообщив ему некоторое количество теплоты
12. В таблице представлены результаты измерений массы \( m \) , изменения температуры \( \Delta t \) и количества теплоты \( Q \) , выделяющегося при охлаждении цилиндров, изготовленных из меди или алюминия.
Какие утверждения соответствуют результатам проведённого эксперимента? Из предложенного перечня выберите два правильных. Укажите их номера. На основании проведенных измерений можно утверждать, что количество теплоты, выделяющееся при охлаждении,
1) зависит от вещества, из которого изготовлен цилиндр.
2) не зависит от вещества, из которого изготовлен цилиндр.
3) увеличивается при увеличении массы цилиндра.
4) увеличивается при увеличении разности температур.
5) удельная теплоёмкость алюминия в 4 раза больше, чем удельная теплоёмкость олова.
Часть 2
C1.Твёрдое тело массой 2 кг помещают в печь мощностью 2 кВт и начинают нагревать. На рисунке изображена зависимость температуры \( t \) этого тела от времени нагревания \( \tau \) . Чему равна удельная теплоёмкость вещества?
1) 400 Дж/(кг · °С)
2) 200 Дж/(кг · °С)
3) 40 Дж/(кг · °С)
4) 20 Дж/(кг · °С)