какие типы имеют глии
Глия — не просто «клей»: как нейронаука переоткрыла клетки мозга, раньше считавшиеся бесполезными
В состав нервной системы входят не только нейроны, но и вспомогательные клетки разных типов, которые называются глиальными. Долгое время им отводилась второстепенная роль — защита и обеспечение нейронов энергией. Последние исследования показали, что глия участвует во многих неврологических процессах и имеет огромное значение для нормального развития и функционирования мозга.
Порез бумагой или укус собаки ощущаются через кожу, клетки которой реагируют на механическое воздействие и посылают электрический сигнал в мозг. Раньше считалось, что этот сигнал возникает в нервных окончаниях, которые находятся в коже.
Но несколько месяцев назад ученые пришли к неожиданному выводу, что некоторые из клеток, отвечающие за восприятие боли этого типа, — вовсе не нейроны, а глиальные клетки, которые, переплетаясь с нервными окончаниями, образуют сетку во внешних слоях кожи.
Тот факт, что вскрикнуть от боли нас заставляет информация, которую глиальные клетки посылают нейронам, был доказан в ходе эксперимента на мышах: когда исследователи избирательно стимулировали только глиальные клетки, мыши одергивали лапки и облизывали их — это их типичная реакция на боль.
Это открытие — лишь одно из многих за последнее время, доказывающих, что глиальные клетки гораздо важнее, чем ученые думали раньше.
Долгое время глия считалась своеобразной «прислугой» нейронов, отвечающей за их защиту и обеспечение питательными веществами. Основное внимание исследователей было направлено на сами нейроны, поскольку их способность передавать электрические сигналы не вызывала сомнения.
Но за последние пару десятилетий количество исследований глии многократно возросло.
«В мозге человека глиальные клетки настолько же многочисленны, как и нейроны. Тем не менее мы знаем об их функциях намного меньше, чем о функциях нейронов», — говорит Шай Шахам, преподаватель цитологии в Рокфеллеровском университете.
По мере того, как всё больше ученых стали обращать внимание на глию, стало появляться всё больше данных, указывающих на то, что глия играет ключевую роль в жизненно важных процессах.
Оказалось, что глиальные клетки выполняют множество функций. Одни помогают обрабатывать воспоминания, другие борются с инфекциями, третьи коммуницируют с нейронами, четвертые стимулируют развитие мозга.
Глия вовсе не прислуживает нейронам, а играет зачастую первостепенную роль в защите мозга и управлении его развитием!
Больше, чем просто «клей»
Глиальные клетки способны принимать разнообразные формы для выполнения своих функций: они бывают футлярообразными, веретенообразными и звездчатыми. Часто глия обвивается вокруг нейронов, образуя настолько густую сеть, что отдельные клетки в ней едва различимы.
Поначалу ученые даже считали их опорным скелетом, поддерживающим нервную ткань. Именно поэтому Рудольф Вирхов в XIX веке дал им название «нейроглия» (от древнегреч. γλία — «клей»).
Одна из причин, по которой ученые отвели глие настолько незначительную роль, заключалась в том, что метод окрашивания нервной ткани позволяет отчетливо разглядеть извилистые очертания нейронов, но не глии. Сантьяго Рамон-и-Кахаль, который считается первооткрывателем нейронов и основоположником нейробиологии, описал один подтип глии, объединив все остальные под общим названием «третий элемент».
К тому же функции некоторых глиальных клеток настолько тесно переплетены с функциями нейронов, что их почти невозможно изучать отдельно. Если попытаться «отключить» отдельные глиальные клетки, чтобы посмотреть, что произойдет, поддерживаемые ими нейроны умрут вместе с ними.
Но благодаря недавней революции в области цитологии у ученых появился целый арсенал инструментов для изучения глии. Более совершенные флуоресцентные зонды и системы клеточной визуализации открыли нам весь спектр форм и функций глиальной ткани.
Микроглия — иммунитет мозга
Под собирательным названием «глия» объединено несколько типов клеток с разными функциями. Олигодендроциты и шванновские клетки обволакивают нервные ткани и покрывают их миелиновой оболочкой, которая изолирует электрический сигнал и ускоряет его передачу, а астроциты с многочисленными отростками регулируют водно-солевой обмен, поддерживают работу синапсов и участвуют в метаболизме нейромедиаторов.
Но наибольший интерес в последнее десятилетие вызывает микроглия.
Микроглия была впервые описана Пио дель Рио-Ортегой еще в 1920 году, но затем ее изучение надолго застопорилось — интерес к ней возродился лишь в 1980-х годах. Сегодня, по словам Аманды Сьерры из Баскского центра неврологии Ачукарро, процесс изучения микроглии стремительно набирает обороты.
Ученым уже известно, что микроглия играет немаловажную роль при черепно-мозговых травмах, нейродегенеративных заболеваниях и воспалительных процессах. Кроме того, недавно выяснилось, что клетки микроглии действуют как макрофаги иммунной системы, нейтрализуя угрозы для мозга, исходящие от микробов и клеточного мусора, и удаляя ненужные синапсы.
Некоторые из этих функций выполняются несколькими типами глии. Астроциты и шванновские клетки, например, тоже удаляют лишние синаптические связи. Но исследователи всё больше склоняются к тому, что, несмотря на общие функции, нет достаточных оснований для объединения глиальных клеток разных типов в одну группу. Более того, в вышедшей в 2017 году статье ученые ратовали за отказ от самого термина «глия».
«У разных глиальных клеток очень мало общего, — говорит преподаватель биохимии из Кембриджского университета Гай Браун. — Не думаю, что у ярлыка „глия“ есть будущее».
Скончавшийся в 2017 году нейробиолог Бен Баррес, занимавшийся изучением глии, считал, что без широкомасштабных исследований в данной области невозможен дальнейший прогресс в нейробиологии.
С ним согласна и Аманда Сьерра: «В свое время пристальное внимание к нейронам было оправдано. Но теперь пришла очередь глии».
Нейроны и глиальные клетки не могут функционировать отдельно друг от друга. Их взаимодействие имеет решающее значение для нервной системы и формируемых ею воспоминаний, мыслей и эмоций. Однако природа этого взаимодействия по-прежнему остается загадкой.
Нейроглия — строение и функции глиальных клеток
Нейроглия – это часть нервной системы, представляет из себя ткань, которая окружает нейроны и защищает их. Являются вспомогательными клетками системы, но активно участвует в ее деятельности.
К функциям нейроглии относится защита нейронов и их капилляров, секреторная деятельность, участие в метаболизме и клеточном питании. По сути дела, нейроглия является средой, которая формирует условия для работы нейронов.
Виды и подвиды, функции глиальных клеток
Глии имеют следующие типы:
Глиоциты
К глиоцитам относятся:
Эпендимоциты образуют защитный слой клеток, прежде всего, в канале спинного мозга, а также желудочках головного. Эти элементы органической субстанции образуются первыми в нервных трубках и на начальной стадии имеют функции опоры и разграничения.
Данные клетки снабжены небольшими ответвлениями в виде ресничек, которые помогают движению церебральной жидкости. По мере развития организма реснички теряются, оставаясь только на отдельных участках. На поверхности нервных волокон эпендимоциты формируют мембрану, которая отделяет ЦНС от других тканей организма.
Астроциты представляют из себя клетки с отростками, они похожи на изображение звезды. Бывают двух типов: протоплазматических и волокнистых (фиброзных).
Протоплазматические астроциты имеются исключительно в сером веществе мозговых тканей. Отростки у них короткие, но толстые, и обладают ответвлениями на концах. Имеют своей задачей разграничение и участие в обмене веществ.
Волокнистые астроциты составляют основу глии в белом веществе. Отростки у них длинные, благодаря им формируются волокна, поддерживающие мозговой аппарат. Концы этих видов астроцитов образуют пограничные мембраны. Кроме защиты нейронов, волокнистые астроциты обеспечивают метаболизм и питание клеток. Астроглия является одной из важнейших тканей, формирующих среду для функционирования головного мозга.
Самой большой группой глиоцитов являются олигодендроциты. Эта группа окружает нейроны как в центральной нервной системе, так и в периферической. Вырабатывая миелин, создает электроизолирующую оболочку.
При помощи олигодендроцитов происходит обмен воды и солей в клеточных образованиях, а также процессы разрушения и восстановления. Защитная и трофическая деятельность этих групп формирует поддержку для нейронов и доставляет им необходимое питание.
Микроглия
Микроглия представляет из себя сообщество клеток небольшого размера, с двумя-тремя отростками. На концах отростков выделяются небольшие разветвления. Клетки микроглии имеют способность к небольшим движениям по типу амёб.
В отличии от ядер клеток макроглии, которые имеют круглую или овальную формы, у микроглии они вытянутой или треугольной формы. При раздражении клетки способны втягивать отростки внутрь и округлять свою форму. В таком виде их называют зернистыми шарами.
Одним из свойств микроглии является участие в синтезе белков. Но основная функция – защита нейронов от попадания субстанций, способных нарушить деятельность нервной системы. Микроглия выполняет роль макрофагов, поглощая и разлагая все вредные вещества.
Таким образом, строение и функции нейроглии заключаются в следующем:
Нейроглия не выполняет проводящих функций и не распространяет нервный сигнал, за это отвечают нейроны.
Для измерения количества разных видов ткани в нервной системе применяют нейроглиальный коэффициент.
Нейролиальный коэффициент — это процентное соотношение нейроглии и нейронов в центральной нервной системе. Так как нейроглия формирует среду для работы нейронов, то ее клеточный материал доминирует в системе и составляет до 90% всей массы.
Патологии
Все вирусы, способные воздействовать на нервную систему, начинают деятельность с изменения глии. В результате клетки дают доброкачественные новообразования, формируют кисты в спинном и головном мозге.
При сильном воздействии на микроглию начинает разрушаться миелиновая оболочка нейронов, что способствует возникновению таких тяжелых заболеваний как:
Разрушение защитного барьера глии приводит к тяжелым заболеваниям нервной системы и нарушениям работы головного мозга. Новейшие исследования в этой области позволяют надеяться на прорыв в лечении многих патологий, связанных органическими изменениями тканей нейроглии.
Типы ткани и их особенности строения и месторасположение в организме
Глия — структура нервной системы, образованная специализированными клетками различной формы, которые заполняют пространства между нейронами или капиллярами, составляя 10% объема мозга.
Размеры глиальных клеток в 3-4 раза меньше нервных, число их в центральной нервной системе млекопитающих достигает 140 млрд. С возрастом число нейронов в мозгу уменьшается, а число глиальных клеток увеличивается.
Функции нейроглии
Астроглия — представлена многоотростчатыми клетками. Их размеры колеблются от 7 до 25 мкм. Большая часть отростков заканчивается на стенках сосудов. Ядра содержат ДНК, протоплазма имеет аппарат Гольджи, центрисому, митохондрии. Астроглия служит опорой нейронов, обеспечивает репаративные процессы нервных стволов, изолирует нервное волокно, участвует в метаболизме нейронов.
Олигодендроглия — это клетки, имеющие один отросток. Количество олигодендроглии возрастает в коре от верхних слоев к нижним. В подкорковых структурах, в стволе мозга олигодендроглии больше, чем в коре. Она участвует в миелинизации аксонов, в метаболизме нейронов.
Микроглия — самые мелкие клетки глии, относятся к блуждающим клеткам. Они образуются из структур оболочек мозга, проникают в белое, а затем и в серое вещество мозга. Микроглиальные клетки способны к фагоцитозу.
Типы глиальных клеток
Когда Рудольф Вихров впервые ввел термин «глия» — он описал те элементы, которые позднее были названы астроглией
. Название «глия» потом было перенесено и на другие клетки, позже открытые, которые не имели специализации нейронов, но находились в нервной ткани. Большая заслуга в вопросах классификации глии принадлежит испанской нейрогистологической школе, особенно Рамону-и-Кахалу и Рио-дель-Гортега. Морфологические различия отдельных типов клеток глии отвечают их разному назначению, разной специализации.
4.2.1. Эпендима
С филогенетической и онтогенетической точки зрения эпендимная клетка является наиболее ранним элементом глии. У некоторых низших животных вся глиальная популяция нервной системы целиком состоит только из этих клеток. У высших позвоночных они образуют лишь выстилку полостей ЦНС, которая по своему строению напоминает цилиндрический эпителий и называется эпендимой.
Обращенная в полость поверхность эпендимной клетки покрыта короткими пальцеобразными отростками клеточной мембраны – микроворсинками
и
ресничками
. Координированное движение ресничек (до 6 раз в секунду) является одним из механизмов, приводящих в движение жидкую среду полостей и желудочков ЦНС, которая по-другому называется
ликвором
. На боковых поверхностях эпендимных клеток находятся плотные щелевые контакты, которые укрепляют слой клеток, создавая сплошную структуру наподобие эпителиальной. С базальной стороны эпендимной клетки часто формируется отросток, контактирующий с другими клетками глии. Данный тип глиальных клеток выполняет три функции, осуществляемые в индивидуальном развитии более или менее последовательно.
Первая функция – пролиферативная – камбиальный резерв клеток зародышевой нервной трубки
Вторая функция – опорная. Когда стенка нервной трубки утолщается, выстилающие ее эпендимные клетки дают длинные отростки, которые достигают ее наружной поверхности и какое-то время способствуют образованию наружной мембраны, окружающей нервную трубку.
Третья функция – формирование непрерывной эпителиальной выстилки желудочков мозга. Эта выстилка сохраняется и в центральном канале спинного мозга. В некоторых участках желудочков эпендима участвует в формировании сосудистых сплетений мозга.
Астроцитарная глия
Распределение астроцитов в ЦНС равномерно, однако в делом веществе они встречаются реже, чем в сером. Ядра астроцитов крупнее ядер эпендимы, они светлее, часто имеют сложную форму (полиморфны). Для астроцитов характерно большое количество отростков, которые лучеобразно отходят от тела клетки. В астроцитах очень много фибриллярных структур, отсюда и их основная функция – опорная.
Вообще все астроциты делят на две большие категории – фибриллярные и протоплазматические (рис. 12). Фибриллярные астроциты содержат большое количество пучков фибрилл, расположены эти клетки в основном в белом веществе. Долгое время придерживались мнения, что только фибриллярные астроциты содержат фибриллы, но с помощью электронного микроскопа такие пучки были выявлены и в протоплазматических астроцитах. Последние имеют ветвящиеся цитоплазматические отростки, отходящие от тела клетки наподобие зарослей кустарника. Их отростки короче и ветви более многочисленны, чем у фибриллярных астроцитов.
Астроциты пронизывают всю ЦНС, контактируют между собой и с рецепторной частью нейронных синапсов. Астроциты составляют четвертую часть популяции глиальных клеток. По своей конфигурации астроциты полностью зависят от системы нейронов, которые они окружают. Аксоны нейронов часто бывают окутаны цитоплазмой астроцита. Астроциты также располагаются между капиллярами кровеносного русла и телами нейронов, и осуществляют транспорт веществ из крови в нейроны и обратно. Кроме того, астроглия связывает с кровеносным руслом спинномозговую жидкость.
Поскольку иногда встречаются дегенерирующие астроциты, возможно, что дегенерация находится в равновесии с образованием новых астроцитов, что указывает на возможность медленного обновления популяции этих клеток. Таким образом, основные функции астроцитарной глии:
Олигодендроглия
Олигодендроциты имеют тоже происхождение, что и астроциты. По размерам они меньше, чем астроциты и имеют меньше отростков. Олигодендроциты находятся как в сером веществе (где представляют собой большую часть перинейрональных элементов) и так и в белом веществе (где ответственны за образование миелина,
эти олигодендроциты обладают длинными отростками). Одним из типов олигодендроглии являются
Шванновские
клетки. Эти клетки располагаются в периферической нервной системе, способны спирально обертывать своей цитоплазмой аксоны нейронов и формировать
миелиновые оболочки
. Те олигодендроциты, которые находятся в сером веществе ЦНС, располагаются настолько плотно прилегая к телам нейронов, что получили название
клеток-сателлитов
. Основные функции олигодендроцитов:
изоляционная – шванновские клетки полностью ограничивают все нейрональные части периферической нервной системы от соединительной ткани
синтетическая – шванновские клетки берут на себя задачу создания белка миелина и обеспечения его структурной и функциональной целостности. Миелинизация в эмбриональном онтогенезе наступает достаточно поздно и протекает неделями и месяцами и после рождения. Основная функция – миелин позволяет увеличить скорость проведения нервных импульсов.
обмен веществ прилегающего нейрона – общая функция всех олигодендроцитов (и сателлитов и шванновских)
Микроглия
Клетки микроглии происходят из другого зародышевого листка – из мезодермы и играют большую роль при патологических состояниях. В мозг они прорастают на поздних стадиях эмбриогенеза, скапливаясь в тех местах, где мягкая мозговая оболочка непосредственно прилегает к белому веществу. Отсюда они распространяются по всей ткани ЦНС.
Некоторые авторы, например Артур Хэм и Дэвид Кормак считают что «… было бы проще, если бы микроглию совсем не причисляли к нейроглии, поскольку она не развивается из эпителия нервной трубки (как другие клетки мозговой ткани) и не выполняет поддерживающей функции
Микроглия (как видно из названия) является наименьшим глиальным элементом в ЦНС. В количественном отношении микроглиальных клеток меньше чем астроцитов и олигодендроцитов. У этих клеток нет преимущественной локализации в нервной ткани, но в сером веществе их больше, чем в белом веществе. Часто они встречаются в виде сателлитов вокруг нервных клеток и сосудов. Цитоплазма этих клеток окружает ядро лишь узкой полоской. От тела клетки отходят многочисленные отростки, которые богато ветвятся.
Микроглия отличается повышенной подвижностью и способностью принимать и перерабатывать метаболиты (продукты жизнедеятельности других клеток). Микроглиальные элементы активизируются при болезненных процессах, сопровождающихся распадом нервной ткани. Основная функция микроглии – способность, подобно другим тканевым макрофагам, фагоцитировать (переваривать, утилизировать) гибнущие клетки ЦНС. Однако, как показали исследования, и в нормальных условиях микроглия сохраняет свою функциональную активность. Происходит постоянный обмен между нервной тканью, микроглией и кровью.
Строение нервов
Отростки нейронов, покрытые оболочками, называют нервными волокнами. Как мы уже упоминали, в зависимости от степени окруженности олигодендроцитами они бывают безмякотными (безмиелиновыми) и мякотными (миелиновыми). Пучки нервных волокон, окруженные соединительнотканными оболочками, называют нервами
или
нервными стволами
. В составе некоторых нервов встречаются одиночные нервные клетки и мелкие ганглии или узлы (скопления нейронов). Нервы подразделяют на:
Все нервы и их разветвления (вместе с концевыми аппаратами – рецепторами и эффекторами) составляют периферическую нервную систему. Посредством нервов и их разветвлений осуществляется связь ЦНС с органами, объединяются системы органов и осуществляется целостность организма.
Нервы являются довольно прочными структурами в отличие от тканей головного или спинного мозга. Это объясняется тем, что соединительнотканная оболочка нервов представляете собой трубчатую структуру трех порядков (рис. 13):
– наружная оболочка нервного ствола. Представлена рыхлой неоформленной соединительной тканью, богата коллагеновыми волокнами. Содержит фибробласты, жировые клетки, а также кровеносные и лимфатические сосуды
– тонкие прослойки соединительной ткани, разделяющие нерв на отдельные нервные пучки. Также содержит кровеносные и лимфатические сосуды.
– разделяет нервный пучок на отдельные нервные волокна.
В нервах небольшого диаметра эпиневрий отсутствует. Небольшие нервы состоят из периневрия, содержащего эндоневральные трубки, окружающие отдельные нервные волокна.
Такие же оболочки – эпи-, пери- и эндоневрий присутствуют и в цереброспинальных ганглиях.
Нервы в зависимости от состава их волокон подразделяются на:
чувствительные – содержат центростремительные волокна
двигательные – центробежные волокна
смешанные – оба вида волокон
Большинство периферических нервов относится к смешанному типу. Ближе к дистальному концу нерва афферентные и эфферентные волокна рассортировываются, и отдельные нервные пучки становятся преимущественно чувствительными или двигательными. Число и диаметр нервных волокон в пучке варьируют. В дистальных частях некоторых нервов имеется больше волокон, чем в проксимальных частях. Увеличение числа волокон в нерве связано с их ветвлением.
Раздел 2
Дата добавления: 2017-11-21; просмотров: 4220; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Похожие статьи:
Нервная ткань
Нервная ткань состоит из двух разновидностей клеток: нервных (нейронов) и глиальных. Глиальные клетки вплотную прилегают к нейрону, выполняя опорную, питательную, секреторную и защитную функции.
Нейрон – основная структурная и функциональная единица нервной ткани. Главная его особенность – способность генерировать нервные импульсы и передавать возбуждение другим нейронам или мышечным и железистым клеткам рабочих органов. Нейроны могут состоять из тела и отростков. Нервные клетки предназначены для проведения нервных импульсов. Получив информацию на одном участке поверхности, нейрон очень быстро передает ее на другой участок своей поверхности. Так как отростки нейрона очень длинные, то информация передается на большие расстояния. Большинство нейронов имеют отростки двух видов: короткие, толстые, ветвящиеся вблизи тела – дендриты и длинные (до 1.5 м), тонкие и ветвящиеся только на самом конце – аксоны. Аксоны образуют нервные волокна.
Нервный импульс – это электрическая волна, бегущая с большой скоростью по нервному волокну.
В зависимости от выполняемых функций и особенностей строения все нервные клетки подразделяются на три типа: чувствительные, двигательные (исполнительные) и вставочные. Двигательные волокна, идущие в составе нервов, передают сигналы мышцам и железам, чувствительные волокна передают информацию о состоянии органов в центральную нервную систему.
Теперь всю полученную информацию мы можем объединить в таблицу.
Соединительная ткань
Соединительная ткань Состоит из клеток, межклеточного вещества и соединительнотканных волокон. Из нее состоят кости, хрящи, сухожилия, связки, кровь, жир, она есть во всех органах (рыхлая соединительная ткань) в виде так называемой стромы (каркаса) органов.
В противоположность эпителиальной ткани во всех типах соединительной ткани (кроме жировой) межклеточное вещество преобладает над клетками по объему, т. е. межклеточное вещество очень хорошо выражено. Химический состав и физические свойства межклеточного вещества очень разнообразны в различных типах соединительной ткани. Например, кровь – клетки в ней «плавают» и передвигаются свободно, поскольку межклеточное вещество хорошо развито.
В целом, соединительная ткань составляет то, что называют внутренней средой организма. Она очень разнообразна и представлена различными видами – от плотных и рыхлых форм до крови и лимфы, клетки которых находятся в жидкости. Принципиальные различия типов соединительной ткани определяются соотношениями клеточных компонентов и характером межклеточного вещества.
В плотной волокнистой соединительной ткани (сухожилия мышц, связки суставов) преобладают волокнистые структуры, она испытывает существенные механические нагрузки.
Рыхлая волокнистая соединительная ткань чрезвычайно распространена в организме. Она очень богата, наоборот, клеточными формами разных типов. Одни из них участвуют в образовании волокон ткани (фибробласты), другие, что особенно важно, обеспечивают прежде всего защитные и регулирующие процессы, в том числе через иммунные механизмы (макрофаги, лимфоциты, тканевые базофилы, плазмоциты).