Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны

Π­ΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»

Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π½Π° youtube || Π½Π° ИНВУИВ Π² качСствС: Π½ΠΈΠ·ΠΊΠΎΠΌ | срСднСм | высоком

ΠžΠ΄Π½Ρƒ ΠΈ Ρ‚Ρƒ ΠΆΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Π·Π°Π΄Π°Ρ‡Π° опрСдСлСния эквивалСнтности Ρ„ΠΎΡ€ΠΌΡƒΠ» Π»ΠΎΠ³ΠΈΠΊΠΈ высказываний.

Π”Π°Π²Π°ΠΉΡ‚Π΅ установим эквивалСнтности для Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈΠ· Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ 3 ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ ΡƒΡ€ΠΎΠΊΠ°.

Π˜ΡΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅Π΅ Или эквивалСнтно ΠΎΡ‚Ρ€ΠΈΡ†Π°Π½ΠΈΡŽ эквивалСнтности: Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ истинности для этих Π΄Π²ΡƒΡ… Ρ„ΠΎΡ€ΠΌΡƒΠ»:

Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны
00100
01011
10011
11100

Π¨Ρ‚Ρ€ΠΈΡ… Π¨Π΅Ρ„Ρ„Π΅Ρ€Π° эквивалСнтСн ΠΎΡ‚Ρ€ΠΈΡ†Π°Π½ΠΈΡŽ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΠΈ: Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ истинности для этих Π΄Π²ΡƒΡ… Ρ„ΠΎΡ€ΠΌΡƒΠ»:

Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны
00011
01011
10011
11100

ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΡŽ Π¨Ρ‚Ρ€ΠΈΡ… Π¨Π΅Ρ„Ρ„Π΅Ρ€Π° Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π°Π½Ρ‚ΠΈΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΠ΅ΠΉ.

Π‘Ρ‚Ρ€Π΅Π»ΠΊΠ° ΠŸΠΈΡ€ΡΠ° эквивалСнтна ΠΎΡ‚Ρ€ΠΈΡ†Π°Π½ΠΈΡŽ Π΄ΠΈΠ·ΡŠΡŽΠ½ΠΊΡ†ΠΈΠΈ: Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ истинности для этих Π΄Π²ΡƒΡ… Ρ„ΠΎΡ€ΠΌΡƒΠ»:

Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны
00011
01100
10100
11100

ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΡŽ Π‘Ρ‚Ρ€Π΅Π»ΠΊΠ° ΠŸΠΈΡ€ΡΠ° Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π°Π½Ρ‚ΠΈΠ΄ΠΈΠ·ΡŠΡŽΠ½ΠΊΡ†ΠΈΠ΅ΠΉ.

Π˜ΠΌΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΡ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтныэквивалСнтна Π΄ΠΈΠ·ΡŠΡŽΠ½ΠΊΡ†ΠΈΠΈ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтныи отрицания Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны: Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ истинности для этих Π΄Π²ΡƒΡ… Ρ„ΠΎΡ€ΠΌΡƒΠ»:

Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны
00111
01111
10000
11011

ΠšΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΡ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтныэквивалСнтна ΠΎΡ‚Ρ€ΠΈΡ†Π°Π½ΠΈΡŽ Π΄ΠΈΠ·ΡŠΡŽΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Π½ΠΈΠΉ: Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ истинности для этих Π΄Π²ΡƒΡ… Ρ„ΠΎΡ€ΠΌΡƒΠ»:

Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны
0011100
0110100
1001100
1100011

Π”ΠΈΠ·ΡŠΡŽΠ½ΠΊΡ†ΠΈΡ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтныэквивалСнтна ΠΎΡ‚Ρ€ΠΈΡ†Π°Π½ΠΈΡŽ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Π½ΠΈΠΉ: Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ истинности для этих Π΄Π²ΡƒΡ… Ρ„ΠΎΡ€ΠΌΡƒΠ»:

Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны
0011100
0110011
1001011
1100011

ΠŸΠΎΡ‡Π΅ΠΌΡƒ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ нСбольшоС число Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ?

ЛогичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΌΠ½ΠΎΠ³ΠΎ, особСнно Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΌΠ½ΠΎΠ³ΠΈΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…. ΠŸΠΎΡ‡Π΅ΠΌΡƒ ΠΆΠ΅ ΠΌΡ‹ Π·Π½Π°Π΅ΠΌ ΠΈ ΠΎΠΏΠ΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌ нСбольшим числом Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ? Бвязано это с Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΠ΄Π½ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ°Ρ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· Π΄Ρ€ΡƒΠ³ΠΈΠ΅, ΠΊΠ°ΠΊ ΠΌΡ‹ Π²ΠΈΠ΄Π΅Π»ΠΈ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ…. А ΠΌΠΎΠΆΠ½ΠΎ Π»ΠΈ Π»ΡŽΠ±ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· Π½Π΅ΠΌΠ½ΠΎΠ³ΠΈΠ΅, базисныС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ? ΠžΡ‚Π²Π΅Ρ‚ Π½Π° этот вопрос ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»Π΅Π½.

ΠšΠ°ΠΆΠ΄ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΎΡ‚ любого числа ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Ρ€ΠΈ базисныС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ – ΠΎΡ‚Ρ€ΠΈΡ†Π°Π½ΠΈΠ΅, ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΡ ΠΈ Π΄ΠΈΠ·ΡŠΡŽΠ½ΠΊΡ†ΠΈΡ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹. РавСнство Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ». ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ эквивалСнтности

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹. РавСнство Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ». ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ эквивалСнтности

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹. РавСнство Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ». ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ эквивалСнтности

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹. Как ΠΈ Π² Π°Π½Π°Π»ΠΈΠ·Π΅, исходя ΠΈΠ· элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹.

$((x_1x_2) + x_1, ((x_1x_2) + x_1)\rightarrow x_2$

$x_1$$x_2$$x_1x_2$$(x_1x_2)+x_1$$((x_1x_2)+x_1)\rightarrow x_2$
00001
01001
10010
11101

РавСнство Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ ΡΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»

Π’Π²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ понятиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ позволяСт Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚ мСньшСго числа Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΊΠ°ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚ большСго числа Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ².

$f(\alpha_1. \alpha_ < i-1 >,0,\alpha_ < i+1 >. \alpha_n) \neq f(\alpha_1. \alpha_ < i-1 >,1,\alpha_ < i+1 >. \alpha_n)$.

Π”Π°Π»Π΅Π΅:

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° ΠΎ Π·Π°Π²Π΅Π΄ΠΎΠΌΠΎ ΠΏΠΎΠ»Π½Ρ‹x систСмаx

Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈ 2-Π·Π½Π°Ρ‡Π½ΠΎΠΉ Π»ΠΎΠ³ΠΈΠΊΠΈ. Π›Π΅ΠΌΠΌΠ° ΠΎ числС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ 1-ΠΎΠΉ ΠΈ 2-Ρ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…

ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΎΡ‚ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° ΠΊ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π½ΠΎΠΌΡƒ. ИзмСнСниС порядка интСгрирования. ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΊ полярным ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ

ΠŸΠΎΡ‚ΠΎΠΊ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ поля Ρ‡Π΅Ρ€Π΅Π· ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ

Π‘ΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Π΅ поля

Бвойства ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π°

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° ΠžΡΡ‚Ρ€ΠΎΠ³Ρ€Π°Π΄ΡΠΊΠΎΠ³ΠΎ

Условия нСзависимости ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° ΠΎΡ‚ ΠΏΡƒΡ‚ΠΈ интСгрирования

ЛогичСскиС слСдствия

ВычислСниС повСрхностного ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π°

ВычислСниС ΠΎΠ±ΡŠΡ‘ΠΌΠΎΠ²

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ примСнСния цилиндричСских ΠΈ сфСричСских ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

РСшСниС Π·Π°Π΄Π°Ρ‡ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π°Π»Π³Π΅Π±Ρ€Ρ‹ высказываний

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

MT1102: ЛинСйная Π°Π»Π³Π΅Π±Ρ€Π° (Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΡƒ)

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π°Π»Π³Π΅Π±Ρ€Ρ‹ высказываний %%X%% ΠΈ %%Y%% Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ (эквивалСнтными, тоТдСствСнными), Ссли ΠΏΡ€ΠΈ Π»ΡŽΠ±Ρ‹Ρ… значСниях ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…, входящих Π² эти Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ истинности Ρ„ΠΎΡ€ΠΌΡƒΠ» %%X%% ΠΈ %%Y%% ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ истинности для этих Π΄Π²ΡƒΡ… Ρ„ΠΎΡ€ΠΌΡƒΠ»

%%A%%%%B%%%%X = A \rightarrow B%%%%Y = \overline \rightarrow \overline%%
%%0%%%%0%%%%1%%%%1%%
%%0%%%%1%%%%1%%%%1%%
%%1%%%%0%%%%0%%%%0%%
%%1%%%%1%%%%1%%%%1%%

Как Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹, истинностныС значСния Π΄Π°Π½Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΡƒΠ» ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ ΠΏΡ€ΠΈ Π»ΡŽΠ±Ρ‹Ρ… значСниях %%A%% ΠΈ %%B%%, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, эти Π΄Π²Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Ρ‹. Π Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ» %%X%% ΠΈ %%Y%% записываСтся Π² Π²ΠΈΠ΄Π΅ %%X \equiv Y%%.

Π’Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠΎ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»

Π’Π΅ΠΎΡ€Π΅ΠΌΠ°. Π‘ΠΏΡ€Π°Π²Π΅Π΄Π»ΠΈΠ²Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ равСнства Ρ„ΠΎΡ€ΠΌΡƒΠ».

A \land 0 \equiv 0 \\ A \lor 0 \equiv A,

Π“Π΄Π΅ %%1%% β€” тоТдСствСнно истиннная Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°, Π° %%0%% β€” тоТдСствСнно лоТная Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° даСтся Π±Π΅Π· Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ эти Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π»Π΅Π³ΠΊΠΎ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ истинности.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ°. Для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ сущСствуСт Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Π°Ρ Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°, которая содСрТит Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π·Π½Π°ΠΊΠΈ отрицания ΠΈ Π΄ΠΈΠ·ΡŠΡŽΠ½ΠΊΡ†ΠΈΠΈ.

Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Π² ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ %%X%% ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π·Π½Π°ΠΊΠΈ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΠΈ, ΠΈΠΌΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈ эквивалСнции. Избавимся ΠΎΡ‚ этих Π·Π½Π°ΠΊΠΎΠ², замСняя ΠΏΠΎΠ΄Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, содСрТащиС эти Π·Π½Π°ΠΊΠΈ, Π½Π° Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΈΠΌ ΠΏΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΏΡ€Π°Π²ΠΈΠ»Π°ΠΌ:

Но использованиС Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π΄Π²ΡƒΡ… Π·Π½Π°ΠΊΠΎΠ² ΠΎΡ‡Π΅Π½ΡŒ Π½Π΅ΡƒΠ΄ΠΎΠ±Π½ΠΎ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΎΡ‡Π΅Π½ΡŒ Π³Ρ€ΠΎΠΌΠΎΠ·Π΄ΠΊΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌ, ΠΈΠΌΠ΅Π½Π½ΠΎ поэтому, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Ρ‚Ρ€ΠΈ основных Π·Π½Π°ΠΊΠ°: ΠΎΡ‚Ρ€ΠΈΡ†Π°Π½ΠΈΠ΅, ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΡ ΠΈ Π΄ΠΈΠ·ΡŠΡŽΠ½ΠΊΡ†ΠΈΡ.

ΠžΠ±Ρ€Π°Ρ‚Π½Π°Ρ ΠΈ противополоТная Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹

НазовСм Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ %%T = A \rightarrow B%% прямой Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ. Боставим ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ высказывания:

ΠœΠ΅ΠΆΠ΄Ρƒ этими Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°ΠΌΠΈ Π΅ΡΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ связи:

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны

Π Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π°Π»Π³Π΅Π±Ρ€Ρ‹ Π»ΠΎΠ³ΠΈΠΊΠΈ

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π”Π²Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ Π°Π»Π³Π΅Π±Ρ€Ρ‹ Π»ΠΎΠ³ΠΈΠΊΠΈ A ΠΈ B Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ, Ссли ΠΎΠ½ΠΈ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ логичСскиС значСния ΠΏΡ€ΠΈ любом Π½Π°Π±ΠΎΡ€Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ входящих Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ элСмСнтарных высказываний (ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…).

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ€ΠΌΡƒΠ»Π° A называСтся тоТдСствСнно истинной (Ρ‚Π°Π²Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ), Ссли ΠΎΠ½Π° ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ 1 ΠΏΡ€ΠΈ всСх значСниях входящих Π² Π½Π΅Π΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… (Π½Π°ΠΏΡ€., Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны ).

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅. Π€ΠΎΡ€ΠΌΡƒΠ»Π° A называСтся тоТдСствСнно Π»ΠΎΠΆΠ½ΠΎΠΉ (ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ΅ΠΌ), Ссли ΠΎΠ½Π° ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ 0 ΠΏΡ€ΠΈ всСх значСниях входящих Π² Π½Π΅Π΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… (Π½Π°ΠΏΡ€., Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны ).

Π£Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅. ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ рСфлСксивно, симмСтрично, Ρ‚Ρ€Π°Π½Π·ΠΈΡ‚ΠΈΠ²Π½ΠΎ.

Бвязь ΠΌΠ΅ΠΆΠ΄Ρƒ понятиями Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ эквивалСнтности: Ссли Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ A ΠΈ B Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Ρ‹, Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° A ↔ B тавтология, ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎ, Ссли Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° A ↔ B тавтология, Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ A ΠΈ B Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Ρ‹.

Π Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π°Π»Π³Π΅Π±Ρ€Ρ‹ Π»ΠΎΠ³ΠΈΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π±ΠΈΡ‚ΡŒ Π½Π° 3 Π³Ρ€ΡƒΠΏΠΏΡ‹:

1. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ.

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны – Π·Π°ΠΊΠΎΠ½Ρ‹ идСмпотСнтности;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны ;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны ;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны ;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны ;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны – Π·Π°ΠΊΠΎΠ½ противорСчия;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны – Π·Π°ΠΊΠΎΠ½ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны – Π·Π°ΠΊΠΎΠ½ снятия Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ отрицания;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны – Π·Π°ΠΊΠΎΠ½Ρ‹ поглощСния.

1. Π Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠ΅ ΠΎΠ΄Π½ΠΈ логичСскиС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Ρ‡Π΅Ρ€Π΅Π· Π΄Ρ€ΡƒΠ³ΠΈΠ΅:

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны ;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны ;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны ;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны ;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны ;

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅. Из Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ 2 слСдуСт, Ρ‡Ρ‚ΠΎ Π²ΡΡΠΊΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Π°Π»Π³Π΅Π±Ρ€Ρ‹ Π»ΠΎΠ³ΠΈΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΠΉ Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ, содСрТащСй Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π΄Π²Π΅ логичСскиС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ: ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΡŽ ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Π½ΠΈΠ΅, ΠΈΠ»ΠΈ Π΄ΠΈΠ·ΡŠΡŽΠ½ΠΊΡ†ΠΈΡŽ ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Π½ΠΈΠ΅. Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅Π΅ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ. НапримСр, Ссли ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΡŽ, Ρ‚ΠΎ ΡƒΠΆΠ΅ такая простая Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°, ΠΊΠ°ΠΊ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΠΈ.

Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π° любая ΠΈΠ· 5 логичСских ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ:

1) Бвязка Π¨Π΅Ρ„Ρ„Π΅Ρ€Π° – Π΄ΠΈΠ·ΡŠΡŽΠ½ΠΊΡ†ΠΈΡ ΠΎΡ‚Ρ€ΠΈΡ†Π°Π½ΠΈΠΉ.

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. x | y ≑ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны (Β« x Π½Π΅ совмСстно с y Β»).

ЛогичСскиС значСния связки Π¨Π΅Ρ„Ρ„Π΅Ρ€Π° ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚Π°Π±Π»ΠΈΡ†Π΅ΠΉ истинности:

2) Бвязка ЛукасСвича – ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΡ ΠΎΡ‚Ρ€ΠΈΡ†Π°Π½ΠΈΠΉ.

ЛогичСскиС значСния связки ЛукасСвича ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚Π°Π±Π»ΠΈΡ†Π΅ΠΉ истинности:

2. Π Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠ΅ основныС Π·Π°ΠΊΠΎΠ½Ρ‹ Π°Π»Π³Π΅Π±Ρ€Ρ‹ Π»ΠΎΠ³ΠΈΠΊΠΈ:

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны – ΠΊΠΎΠΌΠΌΡƒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΠΈ;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны – ΠΊΠΎΠΌΠΌΡƒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΄ΠΈΠ·ΡŠΡŽΠ½ΠΊΡ†ΠΈΠΈ;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны – Π°ΡΡΠΎΡ†ΠΈΠ°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΠΈ;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны – Π°ΡΡΠΎΡ†ΠΈΠ°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΄ΠΈΠ·ΡŠΡŽΠ½ΠΊΡ†ΠΈΠΈ;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны – Π΄ΠΈΡΡ‚Ρ€ΠΈΠ±ΡƒΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄ΠΈΠ·ΡŠΡŽΠ½ΠΊΡ†ΠΈΠΈ;

Β· Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ логичСски эквивалСнтны – Π΄ΠΈΡΡ‚Ρ€ΠΈΠ±ΡƒΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΄ΠΈΠ·ΡŠΡŽΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ†ΠΈΠΈ.

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅. Π Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π³Ρ€ΡƒΠΏΠΏΡ‹ 3 ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Π½Π°Π΄ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ Π°Π»Π³Π΅Π±Ρ€Ρ‹ Π»ΠΎΠ³ΠΈΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ‚Π΅ ΠΆΠ΅ прСобразования, Ρ‡Ρ‚ΠΎ ΠΈ Π² Π°Π»Π³Π΅Π±Ρ€Π΅ чисСл.

Π Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Ρ‹Π΅ прСобразования Ρ„ΠΎΡ€ΠΌΡƒΠ»

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π³Ρ€ΡƒΠΏΠΏ 1–3 ΠΌΠΎΠΆΠ½ΠΎ Ρ‡Π°ΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈΠ»ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΠΉ Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ. Π’Π°ΠΊΠΈΠ΅ прСобразования Ρ„ΠΎΡ€ΠΌΡƒΠ» Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *