какие углеводы являются биополимерами
Какие углеводы являются биополимерами
Углеводы — это органические соединения, образованные тремя химическими элемента ми — углеродом, водородом и кислородом. Некоторые содержат также азот или серу. Общая формула углеводов — Сm(H2O)n.
Их делят на три основных класса: моносахариды, олигосахариды(дисахариды) и полисахариды.
Моносахариды — это простейшие углеводы, имеющие 3–10 атомов углерода. Большинство атомов углерода в молекуле моносахарида связано со спиртовыми группами, а один — с альдегидной или кетогруппой.
Глюкоза (виноградный сахар) встречается во всех организмах, в том числе в крови человека, поскольку является энергетическим резервом, входит в состав сахарозы, лактозы, мальтозы, крахмала, целлюлозы и других углеводов. Фруктоза (плодовый сахар) в наибольших кон центрациях содержится в плодах, меде, корнеплодах сахарной свеклы. Она не только принимает активное участие в процессах обмена веществ, но и входит в состав сахарозы.
Моносахариды — кристаллические вещества, сладкие на вкус и хорошо растворимые в воде.
К олигосахаридам относят углеводы, образованные не сколькими остатками моносахаридов. Они в основном так же кристаллические, хорошо растворимы в воде и сладки на вкус. В зависимости от количества этих остатков разли чают дисахариды (два остатка моносахаридов), трисахари ды (три) и т.д.
Полисахариды — это биополимеры, мономе рами которых являются остатки моносахаридов. К ним относятся крахмал, гликоген, целлюло за, хитин и др. Мономером этих полисахаридов является глюкоза.
Крахмал является основ ным запасным веществом растений, которое накапливается в семенах, плодах, клубнях, корневищах и других запасающих органах. Качественной реакцией на крахмал является реакция с йодом, при которой крахмал окрашивается в синефиолетовый цвет.
Гликоген (животный крахмал) — это запасной полисахарид животных и грибов, который у человека в наибольших количествах накапливается в мышцах и печени. Молекулы гликогена имеют более высокую степень ветвления, чем молекулы крахмала.
Целлюлоза, или клетчатка, — основной опорный полисахарид растений. Неразветвленные молекулы целлюлозы образуют пучки, которые входят в состав клеточных стенок растений. Она используется в производстве тканей, бумаги, спирта и других органических веществ.
Хитин — это полисахарид, мономером которого является азотсодержащий моносахарид на основе глюкозы. Он входит в состав клеточных стенок грибов и панцирей членистоногих.
Полисахариды представляют собой порошкообразные вещества, которые несладки на вкус и нерастворимы в воде.
Видео YouTube
Биология. 10 класс
Конспект урока
Урок 2. «Неорганические соединения клетки. Углеводы и липиды. Регулярные и нерегулярные биополимеры»
3. Перечень вопросов, рассматриваемых в теме;
Урок позволит выявить особенности химического состава организмов, роль неорганических (воды, солей) и органических (углеводов, липидов) веществ в жизни клетки и организма.
Обучающиеся узнают, какие химические элементы входят в состав живых организмов, рассмотрят самое важное минеральное вещество на Земле, структуру молекулы воды и её биологическую роль, выяснят физические и химические свойства воды, благодаря которым возможно существование жизни на Земле.
Также обучающиеся увидят особенности строения органических веществ, узнают, на какие классы делятся углеводы и липиды, их значение для жизнедеятельности клетки и организма в целом.
4. Глоссарий по теме (перечень терминов и понятий, введенных на данном уроке);
Биологически значимые элементы, органогены, неорганические вещества, вода, водородная связь, гидрофильные вещества, гидрофобные вещества; органические вещества, регулярные и нерегулярные биополимеры; углеводы, липиды
Биологически значимые элементы – химические элементы, необходимые живым организмам для обеспечения нормальной жизнедеятельности.
Органогены — химические элементы, входящие в состав всех органических соединений, составляют около 98% массы клетки (углерод, водород, кислород, азот).
Неорганические вещества (неорганические соединения) клетки — простые вещества и соединения, не являющиеся органическими, не имеют характерного для органических веществ углеродного скелета.
Органические вещества – это сложные соединения, основой строения которых являются атомы углерода, составляют отличительный признак живого. Органические соединения многообразны, но четыре группы из них имеют всеобщее биологическое значение: белки, нуклеиновые кислоты, углеводы и липиды.
Водородная связь – вид взаимодействия между молекулами вещества. Молекулы воды удерживаются за счет водородных связей, которые возникли между частично положительным атомом водорода одной молекулы и частично отрицательным атомом кислорода другой молекулы. Водородные связи заметно слабее по сравнению с ковалентными. Однако они намного крепче, чем стандартное молекулярное притяжение частиц, свойственное твёрдым и жидким телам.
Гидрофильные вещества – хорошо растворимые в воде вещества, молекулы которых полярны и легко соединяются с молекулами воды. К ним относятся ионные соединения (содержат заряженные частицы): соли, кислоты, основания и полярные соединения (в молекулах присутствуют заряженные группы): сахара, простые спирты, аминокислоты.
Гидрофобные вещества– нерастворимые в воде вещества, энергия притяжения молекул которых к молекулам воды меньше энергии водородных связей молекул воды. К числу гидрофобных веществ относятся жиры, полисахариды, нуклеиновые кислоты, большинство белков.
Буферность – способность клетки поддерживать слабощелочную реакцию своего содержимого на постоянном уровне.
Полимер (от греч. «поли» — много) — многозвеньевая цепь, в которой звеном является какое-либо относительно простое вещество — мономер.
Регулярные полимеры – полимеры, в молекуле которых группа мономеров периодически повторяется (полисахариды).
Нерегулярные полимеры – полимеры, в которых нет определенной закономерности в последовательности мономеров (белки, нуклеиновые кислоты, некоторые полисахариды).
Углеводы – органические соединения, состоящие из атомов углерода, кислорода и водорода. В большинстве углеводов водород и кислород находятся, как правило, в тех же соотношениях, что и в воде (отсюда их название — углеводы).
Полисахариды – высокомолекулярные углеводы, молекулы которых представляют собой длинные линейные или разветвлённые цепочки моносахаридных остатков, соединённых гликозидной связью. При гидролизе образуют моносахариды или олигосахариды.
Липиды — обширная группа органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот, сложных — из спирта, высокомолекулярных жирных кислот и других компонентов
5. Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц);
6. Открытые электронные ресурсы по теме урока (при наличии);
1.Российский общеобразовательный Портал www.school.edu.ru
2 Единая коллекция цифровых образовательных ресурсов www.school-collection.edu.ru
3.Каталог образовательных ресурсов по биологии http://www.mec.tgl.ru/index.php?module=subjects&func=viewpage&pageid=133
7. Теоретический материал для самостоятельного изучения;
В состав живой клетки входят те же химические элементы, которые входят в состав неживой природы. Из 104 элементов периодической системы Д. И. Менделеева в клетках обнаружено 60.
Их делят на три группы:
Молекулярный состав клетки сложный и разнородный. Отдельные соединения — вода и минеральные соли — встречаются также в неживой природе; другие — органические соединения: углеводы, жиры, белки, нуклеиновые кислоты и др.— характерны только для живых организмов.
Вода составляет около 80 % массы клетки; в молодых быстрорастущих клетках — до 95 %, в старых — 60 %.
Роль воды в клетке велика.
Она является основной средой и растворителем, участвует в большинстве химических реакций, перемещении веществ, терморегуляции, образовании клеточных структур, определяет объем и упругость клетки. Большинство веществ поступает в организм и выводится из него в водном растворе. Биологическая роль воды определяется специфичностью строения: полярностью ее молекул и способностью образовывать водородные связи, за счет которых возникают комплексы из нескольких молекул воды. Если энергия притяжения между молекулами воды меньше, чем между молекулами воды и вещества, оно растворяется в воде. Такие вещества называют гидрофильными (от греч. «гидро» — вода, «филее» — люблю). Это многие минеральные соли, белки, углеводы и др. Если энергия притяжения между молекулами воды больше, чем энергия притяжения между молекулами воды и вещества, такие вещества нерастворимы (или слаборастворимы), их называют гидрофобными (от греч. «фобос» — страх) — жиры, липиды и др.
Органические вещества в комплексе образуют около 20—30% состава клетки.
Углеводы — органические соединения, состоящие из углерода, водорода и кислорода. Их делят на простые — моносахариды (от греч. «монос» — один) и сложные — полисахариды (от греч. «поли» — много).
Моносахариды (их общая формула СnН2nОn) — бесцветные вещества с приятным сладким вкусом, хорошо растворимы в воде. Они различаются по количеству атомов углерода. Из моносахаридов наиболее распространены гексозы (с 6 атомами С): глюкоза, фруктоза (содержащиеся в фруктах, меде, крови) и галактоза (содержащаяся в молоке). Из пентоз (с 5 атомами С) наиболее распространены рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот и АТФ.
Полисахариды относятся к полимерам — соединениям, у которых многократно повторяется один и тот же мономер. Мономерами полисахаридов являются моносахариды. Полисахариды растворимы в воде, многие обладают сладким вкусом. Из них наиболее просты дисахариды, состоящие из двух моносахаридов. Например, сахароза состоит из глюкозы и фруктозы; молочный сахар — из глюкозы и галактозы. С увеличением числа мономеров растворимость полисахаридов падает. Из высокомолекулярных полисахаридов наиболее распространены у животных гликоген, у растений — крахмал и клетчатка (целлюлоза). Последняя состоит из 150—200 молекул глюкозы.
Углеводы — основной источник энергии для всех форм клеточной активности (движение, биосинтез, секреция и т. д.). Расщепляясь до простейших продуктов СO2 и Н2O, 1 г углевода освобождает 17,6 кДж энергии. Углеводы выполняют строительную функцию у растений (их оболочки состоят из целлюлозы) и роль запасных веществ (у растений — крахмал, у животных — гликоген).
Липиды — это нерастворимые в воде жироподобные вещества и жиры, состоящие из глицерина и высокомолекулярных жирных кислот. Животные жиры содержатся в молоке, мясе, подкожной клетчатке. При комнатной температуре это твердые вещества. У растений жиры находятся в семенах, плодах и других органах. При комнатной температуре это жидкости. С жирами по химической структуре сходны жироподобные вещества. Их много в желтке яиц, клетках мозга и других тканях.
Роль липидов определяется их структурной функцией. Из них состоят клеточные мембраны, которые вследствие своей гидрофобности препятствуют смешению содержимого клетки с окружающей средой. Липиды выполняют энергетическую функцию. Расщепляясь до СO2 и Н2O, 1 г жира выделяет 38,9 кДж энергии. Они плохо проводят тепло, накапливаясь в подкожной клетчатке (и других органах и тканях), выполняют защитную функцию и роль запасных веществ.
8. примеры и разбор решения заданий тренировочного модуля (не менее 2 заданий).
Найдите и выделите цветом по вертикали и горизонтали названия химических элементов:
Тип вариантов ответов: Текстовые,Графические, Комбинированные.
Правильный вариант/варианты (или правильные комбинации вариантов):
Подсказка:при необходимости обратитесь к дополнительным материалам
Заполните пропуски в тексте, выбрав вариант ответа из выпадающего списка.
Выпадающий список 1.
Выпадающий список 2.
Тип вариантов ответов: Текстовые, Графические, Комбинированные.
Правильный вариант/варианты (или правильные комбинации вариантов):выделены жирным шрифтом
Выпадающий список 1.
Выпадающий список 2.
Подсказка:В большинстве клеток организма рН составляет 7,0 – 7,4.
Углеводы
Классификация
Моносахариды
В присутствии ионов металла, молекулы формальдегида соединяются, образуя различные углеводы, например, глюкозу.
Окисление глюкозы идет до глюконовой кислоты. Это можно осуществить с помощью реакций серебряного зеркала, с гидроксидом меди II.
Восстановление глюкозы возможно до шестиатомного спирта сорбита (глюцита), применяемого в пищевой промышленности в качестве сахарозаменителя. На вкус сорбит менее приятен, менее сладок, чем сахар.
В результате такой реакции образуется характерное голубое окрашивание раствора.
Возможны несколько вариантов брожения глюкозы: спиртовое, молочнокислое, маслянокислое. Эти виды брожения имеют большое практическое значение и характерны для многих живых организмов, в частности бактерий.
Применяется фруктоза как сахарозаменитель. Она в 3 раза слаще глюкозы и в 1,5 раза слаще сахарозы.
Дисахариды
При их гидролизе получаются различные моносахариды.
Полисахариды
Из множества реакций, более всего мне хотелось бы выделить гидролиз крахмала. В результате образуется глюкоза.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
§ 2. Биополимеры. Углеводы, липиды
В состав клеток входит множество органических соединений: углеводы, белки, липиды, нуклеиновые кислоты и другие соединения, которых нет в неживой природе. Органическими веществами называют химические соединения, в состав которых входят атомы углерода.
Атомы углерода способны вступать друг с другом в прочную ковалентную связь, образуя множество разнообразных цепочечных или кольцевых молекул.
Самыми простыми углеродсодержащими соединениями являются углеводороды — соединения, которые содержат только углерод и водород. Однако в большинстве органических, т. е. углеродных, соединений содержатся и другие элементы (кислород, азот, фосфор, сера).
Биологические полимеры (биополимеры). Биологические полимеры — это органические соединения, входящие в состав клеток живых организмов и продуктов их жизнедеятельности.
Полимер (от греч. «поли» — много) — многозвеньевая цепь, в которой звеном является какое-либо относительно простое вещество — мономер. Мономеры, соединяясь между собой, образуют цепи, состоящие из тысяч мономеров. Если обозначить тип мономера определенной буквой, например А, то полимер можно изобразить в виде очень длинного сочетания мономерных звеньев: А—А—А—А—. —А. Это, например, известные вам органические вещества: крахмал, гликоген, целлюлоза и др. Биополимерами являются белки, нуклеиновые кислоты, полисахариды.
Свойства биополимеров зависят от строения их молекул: от числа и разнообразия мономерных звеньев, образующих полимер.
Если соединить вместе два типа мономеров А и Б, то можно получить очень большой набор разнообразных полимеров. Строение и свойства таких полимеров будут зависеть от числа, соотношения и порядка чередования, т. е. положения мономеров в цепях. Полимер, в молекуле которого группа мономеров периодически повторяется, называют регулярным. Таковы, например, схематически изображенные полимеры с закономерным чередованием мономеров:
. А Б Б А Б Б А Б Б А Б Б.
Однако значительно больше можно получить вариантов полимеров, в которых нет видимой закономерности в повторяемости мономеров. Такие полимеры называют нерегулярными. Схематически их можно изобразить так:
Допустим, что каждый из мономеров определяет какое-либо свойство полимера. Например, мономер А определяет высокую прочность, а мономер Б — электропроводность. Сочетая эти два мономера в разных соотношениях и по-разному чередуя их, можно получить огромное число полимерных материалов с разными свойствами. Если же взять не два типа мономеров (А и Б), а больше, то и число вариантов полимерных цепей значительно возрастет.
Рис. 2. Строение молекулы глюкозы
Оказалось, что сочетание и перестановка нескольких типов мономеров в длинных полимерных цепях обеспечивает построение множества вариантов и определяет различные свойства биополимеров, входящих в состав всех организмов. Этот принцип лежит в основе многообразия жизни на нашей планете.
Углеводы и их строение. В составе клеток всех живых организмов широкое распространение имеют углеводы. Углеводами называют органические соединения, состоящие из углерода, водорода и кислорода. В большинстве углеводов водород и кислород находятся, как правило, в тех же соотношениях, что и в воде (отсюда их название — углеводы). Общая формула таких углеводов Сn(Н20)m. Примером может служить один из самых распространенных углеводов — глюкоза, элементный состав которой С6Н1206 (рис. 2). Глюкоза является простым сахаром. Несколько остатков простых сахаров соединяются между собой и образуют сложные сахара. В составе молока находится молочный сахар, который состоит из остатков молекул двух простых сахаров (дисахарид). Молочный сахар — основной источник энергии для детенышей всех млекопитающих.
Тысячи остатков молекул одинаковых сахаров, соединяясь между собой, образуют биополимеры — полисахариды. В составе живых организмов имеется много разнообразных полисахаридов: у растений это крахмал (рис. 3), у животных — гликоген, тоже состоящий из тысяч молекул глюкозы, но еще более ветвистый. Крахмал и гликоген играют роль как бы аккумуляторов энергии, необходимой для жизнедеятельности клеток организма. Очень богаты крахмалом картофель, зерна пшеницы, ржи, кукурузы и др.
Функции углеводов. Важнейшая функция углеводов — энергетическая. Углеводы служат основным источником энергии для организмов, питающихся органическими веществами. В пищеварительном тракте человека и животных полисахарид крахмал расщепляется особыми белками (ферментами) до мономерных звеньев — глюкозы. Глюкоза, всасываясь из кишечника в кровь, окисляется в клетках до углекислого газа и воды с освобождением энергии химических связей, а избыток ее запасается в клетках печени и мышц в виде гликогена. В периоды интенсивной мышечной работы или нервного напряжения (либо при голодании) в мышцах и печени животных расщепление гликогена усиливается. При этом образуется глюкоза, которая потребляется интенсивно работающими мышечными и нервными клетками.
Таким образом, биополимеры полисахариды — это вещества, в которых запасается используемая клетками энергия растительных и животных организмов.
В растениях в результате полимеризации глюкозы образуется не только крахмал, но и целлюлоза. Из целлюлозных волокон строится прочная основа клеточных стенок растений. Благодаря особому строению целлюлоза нерастворима в воде и обладает высокой прочностью. По этой причине целлюлозу используют и для изготовления тканей. Ведь хлопок почти чистая целлюлоза. В кишечнике человека и большинства животных нет ферментов, способных расщеплять связи между молекулами глюкозы, входящими в состав целлюлозы. У жвачных животных целлюлозу расщепляют ферменты бактерий, постоянно обитающих в специальном отделе желудка.
Известны также сложные полисахариды, состоящие из двух типов простых сахаров, которые регулярно чередуются в длинных цепях. Такие полисахариды выполняют структурные функции в опорных тканях животных. Они входят в состав межклеточного вещества кожи, сухожилий, хрящей, придавая им прочность и эластичность. Таким образом, важной функцией углеводных биополимеров является структурная функция.
Имеются полимеры сахаров, которые входят в состав клеточных мембран; они обеспечивают взаимодействие клеток одного типа, узнавание клетками друг друга. Если разделенные клетки печени смешать с клетками почек, то они самостоятельно разойдутся в две группы благодаря взаимодействию однотипных клеток: клетки почек соединятся в одну группу, а клетки печени — в другую. Утрата способности узнавать друг друга характерна для клеток злокачественных опухолей. Выяснение механизмов узнавания и взаимодействия клеток может иметь важное значение, в частности для разработки средств лечения рака.
Липиды. Липиды разнообразны по структуре. Всем им присуще, однако, одно общее свойство: все они неполярны. Поэтому они растворяются в таких неполярных жидкостях, как хлороформ, эфир, но практически нерастворимы в воде. К липидам относятся жиры и жироподобные вещества. В клетке при окислении жиров образуется большое количество энергии, которая расходуется на различные процессы. В этом заключается энергетическая функция жиров.
Жиры могут накапливаться в клетках и служить запасным питательным веществом. У некоторых животных (например, у китов, ластоногих) под кожей откладывается толстый слой подкожного жира, который благодаря низкой теплопроводности защищает их от переохлаждения, т. е. выполняет защитную функцию.
Биополимеры
Биополиме́ры — класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды, лигнин. Биополимеры состоят из одинаковых (или схожих) звеньев — мономеров. Мономеры белков — аминокислоты, нуклеиновых кислот — нуклеотиды, в полисахаридах — моносахариды.
Выделяют два типа биополимеров — регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды).
Содержание
Белки
Белки имеют несколько уровней организации — первичная, вторичная, третичная, и иногда четвертичная. Первичная структура определяется последовательностью мономеров, вторичная задаётся внутри- и межмолекулярными взаимодействиями между мономерами, обычно при помощи водородных связей. Третичная структура зависит от взаимодействия вторичных структур, четвертичная, как правило, образуется при объединении нескольких молекул с третичной структурой.
Вторичная структура белков образуется при взаимодействии аминокислот с помощью водородных связей и гидрофобных взаимодействий. Основными типами вторичной структуры являются
Для предсказания вторичной структуры используются компьютерные программы.
Третичная структура или «фолд» образуется при взаимодействии вторичных структур и стабилируется нековалентными, ионными, водородными связями и гидрофобными взаимодействиями. Белки, выполняющие сходные функции обычно имеют сходную третичную структуру. Примером фолда является β-баррел (бочка), когда β-листы располагаются по окружности. Третичная структура белков определяется с помощью рентгеноструктурного анализа.
Важный класс полимерных белков составляют Фибриллярные белки, самый известный из которых коллаген.
В животном мире в качестве опорного, структурообразующего полимера обычно выступают белки. Эти полимеры построены из 20 α-аминокислот. Остатки аминокислот связаны в макромолекулы белка пептидными связями, возникающими в результате реакции карбоксильных и аминогрупп.
Значение белков в живой природе трудно переоценить. Это строительный материал живых организмов, биокатализаторы — ферменты, обеспечивающие протекание реакций в клетках, и энзимы, стимулирующие определённые биохимические реакции, то есть обеспечивающие избирательность биокатализа. Наши мышцы, волосы, кожа состоят из волокнистых белков. Белок крови, входящий в состав гемоглобина, способствует усвоению кислорода воздуха, другой белок — инсулин — ответственен за расщепление сахара в организме и, следовательно, за его обеспечение энергией. Молекулярная масса белков колеблется в широких пределах. Так, инсулин — первый из белков, строение которого удалось установить Ф. Сэнгеру в 1953 г., содержит около 60 аминокислотных звеньев, а его молекулярная масса составляет лишь 12 000. К настоящему времени идентифицировано несколько тысяч молекул белков, молекулярная масса некоторых из них достигает 10 6 и более.
Нуклеиновые кислоты
В соответствии с природой углевода, входящего в их состав, нуклеиновые кислоты называются рибонуклеиновой и дезоксирибонуклеиновой кислотами. Общеупотребительными сокращениями являются РНК и ДНК. Нуклеиновые кислоты играют наиболее ответственную роль в процессах жизнедеятельности. С их помощью решаются две важнейшие задачи: хранения и передачи наследственной информации и матричный синтез макромолекул ДНК, РНК и белка.
Полисахариды
Полисахариды, синтезируемые живыми организмами, состоят из большого количества моносахаридов, соединённых гликозидными связями. Зачастую полисахариды нерастворимы в воде. Обычно это очень большие, разветвлённые молекулы. Примерами полисахаридов, которые синтезируют живые организмы, являются запасные вещества крахмал и гликоген, а также структурные полисахариды — целлюлоза и хитин. Так как биологические полисахариды состоят из молекул разной длины, понятия вторичной и третичной структуры к полисахаридам не применяются.
Полисахариды образуются из низкомолекулярных соединений, называемых сахарами или углеводами. Циклические молекулы моносахаридов могут связываться между собой с образованием так называемых гликозидных связей путём конденсации гидроксильных групп.
Наиболее распространены полисахариды, повторяющиеся звенья которых являются остатками α-D-глюкопиранозы или её производных. Наиболее известна и широко применяема целлюлоза. В этом полисахариде кислородный мостик связывает 1-й и 4-й атомы углерода в соседних звеньях, такая связь называется α-1,4-гликозидной.
Химический состав, аналогичный целлюлозе, имеют крахмал, состоящий из амилозы и амилопектина, гликоген и декстран. Отличие первых от целлюлозы состоит в разветвлённости макромолекул, причём амилопектин и гликоген могут быть отнесены к сверхразветвлённым природным полимерам, то есть дендримерам нерегулярного строения. Точкой ветвления обычно является шестой атом углерода α-D-глюкопиранозного кольца, который связан гликозидной связью с боковой цепью. Отличие декстрана от целлюлозы состоит в природе гликозидных связей — наряду с α-1,4-, декстран содержит также α-1,3- и α-1,6-гликозидные связи, причем последние являются доминирующими.
Целлюлоза содержится в коре и древесине деревьев, стеблях растений: хлопок содержит более 90 % целлюлозы, деревья хвойных пород — свыше 60 %, лиственных — около 40 %. Прочность волокон целлюлозы обусловлена тем, что они образованы монокристаллами, в которых макромолекулы упакованы параллельно одна другой. Целлюлоза составляет структурную основу представителей не только растительного мира, но и некоторых бактерий.
В животном мире в качестве опорных, структурообразующих полимеров полисахариды «используются» лишь насекомыми и членистоногими. Наиболее часто для этих целей применяется хитин, который служит для построения так называемого внешнего скелета у крабов, раков, креветок. Из хитина деацетилированием получается хитозан, который, в отличие от нерастворимого хитина, растворим в водных растворах муравьиной, уксусной и соляной кислот. В связи с этим, а также благодаря комплексу ценных свойств, сочетающихся с биосовместимостью, хитозан имеет большие перспективы широкого практического применения в ближайшем будущем.
Крахмал относится к числу полисахаридов, выполняющих роль резервного пищевого вещества в растениях. Клубни, плоды, семена содержат до 70 % крахмала. Запасаемым полисахаридом животных является гликоген, который содержится преимущественно в печени и мышцах.
Из пентоз значение имеют полимеры арабинозы и ксилозы, которые образуют полисахариды, называемые арабинами и ксиланами. Они, наряду с целлюлозой, определяют типичные свойства древесины.