какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей

Сварка низкоуглеродистых и низколегированных сталей

Низкоуглеродистыми называют стали с низким содержанием углерода до 0,25%. Низколегированными называют стали с содержанием до 4% легирующих элементов без учета углерода.

Хороша свариваемость низкоуглеродистых и низколегированных конструкционных сталей является главной причиной их массового применения для производства сварочных конструкций.

Химический состав и свойства сталей

Стали обыкновенного качества

В зависимости от степени раскисления стали обыкновенного качества разделяют на:

Кипящие стали

Стали этой группы содержат не более 0,07% кремния (Si). Получают сталь путем неполного раскисления стали марганцем. Отличительной особенностью кипящей стали является неравномерное распределение серы и фосфора по толщине проката. Попадание участка со скоплением серы в зону сварки может привести к появлению кристаллизационных трещин в шве и зоне термического влияния. Находясь в среде пониженных температур такая сталь может перейти в хрупкое состояние. Поддавшись сварке такие стали могут стареть в околошовной зоне.

Спокойные стали

Спокойные стали содержат не менее 0,12% кремния (Si). Получают спокойные стали при раскислении стали марганцем, кремнием, алюминием. Отличаются более равномерным распределением в них серы и фосфора. Спокойные стали меньше отзываются на нагрев, меньше склонны к старению.

Полуспокойные стали

Полуспокойные стали имеют средние характеристики между спокойными и кипящими сталями.

Производят углеродистые стали обыкновенного качества трех групп. Стали группы А не используют для сварки, поставляют по их механическим свойствам. Букву «А» в обозначение стали не ставят, например «Ст2».

Стали группы Б и В поставляют по их химическим свойствам, химическим и механическим соответственно. В начало обозначения стали ставят букву группы, например БСт2, ВСт3.

Полуспокойные стали марок 3 и 5 могут поставляться с повышенным содержанием марганца. В таких сталях после обозначения марки ставят букву Г (например, БСт3Гпс).

Для изготовления ответственных конструкций следует использовать обыкновенные стали группы В. Изготовление сварочных конструкций из низкоуглеродистых сталей обыкновенного качества не требует применения термической обработки.

Качественные стали

Низкоуглеродистые качественные стали поставляют с нормальным (марки 10, 15 и 20) и повышенным (марки 15Г и 20Г) содержанием марганца. Качественные стали содержат пониженное количество серы. Для изготовления сварочных конструкций из сталей этой группы применяют стали в горячекатаном состоянии, реже стали с термической обработкой. Сварка этих сталей для повышения прочности конструкции может производится с последующей термической обработкой.

Низколегированные стали

Если в углеродистую сталь вводят специальные химические элементы, которые изначально в ней отсутствует, то такую сталь называют легированной. Марганец и кремний считают легирующими компонентами если их содержание превышает 0,7% и 0,4% соответственно. Поэтому стали ВСт3Гпс, ВСт5Гпс, 15Г и 20Г считают одновременно низкоуглеродистыми и низколегированными конструкционными сталями.

Легирующие элементы способны образовывать соединения с железом, углеродом и другими элементами. Это способствует улучшению механических свойств сталей и снижает предел хладноломкости. Как следствие появляется возможность снизить массу конструкции.

Легирование металла марганцем влияет на повышение ударной вязкости и стойкость к хладноломкости. Сварочные соединения с марганцовистых сталей отличаются более высокой прочностью при знакопеременных ударных нагрузках. Повысить стойкость стали от атмосферной и морской коррозии можно легированием медью (0,3-0,4%). Большинство низколегированных сталей для производства сварочных конструкций используют в горячекатаном состоянии. Механические свойства легированных сталей можно улучшить термической обработкой, поэтому некоторые марки сталей для сварных конструкций используют после термической обработки.

Свариваемость низкоуглеродистых и низколегированных сталей

Низкоуглеродистые и низколегированные конструкционные стали обладают хорошей свариваемостью. Технология их сварки должна обеспечивать равные механические свойства шва и основного металла (не ниже нижнего предела свойств основного металла). В ряде случаев обусловленных условиями работы конструкции допускается снижение некоторых механических свойств шва. В шве должны отсутствовать трещины, непровары, поры, подрезы и другие дефекты. Форма и геометрические размеры шва должны соответствовать требуемым. К сварному соединению могут предъявляться дополнительные требования, которые связаны с условиями работы конструкции. Все без исключения сварочные швы должны быть долговечными и надежными, а технология обеспечивать производительность и экономичность процесса.

На механические свойства сварного соединения влияет его структура. Структура металла при сварке зависит от химического состава материала, режимов сварки и термической обработки.

Подготовка и сборка деталей под сварку

При автоматических методах сварки следует устанавливать заходные и выходные планки. При автоматической сварке тяжело обеспечить качественный провар корня шва и предупредить прожоги металла. Для этого применяют остающиеся и съемные подкладки, флюсовые подушки. Можно также сваривать корень шва ручной дуговой сваркой или полуавтоматической в защитных газах, а остальную часть шва выполнять автоматическими методами.

Сварка ручными и механизированными методами выполняется на весу.

Кромки сварочных деталей тщательно зачищают от шлака, ржавчины, масла и других загрязнений для предупреждения образования дефектов. Ответственные конструкции сваривают преимущественно с двух сторон. Способ заполнения разделки кромок при сварке толстостенных конструкций зависит от его толщины и термический обработки металла перед сваркой. Выявленные после сварки непровары, трещины, поры и другие дефекты удаляют механическим инструментом, воздушно-дуговой или плазменной резкой, после чего заваривают обратно. При сварке низкоуглеродистых сталей свойства и химический состав сварного соединения во многом зависит от используемых материалов и режимов сварки.

Ручная дуговая сварка низкоуглеродистых сталей

Для получения качественного соединения при помощи ручной дуговой сварки необходимо правильно выбрать сварочные электроды, выставить режимы и применить правильную технику сварки. Недостатком ручной сварки является большая зависимость от опыта и квалификации сварщика, несмотря на хорошую свариваемость рассматриваемых сталей.

Сварочные электроды следует выбирать исходя из типа свариваемой стали и назначения конструкции. Для этого можно воспользоваться каталогом электродов, где хранятся паспортные данные множества марок электродов.

При выборе электрода следует обратить внимание на рекомендуемые условия по роду и полярности тока, пространственного положения, силе тока и т. д. В паспорте на электроды может указываться типичный состав наплавленного металла и механические свойства соединения выполненных этими электродами.

В большинстве случаев сварка низкоуглеродистых сталей производиться без мер направленных на предупреждение образования закалочных структур. Но все же при сварке толстостенных угловых швов и первого слоя многослойного шва для предотвращения образования трещин используют предварительный подогрев деталей до температуры 150-200° C.

При сварке нетермоупрочненных сталей хороший эффект достигается использованием методов сварки каскадом и горкой, что не дает металлу шва быстро остывать. Этот же эффект дает предварительный подогрев до 150-200° C.

Для сварки термоупрочненных сталей рекомендуется выполнять длинные швы по охлажденным предыдущим швам, чтобы избежать разупрочнения околошовной зоны. Также следует выбирать режимы с малой погонной энергией. Исправление дефектов при многослойной сварке следует делать швами большого сечения, длиной не менее 100 мм или предварительно подогревать сталь до 150-200° C.

Дуговая сварка в защитных газах низкоуглеродистых сталей

Сварка низкоуглеродистых и низколегированных сталей осуществляется с применением углекислого газа или его смесей в качестве защитного газа. Можно применять смеси углекислый газ + аргон или кислород до 30%. Для ответственных конструкций сварку можно выполнять с использованием аргона или гелия.

В некоторых случаях применяют сварку угольным и графитовым электродом, для сварки бортовых соединений толщиной 0,2-2,0 мм (например, корпуса конденсаторов, канистры и т. д.). Так как сварка выполняется без использования присадочного прутка, содержание марганца и кремния в шве невелико, в результате теряется прочность соединения на 30-50% ниже от основного металла.

Сварка в углекислом газе выполняется с использованием сварочной проволоки. Для автоматической и полуавтоматической сварки в разных пространственных положениях применяют проволоку диаметром до 1,2 мм. Для нижнего положения используют проволоку 1,2-3,0 мм.

Таблица 1. Выбор проволоки для сварки в среде защитных газов низкоуглеродистых и низколегированных сталей

СтальВСт1, Вст2ВСт310ХСНД, 15ХСНД, 14ХГС, 09Г2, 14Г2 и им подобные
ПроволокаСв-08ГС, Св-08Г2С, Св-12ГССв-08ГС, Св-08Г2ССв-08Г2С (при одно- и двухслойной сварке), св-08ХГ2С

Как видно из таблицы для сварки всех сталей можно использовать проволоку Св-08Г2С.

Сварка низкоуглеродистых сталей под флюсом

Качественное сварное соединение с равной прочностью шва и основного металла достигается путем правильного подбора флюсов, проволоки, режимов и техники сварки. Автоматическую сварку под флюсом низкоуглеродистых сталей рекомендуют выполнять проволокой диаметра от 3 до 5 мм, полуавтоматическую сварку под флюсом диаметром 1,2-2 мм. Для сварки низкоуглеродистых сталей применяют флюсы АН-348-А и ОСЦ-45. Низкоуглеродистую сварочную проволоку марок Св-08 и Св-08А, а для ответственных конструкций можно применить проволоку Св-08ГА. Такой комплект сварочных материалов позволяет получить швы с равными или превышающими механическими свойствами основному металлу.

Для сварки низколегированных сталей рекомендуется применять сварочную проволоку Св-08ГА, Св-10ГА, Св-10Г2 и другие с содержанием марганца. Флюсы что и для низкоуглеродистых сталей. Такие материалы позволяют получить необходимые механические свойства и стойкость металла от образования пор и трещин. При сварке без скоса кромок увеличение доли основного металла в металле шва может повысить содержание углерода. Это повышает прочностные свойства, но уменьшает пластические свойства соединения.

Таблица 1. Расходные материалы для сварки низкоуглеродистых и низколегированных сталей под флюсом

Марка сталиМарка плавленного флюсаСварочная проволока
ВСт1-ВСт3АН-348-А, ОСЦ-45, ФЦ-9 и керамические К-11, КВС-19Св-08, Св-08А, для ответственных конструкций Св-08ГА
09Г2АН-22Св-08ГА
12ГС, 16ГС, 10Г2С1, 17ГС, 17Г1САН-60Св-ГСМТ (для стали 12ГС также Св-10ГА)
09Г2САН-22Св-08ГА, Св-10НМА, Св-10ГА
10ХСНДАН-348-АСв-08ГСМТ
15ХСНДАН-348-А, АН-22Св-10Г2, Св-08ХГСМА

Режимы сварки низкоуглеродистых и низколегированных сталей отличаются незначительно и зависят от техники сварки, типа соединения и шва. При сварке угловых однослойных швов, угловых и стыковых швов толстой стали марки ВСт3 на режимах с малой погонной энергией в околошовной зоне могут образовываться закалочные структуры и понизиться пластичность. Для предотвращения этого следует увеличить сечение шва или применить двухдуговую сварку.

Таблица 2. Соотношение толщины металла и сечения слоя шва

Толщина листа, мм8-1010-2224-60
Сечение слоя образованного из электродного металла, мм253550

Для предупреждения разрушения шва в зоне термического влияния при сварке низколегированных сталей следует использовать режимы с малой погонной энергией, а для сварки не термоупрочненных сталей — режимы с повышенной погонной энергией. Во втором случае для обеспечения пластических свойств шва и прилегающей зоны не хуже основного металла необходимо применять двухдуговую сварку или предварительный подогрев до 150-200° C.

Источник

Билеты экзамена по проверке знаний специалистов сварочного производства 2 уровень

БИЛЕТ № 5

ВОПРОС 1

Что такое сварка плавящимся электродом?

1. Дуга горит между свариваемым изделием и плавящимся сварочным электродом или электродной про-волокой, а сварочная ванна защищается газом и шлаком

2. Сварочная ванна защищается газом и шлаком, которые образовались в процессе плавления основного и сварочного материалов.

3. Электрод плавится за счет тепла дуги или газового пламени.

ВОПРОС 2

При разливки какой стали имеется наибольшая возможность образования усадочной пористости?

1. В спокойной стали.

2. В полуспокойной стали.

ВОПРОС 3

Какие основные параметры приняты для оценки механических свойств металлов?

1. Временное сопротивление разрыву, предел текучести, относительное удлинение и сужение, ударная вязкость.

2. Жаропрочность, жаростойкость и хладостойкость металла.

3. Твердость, сопротивление изгибу и количество циклов ударного нагружения до разрушения металла.

ВОПРОС 4

Какой тип кристаллической решетки имеет феррит?

1. Кубическую объемноцентрированную решетку.

2. Кубическую гранецентрированную решетку.

3. Гексагональную плотноупакованную решетку.

ВОПРОС 5

Как влияет присутствие легирующих элементов ( марганца и молибдена) в стали на ее прокаливаемость?

ВОПРОС 6

Какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей в процессе взаимодействия жидкого металла с кислородом?

ВОПРОС 7

Что называют статической вольтамперной характеристикой дуги?

1. Зависимость напряжения на дуге от сварочного тока при переменной длине дуги и постоянстве ос-тальных параметров.

2. Зависимость напряжения на дуге от сварочного тока при постоянной длине дуги и постоянстве ос-тальных параметров.

3. Зависимость напряжения на дуге и сварочного тока от длины дуги.

ВОПРОС 8

Какими электроизмерительными приборами должно быть оснащено сварочные источники питания для ручной дуговой сварки(наплавки)?

2. Амперметром и вольтметром.

3. Вольтметром и устройством для контроля скорости сварки.

ВОПРОС 9

Для повышения напряжения питающей системы как должны соединятся несколько сварочных источни-ков питания?

ВОПРОС 10

Какие требования предъявляются к хранению сварочных материалов?

1. Сварочные материалы хранят в специально оборудованном помещении без ограничения температуры и влажности воздуха.

2. Сварочные материалы хранят в специально оборудованном помещении при положительной темпера-туре воздуха.

3. Сварочные материалы хранят в специально оборудованном помещении при температуре не ниже 150 С и относительной влажности воздуха не более 50%.

ВОПРОС 11

Для какого класса сталей применяют при сварке электроды типов Э- 50, Э-50А, Э-42А, Э-55, Э-60?

1. Для сварки конструкционных сталей повышенной и высокой прочности.

2. Для сварки углеродистых сталей.

3. Для сварки высоколегированных сталей.

ВОПРОС 12

Допускается ли длительный перерыв в процессе сварки низколегированных теплоустойчивых сталей перлитного и мартенситно-ферритного классов?

1. Допускается при положительной температуре окружающей среды.

3. Допускается при выполнении сварки в помещении цеха.

ВОПРОС 13

Какое назначение имеет дежурная дуга при импульсно-дуговой сварке вольфрамовым электродом?

2. Исключает образование дефектов в кратере.

3. Увеличивает глубину проплавления основного металла.

ВОПРОС 14

Какую полярность тока дуги называют прямой?

1. На электроде плюс, на изделии минус.

2. На электроде минус, на изделии плюс.

3. Переменное изменение полярности на электроде и изделии.

ВОПРОС 15

В какой цвет окрашивают баллон для хранения аргона?

ВОПРОС 16

Укажите газы, которые смешивают с углекислым газом при механизированной сварке плавящимся элек-тродом соединений деталей из углеродистых и низколегированных сталей?

2. Гелий до 50%; азот до 75%.

ВОПРОС 17

1. Увеличивается глубина провара, уменьшается ширина шва и коэффициент формы шва.

2. Увеличивается глубина провара.

3. Никакого влияния не оказывает.

ВОПРОС 18

Какие существуют основные способы электрошлаковой сварки и наплавки?

1. Сварка с применением проволочных электродов, плавящихся мундштуков, электродов большого се-чения и ленточных электродов.

2. Сварка с применением одного электрода и многоэлектродная.

3. Сварка с применением кристаллизаторов и водяного душа.

ВОПРОС 19

Какие способы резки применяют для подготовки деталей из аустенитных сталей?

2. Кислородно-флюсовая, плазменно-дуговая, угольным электродом.

ВОПРОС 20

Какие условия охлаждения должны соблюдать для проведения нормализации стали?

1. Охлаждение вместе с печью.

2. Охлаждение на воздухе.

3. Принудительное охлаждение.

ВОПРОС 21

Изменяется ли плотность тока на контактной поверхности свариваемых деталей при различных методах контактной сварки?

3. Зависит от параметров режима сварки.

ВОПРОС 22

При каком виде контактной сварки обеспечивается более высокое качество сварного соединения термоуп-рочняемой низколегированной стали?

1. При стыковой сварке оплавлением.

2. При точечной и роликовой сварке.

3. При стыковой сварке сопротивлением.

ВОПРОС 23

1. Последующая термообработка обязательна.

3. Допускается при толщине более 36 мм.

ВОПРОС 24

Как влияет значительное увеличение скорости деформации на свойства металла сварных соединений при испытании на статическое растяжение?

1. Уменьшает прочность и увеличивает пластичность.

2. Увеличивает предел текучести и уменьшает прочность.

3. Увеличивает прочность и уменьшает пластичность.

ВОПРОС 25

Как определяют длительную пластичность материала?

1. По величине предела текучести при испытаниях образцов на длительную прочность.

2. По величине предела текучести при испытаниях образцов с постоянной скоростью деформирования.

3. По величине относительного удлинения при испытаниях образцов на длительную прочность.

ВОПРОС 26

Какое явление вызывает образование холодных трещин в сварных соединениях перлитных и мартенситных сталей?

1. Скопление неметаллических включений в элементах микроструктуры стали.

2. Сегрегация примесей на границах аустенитных зерен при 200-4000 С.

3. Мартенситное превращение аустенита в сварном шве и околошовной зоне.

ВОПРОС 27

Что называют трещиной?

1. Дефект в виде разрыва металла сварного соединения или наплавленной детали (изделия).

2. Нарушение сплошности металла.

3. Недопустимое отклонение от требований Правил Контроля.

ВОПРОС 28

С какой целью проводят визуальный контроль сварных соединений?

1. Для выявления недопустимых дефектов и качества зачистки выполненных швов и околошовной зоны.

2. Для выявления поверхностных дефектов.

3. Для выявления внутренних дефектов.

ВОПРОС 29

Какой род тока более опасен при поражении человека электрическими токами при одинаковых напряже-ниях и мощности электрической цепи?

1. Переменный ток 50 Гц.

3. Ток высокой частоты.

ВОПРОС 30

Норма времени определяется как:

1. Затраты времени работника или бригады на выполнение единицы продукции в чел./час.

2. Затраты времени на производство партии продукции.

3. Затраты времени на годовой объем выпускаемой продукции.

Для перехода на следующую страницу воспользуйтесь постраничной навигацией ниже

Источник

ОСНОВНЫЕ ХИМИЧЕСКИЕ РЕАКЦИИ В СВАРОЧНОЙ ВАННЕ

какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Смотреть фото какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Смотреть картинку какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Картинка про какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Фото какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Смотреть фото какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Смотреть картинку какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Картинка про какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Фото какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Смотреть фото какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Смотреть картинку какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Картинка про какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Фото какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Смотреть фото какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Смотреть картинку какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Картинка про какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Фото какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей

какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Смотреть фото какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Смотреть картинку какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Картинка про какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Фото какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей

какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Смотреть фото какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Смотреть картинку какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Картинка про какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Фото какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей

Эти особенности вносят определенные трудности в получении качественного шва, но при правильно выбранной технологии сварки данной марки стали или сплава, правильно выбранном режима сварки или другими словами высокой квалификации сварщика можно получить равнопрочный свариваемому металлу шов. Это и требуется от сварочного соединения.

ОСНОВНЫЕ ХИМИЧЕСКИЕ РЕАКЦИИ В СВАРОЧНОЙ ВАННЕ

1. ВЛИЯНИЕ КИСЛОРОДА.

Кислород попадает в сварочную ванну из воздуха и с железом образует три оксида Fe3O4; Fe2O3; FeO.

Самым нежелательным из них является FeO, который растворяется в расплавленном металле, а в процессе кристаллизации сварочной ванны, выделяется по границам столбчатых кристаллитов ( характерных для литой структуры) или зерен, нарушая и расслабляя связь между ними. В результате значительно снижается прочность, ударная вязкость, пластичность шва, т.е. основные механические свойства. Для уменьшения влияния кислорода:

— необходима надежная газовая и шлаковая защита сварочной ванны от воздуха, что и осуществляется за счет покрытия электрода;

— так же в покрытие вводятся раскислители, т.к. защита не гарантирует проникновение воздуха. Раскислителями называются химические элементы, обладающие большим сродством (активностью) к кислороду, чем железо. По этому признаку, наиболее встречаемые в сварочной ванне элементы, можно расположить в следующем порядке:

Элементы, стоящие с ряду левее железа будут являться раскислителями. Из них AL не используют, т.к. образуются тугоплавкие, тяжелые и трудно выводимые из сварочной ванны оксиды. Наиболее широко применяются вводимые в виде ферросплавов Ѕi, Mn, Ti, которые восстанавливают железо из FeO и образуют нерастворимые, легко всплывающие и переходящие в шлак ЅiО2; MnO; TiO2.

2. Влияние углерода.

Углерод содержится, при сварке сталей, в основном металле, а так же в электроде. Является раскислителем и при чем его активность зависит от температуры. Например, от 1800 град, он своей активностью к кислороду превосходит титан, стоящий на втором месте, а от 2000 град. и алюминий. Температура сварочной ванны примерно в этих пределах и при восстановлении железа по реакции FeO + C = Fe + CO происходит его «выгорание», т.к. СО представляет собой газ. Пониженное содержание углерода повышает пластичность металла шва, но снижает его прочность. «Выгоранию» углерода препятствует кремний, при его содержании в основном металле 0,2 — 0,3 % и более.

Азот попадает в сварочную ванну из воздуха и образует с железом нитриды Fe2N; Fe3N, которые повышают прочность и твердость металла шва, но снижают его пластичность, что является нежелательным. Для уменьшения влияния азота достаточно надежной шлаковой и газовой защиты сварочной ванны от воздуха во время сварки.

4. Влияние водорода.

Причиной появления водорода в сварочной ванне является вода, которая при высокой температуре распадается на атомарный водород (+Н) и (-ОН). Атомарный водород, растворяясь в расплавленном металле, а при кристаллизации сварочной ванны, преобразуясь в молекулярный (Н2), скапливается в отдельных местах, образует поры (пузырьки) снижающие прочность шва. Кроме того, при усадке металла сварочной ванны, происходит сжатие водорода в пузырьках до десятков атмосфер в результате чего, при недостаточной пластичности металла возможно образование микротрещин, очень опасных для шва. Вода может попасть в сварочную ванну из — за:

—влаги на свариваемых кромках;

— ржавчины, окалины на кромках, т.к. они являются гидратами оксидов, например

— влажности покрытия электрода.

Для уменьшения влияния водорода следует:

— свариваемые кромки осушить;

— зачистить кромки до блеска стальной щеткой от ржавчины и окалины;

— влажное покрытие электрода просушить в сушильных шкафах или печах. Время просушки и допустимое содержание влаги в покрытии, указывается на бумажных ярлыках пачек электродов.

5. Влияние серы и фосфора.

Сера и фосфор могут попасть в сварочную ванну:

— из покрытия электрода. Чем меньше в нем их содержание, тем выше качество покрытия;

— из электродного (присадочного) и основного металла, в которых они являются вредными примесями и так же определяющими качество стали.

какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Смотреть фото какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Смотреть картинку какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Картинка про какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей. Фото какие химические соединения образуются в сварочной ванне при сварке низкоуглеродистых сталей

Сера придает металлу красноломкость, т.е. снижение прочности и явления ползучести при высоких температурах эксплуатации конструкции, а так же способствует появлению горячих трещин в шве. Это объясняется тем, что сера образует с железом сернистое железо Fe2S имеющее температуру плавления 1193 град, меньшую, чем у железа 1539 град. Оно расплавляется по границам кристаллитов (зерен) и при высокой температуре плавится в первую очередь. Уменьшает влияние серы марганец, содержащийся в покрытии, при этом MnS переходит в шлак.

Фосфор придает металлу хладноломкость, т.е. снижение прочности и пластичности при низких температурах эксплуатации конструкции, а так же способствует образованию холодных трещин в шве. Уменьшает влияние фосфора кальций, содержащийся в большом количестве в электродах с основным покрытием. Вот почему, сварку при низких температурах следует вести электродами с основным видом покрытия, во избежание появления холодных трещин.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *